Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 332
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(21): 6362-6368, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38752764

RESUMO

Plasmonic nanoantennas have proven to be efficient transducers of electromagnetic to mechanical energy and vice versa. The sudden thermal expansion of these structures after an ultrafast optical pulsed excitation leads to the emission of hypersonic acoustic waves to the supporting substrate, which can be detected by another antenna that acts as a high-sensitivity mechanical probe due to the strong modulation of its optical response. Here, we propose and experimentally demonstrate a nanoscale acoustic lens comprised of 11 gold nanodisks whose collective oscillation at gigahertz frequencies gives rise to an interference pattern that results in a diffraction-limited surface acoustic beam of about 340 nm width, with an amplitude contrast of 60%. Via spatially decoupled pump-probe experiments, we were able to map the radiated acoustic energy in the proximity of the focal area, obtaining a very good agreement with the continuum elastic theory.

2.
Nano Lett ; 24(33): 10322-10330, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39133825

RESUMO

Light-to-electricity conversion is crucial for energy harvesting and photodetection, requiring efficient electron-hole pair separation to prevent recombination. Traditional junction-based mechanisms using built-in electric fields fail in nonbarrier regions. Homogeneous material harvesting under a photovoltaic effect is appealing but is only realized in noncentrosymmetric systems via a bulk photovoltaic effect. Here we report the realization of a photovoltaic effect by employing surface acoustic waves (SAWs) to generate zero-bias photocurrent in the conventional layered semiconductor MoSe2. SAWs induce periodic modulation to electronic bands and drag the photoexcited pairs toward the traveling direction. The photocurrent is extracted from a local barrier. The separation of generation and extraction processes suppresses recombination and yields a large nonlocal photoresponse. We distinguish the acousto-electric drag and electron-hole pair separation effect by fabricating devices of different configurations. The acousto-drag photovoltaic effect, enabled by piezoelectric integration, offers an efficient light-to-electricity conversion method, independent of semiconductor crystal symmetry.

3.
Eur J Neurol ; 31(3): e16167, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009830

RESUMO

BACKGROUND AND PURPOSE: Several previous studies have shown that skin sebum analysis can be used to diagnose Parkinson's disease (PD). The aim of this study was to develop a portable artificial intelligence olfactory-like (AIO) system based on gas chromatographic analysis of the volatile organic compounds (VOCs) in patient sebum and explore its application value in the diagnosis of PD. METHODS: The skin VOCs from 121 PD patients and 129 healthy controls were analyzed using the AIO system and three classic machine learning models were established, including the gradient boosting decision tree (GBDT), random forest and extreme gradient boosting, to assist the diagnosis of PD and predict its severity. RESULTS: A 20-s time series of AIO system data were collected from each participant. The VOC peaks at a large number of time points roughly concentrated around 5-12 s were significantly higher in PD subjects. The gradient boosting decision tree model showed the best ability to differentiate PD from healthy controls, yielding a sensitivity of 83.33% and a specificity of 84.00%. However, the system failed to predict PD progression scored by Hoehn-Yahr stage. CONCLUSIONS: This study provides a fast, low-cost and non-invasive method to distinguish PD patients from healthy controls. Furthermore, our study also indicates abnormal sebaceous gland secretion in PD patients, providing new evidence for exploring the pathogenesis of PD.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/patologia , Inteligência Artificial , Aprendizado de Máquina
4.
Sensors (Basel) ; 24(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38339506

RESUMO

Passive surface acoustic wave (SAW) devices are attractive candidates for continuous wireless monitoring of corrosion in large infrastructures. However, acoustic loss in the aqueous medium and limited read range usually create challenges in their widespread use for monitoring large systems such as oil and gas (O&G) pipelines, aircraft, and processing plants. This paper presents the investigation of impedance-loaded reflective delay line (IL-RDL) SAW devices for monitoring metal corrosion under O&G pipeline-relevant conditions. Specifically, we studied the effect of change in resistivity of a reflector on the backscattered signal of an RDL and investigated an optimal range through simulation. This was followed by the experimental demonstrations of real-time monitoring of Fe film corrosion in pressurized (550 psi) humid CO2 conditions. Additionally, remote monitoring of Fe film corrosion in an acidic solution inside a 70 m carbon steel pipe was demonstrated using guided waves. This paper also suggests potential ways to improve the sensing response of IL-RDLs.

5.
Sensors (Basel) ; 24(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38793831

RESUMO

This paper presents an extended work on the Finite Element Method (FEM) simulation of Love Wave (LW) sensors in a liquid medium. Two models are proposed to simulate the multiphysical response of the sensor. Both are extensively described in terms of principle, composition and behavior, making their applications easily reproducible by the sensor community. The first model is a Representative Volume Element (RVE) simulating the transducer and the second focuses on the sensor's longitudinal (OXZ) cut which simulates the multiphysical responses of the device. Sensitivity of the LW device to variations in the rheological and dielectric properties of liquids is estimated and then compared to a large set of measurements issued from LW sensors presenting different technological characteristics. This integral approach allows for a deeper insight into the multiphysical behavior of the LW sensor. This article also explores the advantages and drawbacks of each model. Both are in good accordance with the measurements and could be used for various applications, for which a non-exhaustive list is proposed in the conclusion.

6.
Sensors (Basel) ; 24(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39001076

RESUMO

In the present study, we used two popular radio communication SAW resonators as a base for gas sensors and tested their performance. Taking into account issues related to sensor sensitivity, the possibility of applying a sensor layer, the availability of devices, and other related issues, we selected two popular single-port resonators with center frequencies of 315 and 433 MHz (models R315 and R433, respectively) for testing purposes. Both resonators were equipped with a sensitive film of hexafluoroisopropanol-substituted polydimethylsiloxane, a material that selectively absorbs molecules with a high ability to form basic hydrogen bonds. Fabricated sensors were used to detect trace amounts of dimethyl methylphosphonate (DMMP) vapor, which has often been used in similar studies as a nerve chemical warfare agent simulant. Sensors using both devices loaded with sensor layers of an optimal thickness rapidly reacted to a gas containing DMMP at a concentration of 3 mg/m3, generating a stable analytical signal ranging from several to several dozen kilohertz. In the case of R433, the frequency signal was 20.5 kHz at 1 min from the beginning of exposure to DMMP. The obtained results showed that the used transducers exhibited good performance as a base for gas sensors. Finally, their suitability for sensing applications was confirmed by a comparison with the results obtained in previous similar studies.

7.
Sensors (Basel) ; 24(17)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39275401

RESUMO

This paper presents the introduction, design, and experimental validation of two small helical antennae. These antennae are a component of the surface acoustic wave (SAW) sensor interrogation system, which has been miniaturized to operate at 915 MHz and aims to improve the performance of wireless passive SAW temperature-sensing applications. The proposed antenna designs are the normal-mode cylindrical helical antenna (CHA) and the hemispherical helical antenna (HSHA); both designed structures are developed for the ISM band, which ranges from 902 MHz to 928 MHz. The antennae exhibit resonance at 915 MHz with an operational bandwidth of 30 MHz for the CHA and 22 MHz for the HSHA. A notch occurs in the operating band, caused by the characteristics of the SAW sensor. The presence of this notch is crucial for the temperature measurement by aiding in calculating the frequency shifting of that notch. The decrement in the resonance frequency of the SAW sensor is about 66.67 kHz for every 10 °C, which is obtained by conducting the temperature measurement of the system model across temperature environments ranging from 30 °C to 90 °C to validate the variation in system performance.

8.
Sensors (Basel) ; 24(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39275495

RESUMO

This article introduces a novel petal-like SAW topology insulator, which can transmit sound waves with low loss and high flexibility in an ultra-wide frequency band by simultaneously adjusting multiple structural parameters of phononic crystals. Using finite element analysis, it was found that adjusting these parameters can generate a broadband gap of 55.8-65.7 MHz. This structure can also achieve defect immunity and sharp bending in waveguide transmission. When this topology insulator is applied to resonators, compared to traditional designs, the insertion loss is reduced by 22 dB, the on-load quality factor is increased by 227%, the off-load quality factor is increased by 1024.5%, and the quality sensitivity is improved by 3.7 times compared to bare devices.

9.
Sensors (Basel) ; 24(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39275518

RESUMO

Highly efficient surface acoustic wave (SAW) transducers offer significant advantages for microfluidic atomization. Aiming at highly efficient atomization, we innovatively accomplish dual-surface simultaneous atomization by strategically positioning the liquid supply outside the IDT aperture edge. Initially, we optimize Lamb wave transducers and specifically investigate their performance based on the ratio of substrate thickness to acoustic wavelength. When this ratio h/λ is approximately 1.25, the electromechanical coupling coefficient of A0-mode Lamb waves can reach around 5.5% for 128° Y-X LiNbO3. We then study the mechanism of droplet atomization with the liquid supply positioned outside the IDT aperture edge. Experimental results demonstrate that optimized Lamb wave transducers exhibit clear dual-surface simultaneous atomization. These transducers provide equivalent amplitude acoustic wave vibrations on both surfaces, causing the liquid thin film to accumulate at the edges of the dual-surface and form a continuous mist.

10.
Sensors (Basel) ; 24(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38894449

RESUMO

In the present paper the humidity sensing properties of regioregular rr-P3HT (poly-3-hexylthiophene) polymer films is investigated by means of surface acoustic wave (SAW) based sensors implemented on LiNbO3 (1280 Y-X) and ST-quartz piezoelectric substrates. The polymeric layers were deposited along the SAW propagation path by spray coating method and the layers thickness was measured by atomic force microscopy (AFM) technique. The response of the SAW devices to relative humidity (rh) changes in the range ~5-60% has been investigated by measuring the SAW phase and frequency changes induced by the (rh) absorption in the rr-P3HT layer. The SAW sensor implemented onto LiNbO3 showed improved performance as the thickness of the membrane increases (from 40 to 240 nm): for 240 nm thick polymeric membrane a phase shift of about -1.2 deg and -8.2 deg was measured for the fundamental (~78 MHz operating frequency) and 3rd (~234 MHz) harmonic wave at (rh) = 60%. A thick rr-P3HT film (~600 nm) was deposited onto the quartz-based SAW sensor: the sensor showed a linear frequency shift of ~-20.5 Hz per unit (rh) changes in the ~5-~50% rh range, and a quite fast response (~5 s) even at low humidity level (~5% rh). The LiNbO3 and quartz-based sensors response was assessed by using a dual delay line system to reduce unwanted common mode signals. The simple and cheap spray coating technology for the rr-P3HT polymer films deposition, complemented with fast low level humidity detection of the tested SAW sensors (much faster than the commercially available Michell SF-52 device), highlight their potential in a low-medium range humidity sensing application.

11.
Sensors (Basel) ; 24(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39123991

RESUMO

High-temperature wireless sensing is crucial for monitoring combustion chambers and turbine stators in aeroengines, where surface temperatures can reach up to 1200 °C. Surface Acoustic Wave (SAW) temperature sensors are an excellent choice for these measurements. However, at extreme temperatures, they face issues such as agglomeration and recrystallization of electrodes, leading to loss of conductivity and reduced quality factor, hindering effective wireless signal transmission. This study develops an LGS SAW sensor with a Pt-10%Rh/Zr/Pt-10%Rh/Zr/Pt-10%Rh/Zr multilayer composite electrode structure to address these challenges. We demonstrate that the sensor can achieve wireless temperature measurements from room temperature to 1200 °C with an accuracy of 1.59%. The composite electrodes excite a quasi-shear wave on the LGS substrate, maintaining a Q-factor of 3526 at room temperature, providing an initial assurance for the strength of the wireless interrogation echo signal. The sensor operates stably for 2.18 h at 1200 °C before adhesion loss between the composite electrode and the substrate causes a sudden increase in resonant frequency. This study highlights the durability of the proposed electrode materials and structure at extreme temperatures and suggests future research to improve adhesion and extend the sensor's lifespan, thereby enhancing the reliability and effectiveness of high-temperature wireless sensing in aerospace applications.

12.
Sensors (Basel) ; 24(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39205093

RESUMO

Exosomes are small extracellular vesicles produced by almost all cell types in the human body, and exosomal microRNAs (miRNAs) are small non-coding RNA molecules that are known to serve as important biomarkers for diseases such as cancer. Given that the upregulation of miR-106b is closely associated with several types of malignancies, the sensitive and accurate detection of miR-106b is important but difficult. In this study, a surface acoustic wave (SAW) biosensor was developed to detect miR-106b isolated from cancer cells based on immunoaffinity separation technique using our unique paddle screw device. Our novel SAW biosensor could detect a miR-106b concentration as low as 0.0034 pM in a linear range from 0.1 pM to 1.0 µM with a correlation coefficient of 0.997. Additionally, we were able to successfully detect miR-106b in total RNA extracted from the exosomes isolated from the MCF-7 cancer cell line, a model system for human breast cancer, with performance comparable to commercial RT-qPCR methods. Therefore, the exosome isolation by the paddle screw method and the miRNA detection using the SAW biosensor has the potential to be used in basic biological research and clinical diagnosis as an alternative to RT-qPCR.


Assuntos
Técnicas Biossensoriais , Exossomos , MicroRNAs , Humanos , Exossomos/química , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , MicroRNAs/isolamento & purificação , MicroRNAs/genética , Células MCF-7 , Anticorpos/imunologia , Anticorpos/química
13.
Sensors (Basel) ; 24(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38610503

RESUMO

Ice accumulation on infrastructure poses severe safety risks and economic losses, necessitating effective detection and monitoring solutions. This study introduces a novel approach employing surface acoustic wave (SAW) sensors, known for their small size, wireless operation, energy self-sufficiency, and retrofit capability. Utilizing a SAW dual-mode delay line device on a 64°-rotated Y-cut lithium niobate substrate, we demonstrate a solution for combined ice detection and temperature measurement. In addition to the shear-horizontal polarized leaky SAW, our findings reveal an electrically excitable Rayleigh-type wave in the X+90° direction on the same cut. Experimental results in a temperature chamber confirm capability for reliable differentiation between liquid water and ice loading and simultaneous temperature measurements. This research presents a promising advancement in addressing safety concerns and economic losses associated with ice accretion.

14.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256117

RESUMO

Atherosclerosis is an inflammatory disease of the arteries associated with alterations in lipid and other metabolism and is a major cause of cardiovascular disease (CVD). LDL consists of several subclasses with different sizes, densities, and physicochemical compositions. Small dense LDL (sd-LDL) is a subclass of LDL. There is growing evidence that sd-LDL-C is associated with CVD risk, metabolic dysregulation, and several pathophysiological processes. In this study, we present a straightforward membrane device filtration method that can be performed with simple laboratory methods to directly determine sd-LDL in serum without the need for specialized equipment. The method consists of three steps: first, the precipitation of lipoproteins with magnesium harpin; second, the collection of effluent from a 100 nm filter; and third, the quantification of sd-LDL-ApoB in the effluent with an SH-SAW biosensor. There was a good correlation between ApoB values obtained using the centrifugation (y = 1.0411x + 12.96, r = 0.82, n = 20) and filtration (y = 1.0633x + 15.13, r = 0.88, n = 20) methods and commercially available sd-LDL-C assay values. In addition to the filtrate method, there was also a close correlation between sd-LDL-C and ELISA assay values (y = 1.0483x - 4489, r = 0.88, n = 20). The filtration treatment method also showed a high correlation with LDL subfractions and NMR spectra ApoB measurements (y = 2.4846x + 4.637, r = 0.89, n = 20). The presence of sd-LDL-ApoB in the effluent was also confirmed by ELISA assay. These results suggest that this filtration method is a simple and promising pretreatment for use with the SH-SAW biosensor as a rapid in vitro diagnostic (IVD) method for predicting sd-LDL concentrations. Overall, we propose a very sensitive and specific SH-SAW biosensor with the ApoB antibody in its sensitive region to monitor sd-LDL levels by employing a simple delay-time phase shifted SH-SAW device. In conclusion, based on the demonstration of our study, the SH-SAW biosensor could be a strong candidate for the future measurement of sd-LDL.


Assuntos
Antígenos de Grupos Sanguíneos , Doenças Cardiovasculares , Humanos , LDL-Colesterol , Tecnologia , Anticorpos , Artérias
15.
Biomed Microdevices ; 25(4): 42, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37874402

RESUMO

Surface acoustic waves in combination with microfluidics has become an attractive research field regarding its various medical and biological applications. It is sometimes preferred to solve just the fluid domain and apply some boundary conditions to represent other components rather than performing a coupled numerical solution. To account for the piezoelectric actuation, a conventional velocity distribution built by superposing the left-going and right-going surface waves is commonly used as the boundary condition, its correctness is assessed here by comparing it to a coupled solution. It was shown that the actual leaky surface acoustic wave in coupled solution has different wavelengths in its real and imaginary parts, sometimes gets out of being sinusoidal, and has a different form compared to the superposed formula. For the phase differences other than 0 and π between the left and right electrodes, the distance between the electrodes affects the streaming and acoustic fields in the microchannel thereby leading to deviations in particle traces. Furthermore, the ratio of the horizontal to vertical components of the surface wave was extracted from the coupled solutions and compared to its previously reported values. The sensitivity analysis showed that for small particles, this ratio does not affect the streaming pattern but changes its velocity magnitude causing a time lag. For larger particles, the ratio altered the movement direction. This study suggests not replacing the piezoelectric actuation with the boundary condition to avoid inaccuracy in resulting fields that are being used in calculations of particle tracing and acoustic radiation forces.


Assuntos
Acústica , Som , Eletrodos , Microfluídica , Movimento
16.
Nanotechnology ; 34(15)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36652706

RESUMO

Two-dimensional (2D) materials are promising candidates for developing next generation electronic/optoelectronic devices with programmable multi functions, due to their widely tunable properties by various physical stimuli. Mechanical strain is one of the most promising means to effectively modulate the physical properties of 2D materials. Nevertheless, few studies reported micro/nano scale controllable strain application platforms, limiting the development of novel mechano-electrical/optoelectrical devices based on 2D materials. This work proposes surface acoustic wave (SAW) device as a controllable strain modulation platform for 2D materials with sub-micro scale resolution. The platform uses the piezoelectric material (LiNbO3) as the substrate, which is deposited with interdigitated transducers (IDT) to generate SAW on the surface. The propagation of SAW causes surface deformation, which is then transferred to the 2D materials on the substrate. The period of the surface deformation/strain is related with that of SAW, which is determined by the period of IDT with nano meter scale. It is demonstrated that the photo luminescence spectrum of a 2D ReS2flake on this platform gradually shifts with the SAW excitation power, which reaches a shift of 3 nm as the SAW excitation power achieves 26 dBm, corresponding to a band gap increase of 5 meV. Meanwhile, the platform is also capable to provide acousto-electric coupling between SAW and 2D materials, which is demonstrated by the shift of the SAW resonant frequency due to the re-distribution of photo-generated carriers in ReS2upon light illumination.

17.
Phytochem Anal ; 34(5): 594-605, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37282799

RESUMO

INTRODUCTION: Ssajuari-ssuk and sajabal-ssuk have many clinical benefits. It is difficult to discriminate between these two species based on general characteristics aside from the shapes of the leaves. Thus, species identification and quality control between ssajuari-ssuk and sajabal-ssuk are of great concern in plant science and clinical therapy. OBJECTIVE: The aim of this study is to determine whether fast gas chromatography with uncoated surface acoustic wave sensor (GC-SAW) can be a useful technique for performing species identification and quality control using volatile patterns of ssajuari-ssuk and sajabal-ssuk air-dried for 4 months and 2 years and 4 months. METHODOLOGY: Fast GC-SAW sensor provides second unit analysis, simple, on-line measurements that do not require pretreatment of the sample and rapid sensory information. Headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) was employed to confirm the identification of the volatiles and compared to fast GC-SAW sensor. RESULTS: In air-dried sajabal-ssuk, the concentration of 1,8-cineole was higher than that in air-dried ssajuari-ssuk, while the level of α-thujone was considerably lower than that of air-dried ssajuari-ssuk. Each of ssajuari-ssuk and sajabal-ssuk air-dried for 4 months and 2 years and 4 months has its own characteristic volatile pattern owing to its individual chemotypes or chemical compositions. CONCLUSION: Consequently, the fast GC-SAW sensor can be a useful technique for species identification and quality control using volatile patterns of ssajuari-ssuk and sajabal-ssuk air-dried for 4 months and 2 years and 4 months. This method can be used for the standardisation of quality control using volatile patterns of herbal medicines.


Assuntos
Artemisia , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Artemisia/química , Som , Controle de Qualidade , República da Coreia , Compostos Orgânicos Voláteis/análise , Microextração em Fase Sólida/métodos
18.
Sensors (Basel) ; 23(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37960446

RESUMO

To prevent the potential failure of the surface acoustic wave (SAW) atomizer caused by the concentration of thermal stresses, this study investigates the thermal elevation process inherent to the operation of the surface wave atomizer. Subsequently, a method for temperature regulation is proposed. By collecting the temperature rise data of SAW atomizers with water, olive oil, and glycerol at 5/6/7 Watts (W) of power, the temperature curves of the atomizer surface under different conditions are obtained, and the stress changes in the working process are simulated additionally. The results indicate that although the stress generated by surface acoustic wave atomizers varies for different media, there is always a problem of rapid heating during the initial working stage in all cases. To address the above issues, this study analyzed the time when the maximum stress occurred and proposed control methods based on experimental data. The simulation results show that by controlling the driving power within 4 s after the start of atomization, the problem of excessive stress during the heating stage can be avoided. Finally, the feasibility of the control method was verified through a simple power control method (limiting the driving power to 3 W in the first 2 s), proving that this method can effectively reduce the thermal stress during the working process of the atomizer and prevent the atomizer from cracking.

19.
Sensors (Basel) ; 23(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37299718

RESUMO

We examine the application of guided waves on a single conductor (Goubau waves) for sensing. In particular, the use of such waves to remotely interrogate surface acoustic wave (SAW) sensors mounted on large-radius conductors (pipes) is considered. Experimental results using a small-radius (0.0032 m) conductor at 435 MHz are reported. The applicability of published theory to conductors of large radius is examined. Finite element simulations are then used to study the propagation and launching of Goubau waves on steel conductors up to 0.254 m in radius. Simulations show that waves can be launched and received, although energy loss into radiating waves is a problem with current launcher designs.


Assuntos
Rádio (Anatomia) , Som , Extremidade Superior
20.
Sensors (Basel) ; 23(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38067774

RESUMO

Passive wireless surface acoustic wave (SAW) resonant sensors are widely used in measuring pressure, temperature, and torque, typically detecting sensing parameters by measuring the echo signal frequency of SAW resonators. Therefore, the accuracy of echo signal frequency estimation directly affects the performance index of the sensor. Due to the exponential attenuation trend of the echo signal, the duration is generally approximately 10 µs, with conventional frequency domain analysis methods limited by the sampling frequency and data points. Thus, the resolution of frequency estimation is limited. Here, signal time-domain fitting combined with a genetic algorithm is used to estimate SAW echo signal frequency. To address the problem of slow estimation speed and poor timeliness caused by a conventional genetic algorithm, which needs to simultaneously estimate multiple parameters, such as signal amplitude, phase, frequency, and envelope, the Hilbert transform is proposed to remove the signal envelope and estimate its amplitude, and the fast Fourier transform subsection method is used to analyze the initial phase of the signal. The genetic algorithm is thereby optimized to realize the frequency estimation of SAW echo signals under a single parameter. The developed digital signal processing frequency detection system was monitored in real time to estimate the frequency of an SAW echo signal lasting 10 µs and found to have only 100 sampling points. The proposed method has a frequency estimation error within 3 kHz and a frequency estimation time of less than 1 s, which is eight times faster than the conventional genetic algorithm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA