Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(17): 4750-4757, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37381593

RESUMO

Climate change leads to increasing temperature and more extreme hot and drought events. Ecosystem capability to cope with climate warming depends on vegetation's adjusting pace with temperature change. How environmental stresses impair such a vegetation pace has not been carefully investigated. Here we show that dryness substantially dampens vegetation pace in warm regions to adjust the optimal temperature of gross primary production (GPP) ( T opt GPP ) in response to change in temperature over space and time. T opt GPP spatially converges to an increase of 1.01°C (95% CI: 0.97, 1.05) per 1°C increase in the yearly maximum temperature (Tmax ) across humid or cold sites worldwide (37o S-79o N) but only 0.59°C (95% CI: 0.46, 0.74) per 1°C increase in Tmax across dry and warm sites. T opt GPP temporally changes by 0.81°C (95% CI: 0.75, 0.87) per 1°C interannual variation in Tmax at humid or cold sites and 0.42°C (95% CI: 0.17, 0.66) at dry and warm sites. Regardless of the water limitation, the maximum GPP (GPPmax ) similarly increases by 0.23 g C m-2 day-1 per 1°C increase in T opt GPP in either humid or dry areas. Our results indicate that the future climate warming likely stimulates vegetation productivity more substantially in humid than water-limited regions.


Assuntos
Mudança Climática , Plantas , Estresse Fisiológico , Temperatura , Secas , Ecossistema
2.
Mol Ecol ; 31(22): 5649-5652, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36217577

RESUMO

How organisms that are part of the same trophic network respond to environmental variability over small spatial scales has been studied in a multitude of systems. Prevailing theory suggests a large role for plasticity in key traits among interacting species that allows matching of life cycles or life-history traits across environmental gradients, for instance insects tracking host-plant phenology across variable environments (Posledovich et al. 2018). A key aspect that remains understudied is the extent of intrapopulation variability in plasticity and whether stressful conditions canalize plasticity to an optimal level, or alternatively if variation in plasticity indeed could increase fitness in itself via alternative strategies. In a From the Cover article in this issue of Molecular Ecology, Kahilainen et al. (2022) investigate this issue in a classical insect study system, the metapopulation of the Glanville fritillary butterfly (Melitea cinxia) in the Åland archipelago of Finland. The authors first establish how a key host plant responds to water limitation, then quantify among-family variation in larval growth and development across control and water-limited host plants. Finally, they use RNA sequencing to gain mechanistic insights into some of these among-family differences in larval performance in response to host-plant variation, finding results suggesting the existence of heritable, intrapopulation variability in ecologically relevant plasticity. This final step represents a critically important and often overlooked component of efforts to predict sensitivity of biological systems to changing environmental conditions, since it provides a key metric of adaptive resilience present in the system.


Assuntos
Borboletas , Animais , Borboletas/fisiologia , Água , Larva/fisiologia , Estágios do Ciclo de Vida , Fenótipo
3.
Plant J ; 102(4): 838-855, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31901179

RESUMO

Free amino acids (FAAs) and protein-bound amino acids (PBAAs) in seeds play an important role in seed desiccation, longevity, and germination. However, the effect that water stress has on these two functional pools, especially when imposed during the crucial seed setting stage is unclear. To better understand these effects, we exposed Arabidopsis plants at the seed setting stage to a range of water limitation and water deprivation conditions and then evaluated physiological, metabolic, and proteomic parameters, with special focus on FAAs and PBAAs. We found that in response to severe water limitation, seed yield decreased, while seed weight, FAA, and PBAA content per seed increased. Nevertheless, the composition of FAAs and PBAAs remained unaltered. In response to severe water deprivation, however, both seed yield and weight were reduced. In addition, major alterations were observed in both FAA and proteome compositions, which indicated that both osmotic adjustment and proteomic reprogramming occurred in these naturally desiccation-tolerant organs. However, despite the major proteomic alteration, the PBAA composition did not change, suggesting that the proteomic reprogramming was followed by a proteomic rebalancing. Proteomic rebalancing has not been observed previously in response to stress, but its occurrence under stress strongly suggests its natural function. Together, our data show that the dry seed PBAA composition plays a key role in seed fitness and therefore is rigorously maintained even under severe water stress, while the FAA composition is more plastic and adaptable to changing environments, and that both functional pools are distinctly regulated.


Assuntos
Aminoácidos/metabolismo , Arabidopsis/fisiologia , Proteoma , Proteínas de Arabidopsis/metabolismo , Desidratação , Proteômica , Sementes/fisiologia
4.
Proc Natl Acad Sci U S A ; 115(47): 12057-12062, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30401739

RESUMO

CO2, temperature, water availability, and light intensity were all potential selective pressures that determined the competitive advantage and expansion of the C4 photosynthetic carbon-concentrating mechanism over the last ∼30 My. To tease apart how selective pressures varied along the ecological trajectory of C4 expansion and dominance, we coupled hydraulics to photosynthesis models while optimizing photosynthesis over stomatal resistance and leaf/fine-root allocation. We further examined the importance of nitrogen reallocation from the dark to the light reactions. We show here that the primary selective pressures favoring C4 dominance changed through the course of C4 evolution. The higher stomatal resistance and leaf-to-root ratios enabled by C4 led to an advantage without any initial difference in hydraulic properties. We further predict a reorganization of the hydraulic system leading to higher turgor-loss points and possibly lower hydraulic conductance. Selection on nitrogen reallocation varied with CO2 concentration. Through paleoclimate model simulations, we find that water limitation was the primary driver for a C4 advantage, with atmospheric CO2 as high as 600 ppm, thus confirming molecular-based estimates for C4 evolution in the Oligocene. Under these high-CO2 conditions, nitrogen reallocation was necessary. Low CO2 and high light, but not nitrogen reallocation, were the primary drivers for the mid- to late-Miocene global expansion of C4 We also predicted the timing and spatial distribution for origins of C4 ecological dominance. The predicted origins are broadly consistent with prior estimates, but expand upon them to include a center of origin in northwest Africa and a Miocene-long origin in Australia.


Assuntos
Paleontologia/métodos , Fotossíntese/fisiologia , Evolução Biológica , Carbono/metabolismo , Ciclo do Carbono , Dióxido de Carbono/análise , Clima , Simulação por Computador , Modelos Biológicos , Nitrogênio/metabolismo , Fotossíntese/genética , Folhas de Planta/química , Transpiração Vegetal/fisiologia , Água
5.
Ecol Lett ; 23(1): 33-44, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31625281

RESUMO

Mismatches between species distributions and their optimal habitat are predicted by ecological theory and will affect species responses to changing climate. However, empirical tests lack consensus on the prevalence of such mismatches and their underlying mechanisms. Here we present a conceptual framework to quantify the mismatch between optimal conditions for species occurrence and multiple measures of population and individual performance (density, adult growth and survival, and recruitment) and the associated performance reduction, or cost. We quantified these mismatches for 59 tree species in the western US along a soil water balance gradient and found high variability in mismatches among species and among performance measures, often resulting in high costs. We used functional traits to explore how dispersal limitation, migration lags, and competitive exclusion may cause mismatches. Overall, the large variability in mismatches, their costs and the relationship with functional traits highlight the nuanced relationships between species' performance and their distributions.


Assuntos
Ecossistema , Árvores , Clima , Solo , Especificidade da Espécie
6.
Ann Bot ; 125(3): 533-542, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-31784739

RESUMO

BACKGROUND AND AIMS: Plants inhabiting arid environments tend to have leaf trichomes, but their adaptive significance remains unclear. Leaf trichomes are known to play a role in plant defence against herbivores, including gall makers. Because gall formation can increase water loss partly through increased surface area, we tested the novel hypothesis that leaf trichomes could contribute to avoiding extra water stress by impeding gall formation, which would have adaptive advantages in arid environments. METHODS: We focused on Metrosideros polymorpha, an endemic tree species in the Hawaiian Islands, whose leaves often suffer from galls formed by specialist insects, Hawaiian psyllids (Pariaconus spp.). There is large variation in the amount of leaf trichomes (0-40 % of leaf mass) in M. polymorpha. Three gall types are found on the island of Hawaii: the largest is the 'cone' type, followed by 'flat' and 'pit' types. We conducted laboratory experiments to quantify the extent to which gall formation is associated with leaf water relations. We also conducted a field census of 1779 individuals from 48 populations across the entire range of habitats of M. polymorpha on the island of Hawaii to evaluate associations between gall formation (presence and abundance) and the amount of leaf trichomes. KEY RESULTS: Our laboratory experiment showed that leaf minimum conductance was significantly higher in leaves with a greater number of cone- or flat-type galls but not pit-type galls. Our field census suggested that the amount of trichomes was negatively associated with probabilities of the presence of cone- or flat-type galls but not pit-type galls, irrespective of environmental factors. CONCLUSION: Our results suggest that leaf trichomes in M. polymorpha can contribute to the avoidance of extra water stress through interactions with some gall-making species, and potentially increase the fitness of plants under arid conditions.


Assuntos
Desidratação , Tricomas , Havaí , Humanos , Ilhas , Folhas de Planta
7.
Int J Mol Sci ; 21(12)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560078

RESUMO

Isoprene is the most abundant single biogenic volatile compound emitted by plants. Despite the relevance of this molecule to plant abiotic resistance and its impact on global atmospheric chemistry, little is known about the details of its mechanism of action. Here, we characterized through both physiological and molecular methods the mechanisms of action of isoprene using model transgenic arabidopsis lines overexpressing a monocot isoprene synthase gene. Our results demonstrated the effect that isoprene had on ABA signaling at different tissue-specific, spatial, and temporal scales. In particular, we found that isoprene enhanced stomatal sensitivity to ABA through upregulation of RD29B signaling gene. By contrast, isoprene decreased sensitivity to ABA in germinating seeds and roots, suggesting tissue-specific mechanisms of action. In leaves, isoprene caused the downregulation of COR15A and P5CS genes, suggesting that the enhanced tolerance to water-deprivation stress observed in isoprene-emitting plants may be mediated chiefly by an enhanced membrane integrity and tolerance to osmotic stress.


Assuntos
Ácido Abscísico/farmacologia , Alquil e Aril Transferases/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Alquil e Aril Transferases/metabolismo , Arabidopsis/crescimento & desenvolvimento , Butadienos/farmacologia , Proteínas e Peptídeos de Choque Frio/genética , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutamato-5-Semialdeído Desidrogenase/genética , Hemiterpenos/farmacologia , Complexos Multienzimáticos/genética , Especificidade de Órgãos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico
8.
New Phytol ; 221(4): 1866-1877, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30299536

RESUMO

Plants, especially perennials, growing in drylands and seasonally dry ecosystems are uniquely adapted to dry conditions. Legume shrubs and trees, capable of symbiotic dinitrogen (N2 ) fixation, often dominate in drylands. However, the strategies that allow symbiotic fixation in these ecosystems, and their influence on the nitrogen cycle, are largely unresolved. We evaluated the climatic, biogeochemical and ontogenetic factors influencing nitrogen fixation in an abundant Mediterranean legume shrub, Calicotome villosa. We measured nodulation, fixation rate, nitrogen allocation and soil biogeochemistry in three field sites over a full year. A controlled experiment evaluated differences in plant regulation of fixation as a function of soil nutrient availability and seedling and adult developmental stages. We found a strong seasonal pattern, shifting between high fixation rates during the rainy season at flowering and seed-set times to almost none in the rainless season. Under controlled conditions, plants downregulated fixation in response to soil nitrogen availability, but this response was stronger in seedlings than in adult shrubs. Finally, we did not find elevated soil nitrogen under N2 -fixing shrubs. We conclude that seasonal nitrogen fixation, regulation of fixation, and nitrogen conservation are key adaptations influencing the dominance of dryland legumes in the community, with broader consequences on the ecosystem nitrogen cycle.


Assuntos
Fabaceae/fisiologia , Fixação de Nitrogênio , Simbiose/fisiologia , Ecossistema , Fabaceae/microbiologia , Israel , Nitrogênio/metabolismo , Fósforo/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Estações do Ano , Solo/química , Água/metabolismo
9.
Planta ; 245(4): 729-735, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27999989

RESUMO

MAIN CONCLUSION: Theoretical derivation predicted growth retardation due to pot water limitations, i.e., pot binding. Experimental observations were consistent with these limitations. Combined, these results indicate a need for caution in high-throughput screening and phenotyping. Pot experiments are a mainstay in many plant studies, including the current emphasis on developing high-throughput, phenotyping systems. Pot studies can be vulnerable to decreased physiological activity of the plants particularly when pot volume is small, i.e., "pot binding". It is necessary to understand the conditions under which pot binding may exist to avoid the confounding influence of pot binding in interpreting experimental results. In this paper, a derivation is offered that gives well-defined conditions for the occurrence of pot binding based on restricted water availability. These results showed that not only are pot volume and plant size important variables, but the potting media is critical. Artificial potting mixtures used in many studies, including many high-throughput phenotyping systems, are particularly susceptible to the confounding influences of pot binding. Experimental studies for several crop species are presented that clearly show the existence of thresholds of plant leaf area at which various pot sizes and potting media result in the induction of pot binding even though there may be no immediate, visual plant symptoms. The derivation and experimental results showed that pot binding can readily occur in plant experiments if care is not given to have sufficiently large pots, suitable potting media, and maintenance of pot water status. Clear guidelines are provided for avoiding the confounding effects of water-limited pot binding in studying plant phenotype.


Assuntos
Desenvolvimento Vegetal , Ensaios de Triagem em Larga Escala/métodos , Fenótipo , Desenvolvimento Vegetal/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Transpiração Vegetal/fisiologia , Plantas , Solo , Glycine max/crescimento & desenvolvimento , Glycine max/fisiologia , Triticum/crescimento & desenvolvimento , Triticum/fisiologia , Vigna/crescimento & desenvolvimento , Vigna/fisiologia , Abastecimento de Água , Zea mays/crescimento & desenvolvimento , Zea mays/fisiologia
10.
J Exp Bot ; 68(13): 3513-3528, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28859378

RESUMO

Leaf carbon and oxygen isotope ratios can potentially provide a time-integrated proxy for stomatal conductance (gs) and transpiration rate (E), and can be used to estimate transpiration efficiency (TE). In this study, we found significant relationships of bulk leaf carbon isotopic signature (δ13CBL) and bulk leaf oxygen enrichment above source water (Δ18OBL) with gas exchange and TE in the model C4 grasses Setaria viridis and S. italica. Leaf δ13C had strong relationships with E, gs, water use, biomass, and TE. Additionally, the consistent difference in δ13CBL between well-watered and water-limited plants suggests that δ13CBL is effective in separating C4 plants with different availability of water. Alternatively, the use of Δ18OBL as a proxy for E and TE in S. viridis and S. italica was problematic. First, the oxygen isotopic composition of source water, used to calculate leaf water enrichment (Δ18OLW), was variable with time and differed across water treatments. Second, water limitations changed leaf size and masked the relationship of Δ18OLW and Δ18OBL with E. Therefore, the data collected here suggest that δ13CBL but not Δ18OBL may be an effective proxy for TE in C4 grasses.


Assuntos
Isótopos de Carbono/análise , Isótopos de Oxigênio/metabolismo , Transpiração Vegetal , Setaria (Planta)/fisiologia , Folhas de Planta/fisiologia , Água/metabolismo
11.
Glob Chang Biol ; 23(12): 5164-5178, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28691268

RESUMO

Elevated atmospheric CO2 (eCO2 ) is expected to reduce the impacts of drought and increase photosynthetic rates via two key mechanisms: first, through decreased stomatal conductance (gs ) and increased soil water content (VSWC ) and second, through increased leaf internal CO2 (Ci ) and decreased stomatal limitations (Slim ). It is unclear if such findings from temperate grassland studies similarly pertain to warmer ecosystems with periodic water deficits. We tested these mechanisms in three important C3 herbaceous species in a periodically dry Eucalyptus woodland and investigated how eCO2 -induced photosynthetic enhancement varied with seasonal water availability, over a 3 year period. Leaf photosynthesis increased by 10%-50% with a 150 µmol mol-1 increase in atmospheric CO2 across seasons. This eCO2 -induced increase in photosynthesis was a function of seasonal water availability, given by recent precipitation and mean daily VSWC . The highest photosynthetic enhancement by eCO2 (>30%) was observed during the most water-limited period, for example, with VSWC <0.07 in this sandy surface soil. Under eCO2 there was neither a significant decrease in gs in the three herbaceous species, nor increases in VSWC , indicating no "water-savings effect" of eCO2 . Periods of low VSWC showed lower gs (less than ≈ 0.12 mol m-2  s-1 ), higher relative Slim (>30%) and decreased Ci under the ambient CO2 concentration (aCO2 ), with leaf photosynthesis strongly carboxylation-limited. The alleviation of Slim by eCO2 was facilitated by increasing Ci , thus yielding a larger photosynthetic enhancement during dry periods. We demonstrated that water availability, but not eCO2 , controls gs and hence the magnitude of photosynthetic enhancement in the understory herbaceous plants. Thus, eCO2 has the potential to alter vegetation functioning in a periodically dry woodland understory through changes in stomatal limitation to photosynthesis, not by the "water-savings effect" usually invoked in grasslands.


Assuntos
Dióxido de Carbono/análise , Florestas , Solo/química , Água , Asteraceae , Secas , Eucalyptus , Fotossíntese/efeitos dos fármacos , Folhas de Planta/química , Chuva , Estações do Ano
12.
J Exp Bot ; 67(17): 5159-72, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27443279

RESUMO

A stay-green phenotype enables crops to retain green leaves longer after anthesis compared with senescent types, potentially improving yield. Measuring the normalized difference vegetative index (NDVI) during the whole senescence period allows quantification of component stay-green traits contributing to a stay-green phenotype. These objective and standardized traits can be compared across genotypes and environments. Traits examined include maximum NDVI near anthesis (Nmax), senescence rate (SR), a trait integrating senescence (SGint), plus time from anthesis to onset (OnS), mid-point (MidS), and near completion (EndS) of senescence. The correlation between stay-green traits and yield was studied in eight contrasting environments ranging from well watered to severely water limited. Environments were each classified into one of the four major drought environment types (ETs) previously identified for the Australian wheat cropping system. SGint, OnS, and MidS tended to have higher values in higher yielding environments for a given genotype, as well as for higher yielding genotypes within a given environment. Correlation between specific stay-green traits and yield varied with ET. In the studied population, SGint, OnS, and MidS strongly correlated with yield in three of the four ETs which included well-watered environments (0.43-0.86), but less so in environments with only moderate water-stress after anthesis (-0.03 to 0.31). In contrast, Nmax was most highly correlated with yield under moderate post-anthesis water stress (0.31-0.43). Selection for particular stay-green traits, combinations of traits, and/or molecular markers associated with the traits could enhance genetic progress toward stay-green wheats with higher, more stable yield in both well-watered and water-limited conditions.


Assuntos
Folhas de Planta/fisiologia , Triticum/fisiologia , Adaptação Fisiológica , Envelhecimento/fisiologia , Produção Agrícola , Desidratação/fisiopatologia , Meio Ambiente , Folhas de Planta/crescimento & desenvolvimento , Característica Quantitativa Herdável , Triticum/crescimento & desenvolvimento
13.
J Integr Plant Biol ; 58(5): 475-91, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26172438

RESUMO

Limited information is available for soybean root traits and their plasticity under drought stress. To date, no studies have focused on examining diverse soybean germplasm for regulation of shoot and root response under water limited conditions across varying soil types. In this study, 17 genetically diverse soybean germplasm lines were selected to study root response to water limited conditions in clay (trial 1) and sandy soil (trial 2) in two target environments. Physiological data on shoot traits was measured at multiple crop stages ranging from early vegetative to pod filling. The phenotypic root traits, and biomass accumulation data are collected at pod filling stage. In trial 1, the number of lateral roots and forks were positively correlated with plot yield under water limitation and in trial 2, lateral root thickness was positively correlated with the hill plot yield. Plant Introduction (PI) 578477A and 088444 were found to have higher later root number and forks in clay soil with higher yield under water limitation. In sandy soil, PI458020 was found to have a thicker lateral root system and higher yield under water limitation. The genotypes identified in this study could be used to enhance drought tolerance of elite soybean cultivars through improved root traits specific to target environments.


Assuntos
Glycine max/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Água , Biomassa , Umidade , Missouri , Fenótipo , Filogenia , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Característica Quantitativa Herdável , Solo , Estresse Fisiológico
14.
New Phytol ; 201(4): 1316-1327, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24325125

RESUMO

• Plant resource-use traits are generally hypothesized to be adaptively differentiated for populations distributed along resource gradients. Although nutrient limitations are expected to select for resource-conservative strategies, water limitations may select for either resource-conservative or -acquisitive strategies. We test whether population differentiation reflects local adaptation for traits associated with resource-use strategies in a desert annual (Helianthus anomalus) distributed along a gradient of positively covarying water and nutrient availability. • We compared quantitative trait variation (Q(ST)) with neutral genetic differentiation (F(ST)), in a common garden glasshouse study, for leaf economics spectrum (LES) and related traits: photosynthesis (A(mass), A(area)), leaf nitrogen (N(mass), N(area)), leaf lifetime (LL), leaf mass per area (LMA), leaf water content (LWC), water-use efficiency (WUE, estimated as δ(13)C) and days to first flower (DFF). • Q(ST)-F(ST) differences support adaptive differentiation for Amass , N(mass), N(area), LWC and DFF. The trait combinations associated with drier and lower fertility sites represent correlated trait evolution consistent with the more resource-acquisitive end of the LES. There was no evidence for adaptive differentiation for A(area), LMA and WUE. • These results demonstrate that hot dry environments can selectively favor correlated evolution of traits contributing to a resource-acquisitive and earlier reproduction 'escape' strategy, despite lower fertility.


Assuntos
Clima Desértico , Helianthus/genética , Característica Quantitativa Herdável , Marcadores Genéticos , Variação Genética , Geografia , Helianthus/crescimento & desenvolvimento , Repetições de Microssatélites/genética
15.
Sci Total Environ ; 894: 164977, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37348725

RESUMO

Topographic positions can mediate subsurface water availability, but its effects on tree transpiration are controversial. In humid karst regions, climax forests are usually not limited by moisture supply, even at the summit, through absorbing water from deep layers. However, little is known on the transpiration pattern and its limiting factor on the shrubland widely distributed along the karst hillslopes. In the current study, Rhus chinensis, a widely spread constructive species in natural restoration was selected. Meteorological factors, 0-300 cm soil-epikarst moisture, sap flow, and root water uptake were studied during an entire growing season to assess how hillslope positions affected transpiration. We found the mean water content in uphill was only around 60 % of that in downhill, indicating a contrasting water supply along the slope. However, there were no significant differences in the xylem isotopic composition and lc-excess which suggested the similar water uptake strategies in both uphill and downhill. R. chinensis primarily relied on the soil water rather than epikarst water (groundwater) along the hillslope because of the MixSIAR model results and more negative lc-excess values (-13.18 ‰). R. chinensis exhibited decreases of nearly half in the transpiration rate and amount in uphill compared to those in downhill. In downhill with sufficient water availability, transpiration followed the variation in atmospheric water demand. In uphill, a poor moisture supply limited tree transpiration and its response to atmospheric water demand. Our findings revealed that the early successional species did not entirely depend on atmospheric water demand, absorbing deep epikarst water as the mature forest. The transpiration rates of those species declined by nearly half to adapt to the water-limited environment along the hillslope in the humid karst region. This study can contribute to the evaluation of eco-hydrological functions during natural restoration.

16.
Plant Soil ; 490(1-2): 499-519, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780069

RESUMO

Background and aims: Tree species worldwide suffer from extended periods of water limitation. These conditions not only affect the growth and vitality of trees but also feed back on the cycling of carbon (C) at the plant-soil interface. However, the impact of progressing water loss from soils on the transfer of assimilated C belowground remains unresolved. Methods: Using mesocosms, we assessed how increasing levels of water deficit affect the growth of Pinus sylvestris saplings and performed a 13C-CO2 pulse labelling experiment to trace the pathway of assimilated C into needles, fine roots, soil pore CO2, and phospholipid fatty acids of soil microbial groups. Results: With increasing water limitation, trees partitioned more biomass belowground at the expense of aboveground growth. Moderate levels of water limitation barely affected the uptake of 13C label and the transit time of C from needles to the soil pore CO2. Comparatively, more severe water limitation increased the fraction of 13C label that trees allocated to fine roots and soil fungi while a lower fraction of 13CO2 was readily respired from the soil. Conclusions: When soil water becomes largely unavailable, C cycling within trees becomes slower, and a fraction of C allocated belowground may accumulate in fine roots or be transferred to the soil and associated microorganisms without being metabolically used. Supplementary Information: The online version contains supplementary material available at 10.1007/s11104-023-06093-5.

17.
FEMS Microbiol Ecol ; 99(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37188639

RESUMO

The soil microbiome is crucial for regulating biogeochemical processes and can, thus, strongly influence tree health, especially under stress conditions. However, little is known about the effect of prolonged water deficit on soil microbial communities during the development of saplings. We assessed the response of prokaryotic and fungal communities to different levels of experimental water limitation in mesocosms with Scots pine saplings. We combined analyses of physicochemical soil properties and tree growth with DNA metabarcoding of soil microbial communities throughout four seasons. Seasonal changes in soil temperature and soil water content and a decreasing soil pH strongly influenced the composition of microbial communities but not their total abundance. Contrasting levels of soil water contents gradually altered the soil microbial community structure over the four seasons. Results indicated that prokaryotic communities were less resistant to water limitation than fungal communities. Water limitation promoted the proliferation of desiccation tolerant, oligotrophic taxa. Moreover, water limitation and an associated increase in soil C/N ratio induced a shift in the potential lifestyle of taxa from symbiotic to saprotrophic. Overall, water limitation appeared to alter soil microbial communities involved in nutrient cycling, pointing to potential consequences for forest health affected by prolonged episodes of drought.


Assuntos
Micobioma , Pinus sylvestris , Água , Solo , Florestas , Pinus sylvestris/fisiologia , Microbiologia do Solo , Árvores , Bactérias/genética
18.
J Adv Model Earth Syst ; 14(3): e2021MS002730, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35865621

RESUMO

Hydrological interactions between vegetation, soil, and topography are complex, and heterogeneous in semi-arid landscapes. This along with data scarcity poses challenges for large-scale modeling of vegetation-water interactions. Here, we exploit metrics derived from daily Meteosat data over Africa at ca. 5 km spatial resolution for ecohydrological analysis. Their spatial patterns are based on Fractional Vegetation Cover (FVC) time series and emphasize limiting conditions of the seasonal wet to dry transition: the minimum and maximum FVC of temporal record, the FVC decay rate and the FVC integral over the decay period. We investigate the relevance of these metrics for large scale ecohydrological studies by assessing their co-variation with soil moisture, and with topographic, soil, and vegetation factors. Consistent with our initial hypothesis, FVC minimum and maximum increase with soil moisture, while the FVC integral and decay rate peak at intermediate soil moisture. We find evidence for the relevance of topographic moisture variations in arid regions, which, counter-intuitively, is detectable in the maximum but not in the minimum FVC. We find no clear evidence for wide-spread occurrence of the "inverse texture effect" on FVC. The FVC integral over the decay period correlates with independent data sets of plant water storage capacity or rooting depth while correlations increase with aridity. In arid regions, the FVC decay rate decreases with canopy height and tree cover fraction as expected for ecosystems with a more conservative water-use strategy. Thus, our observation-based products have large potential for better understanding complex vegetation-water interactions from regional to continental scales.

19.
Plants (Basel) ; 12(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36616192

RESUMO

Bee-honey solution (BHS) is considered a plant growth multi-biostimulator because it is rich in osmoprotectants, antioxidants, vitamins, and mineral nutrients that can promote drought stress (DtS) resistance in common bean plants. As a novel strategy, BHS has been used in a few studies, which shows that the application of BHS can overcome the stress effects on plant productivity and can contribute significantly to bridging the gap between agricultural production and the steady increase in population under climate changes. Under sufficient watering (SW (100% of crop evapotranspiration; ETc) and DtS (60% of ETc)), the enhancing impacts of foliar application with BHS (0%, 0.5%, 1.0%, and 1.5%) on growth, productivity, yield quality, physiological-biochemical indices, antioxidative defense ingredients, and nutrient status were examined in common bean plants (cultivar Bronco). DtS considerably decreased growth and yield traits, green pod quality, and water use efficiency (WUE); however, application of BHS at all concentrations significantly increased all of these parameters under normal or DtS conditions. Membrane stability index, relative water content, nutrient contents, SPAD (chlorophyll content), and PSII efficiency (Fv/Fm, photochemical activity, and performance index) were markedly reduced under DtS; however, they increased significantly under normal or DtS conditions by foliar spraying of BHS at all concentrations. The negative impacts of DtS were due to increased oxidants [hydrogen peroxide (H2O2) and superoxide (O2•-)], electrolyte leakage (EL), and malondialdehyde (MDA). As a result, the activity of the antioxidant system (ascorbate peroxidase, glutathione reductase, catalase, superoxide dismutase, α-tocopherol, glutathione, and ascorbate) and levels of osmoprotectants (soluble protein, soluble sugars, glycine betaine, and proline) were increased. However, all BHS concentrations further increased osmoprotectant and antioxidant capacity, along with decreased MDA and EL under DtS. What is interesting in this study was that a BHS concentration of 1.0% gave the best results under SW, while a BHS concentration of 1.5% gave the best results under DtS. Therefore, a BHS concentration of 1.5% could be a viable strategy to mitigate the DtS impairment in common beans to achieve satisfactory growth, productivity, and green pod quality under DtS.

20.
Front Big Data ; 5: 967477, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36156935

RESUMO

Local studies and modeling experiments suggest that shallow groundwater and lateral redistribution of soil moisture, together with soil properties, can be highly important secondary water sources for vegetation in water-limited ecosystems. However, there is a lack of observation-based studies of these terrain-associated secondary water effects on vegetation over large spatial domains. Here, we quantify the role of terrain properties on the spatial variations of dry season vegetation decay rate across Africa obtained from geostationary satellite acquisitions to assess the large-scale relevance of secondary water effects. We use machine learning based attribution to identify where and under which conditions terrain properties related to topography, water table depth, and soil hydraulic properties influence the rate of vegetation decay. Over the study domain, the machine learning model attributes about one-third of the spatial variations of vegetation decay rates to terrain properties, which is roughly equally split between direct terrain effects and interaction effects with climate and vegetation variables. The importance of secondary water effects increases with increasing topographic variability, shallower groundwater levels, and the propensity to capillary rise given by soil properties. In regions with favorable terrain properties, more than 60% of the variations in the decay rate of vegetation are attributed to terrain properties, highlighting the importance of secondary water effects on vegetation in Africa. Our findings provide an empirical assessment of the importance of local-scale secondary water effects on vegetation over Africa and help to improve hydrological and vegetation models for the challenge of bridging processes across spatial scales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA