Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 371
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 597(7876): 420-425, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34471290

RESUMO

Oxygen is critical for a multitude of metabolic processes that are essential for human life. Biological processes can be identified by treating cells with 18O2 or other isotopically labelled gases and systematically identifying biomolecules incorporating labeled atoms. Here we labelled cell lines of distinct tissue origins with 18O2 to identify the polar oxy-metabolome, defined as polar metabolites labelled with 18O under different physiological O2 tensions. The most highly 18O-labelled feature was 4-hydroxymandelate (4-HMA). We demonstrate that 4-HMA is produced by hydroxyphenylpyruvate dioxygenase-like (HPDL), a protein of previously unknown function in human cells. We identify 4-HMA as an intermediate involved in the biosynthesis of the coenzyme Q10 (CoQ10) headgroup in human cells. The connection of HPDL to CoQ10 biosynthesis provides crucial insights into the mechanisms underlying recently described neurological diseases related to HPDL deficiencies1-4 and cancers with HPDL overexpression5.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Ácidos Mandélicos/metabolismo , Metaboloma , Ubiquinona/análogos & derivados , Animais , Linhagem Celular , Feminino , Humanos , Ácidos Mandélicos/análise , Camundongos , Camundongos Nus , Tirosina/metabolismo , Ubiquinona/biossíntese
2.
Crit Rev Biotechnol ; 43(8): 1226-1235, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36154348

RESUMO

(R)-(-)-mandelic acid is an important carboxylic acid known for its numerous potential applications in the pharmaceutical industry as it is an ideal starting material for the synthesis of antibiotics, antiobesity drugs and antitumor agents. In past few decades, the synthesis of (R)-(-)-mandelic acid has been undertaken mainly through the chemical route. However, chemical synthesis of optically pure (R)-(-)-mandelic acid is difficult to achieve at an industrial scale. Therefore, its microbe mediated production has gained considerable attention as it exhibits many merits over the chemical approaches. The present review focuses on various biotechnological strategies for the production of (R)-(-)-mandelic acid through microbial biotransformation and enzymatic catalysis; in particular, an analysis and comparison of the synthetic methods and different enzymes. The wild type as well as recombinant microbial strains for the production of (R)-(-)-mandelic acid have been elucidated. In addition, different microbial strategies used for maximum bioconversion of mandelonitrile into (R)-(-)-mandelic acid are discussed in detail with regard to higher substrate tolerance and maximum bioconversion.HighlightsMandelonitrile, mandelamide and o-chloromandelonitrile can be used as substrates to produce (R)-(-)-mandelic acid by enzymes.Three enzymes (nitrilase, nitrile hydratase and amidase) are systematically introduced for production of (R)-(-)-mandelic acid.Microbial transformation is able to produce optically pure (R)-(-)-mandelic acid with 100% productive yield.


Assuntos
Biotecnologia , Ácidos Mandélicos , Ácidos Mandélicos/metabolismo , Biotransformação , Aminoidrolases/metabolismo
3.
J Appl Microbiol ; 133(2): 273-286, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35294082

RESUMO

Mandelic acid and its derivatives are an important class of chemical synthetic blocks, which is widely used in drug synthesis and stereochemistry research. In nature, mandelic acid degradation pathway has been widely identified and analysed as a representative pathway of aromatic compounds degradation. The most studied mandelic acid degradation pathway from Pseudomonas putida consists of mandelate racemase, S-mandelate dehydrogenase, benzoylformate decarboxylase, benzaldehyde dehydrogenase and downstream benzoic acid degradation pathways. Because of the ability to catalyse various reactions of aromatic substrates, pathway enzymes have been widely used in biocatalysis, kinetic resolution, chiral compounds synthesis or construction of new metabolic pathways. In this paper, the physiological significance and the existing range of the mandelic acid degradation pathway were introduced first. Then each of the enzymes in the pathway is reviewed one by one, including the researches on enzymatic properties and the applications in biotechnology as well as efforts that have been made to modify the substrate specificity or improving catalytic activity by enzyme engineering to adapt different applications. The composition of the important metabolic pathway of bacterial mandelic acid degradation pathway as well as the researches and applications of pathway enzymes is summarized in this review for the first time.


Assuntos
Ácidos Mandélicos , Pseudomonas putida , Biotecnologia , Cinética , Ácidos Mandélicos/química , Ácidos Mandélicos/metabolismo , Oxirredutases/metabolismo
4.
Biotechnol Appl Biochem ; 69(2): 587-595, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33650215

RESUMO

Nitrilases can directly hydrolyze nitrile compounds into carboxylic acids and ammonium. To solve the current problems of bioconversions using nitrilases, including the difficult separation of products from the resting cells used as the catalyst and high costs of chemical inducers, a nitrilase from Alcaligenes faecalis was heterologously expressed in Pichia pastoris X33. The stable nitrilase-expressing strain No.39-6-4 was obtained after three rounds of screening based on a combined detection method including dot-blot, SDS-PAGE, and western blot analyses, which confirmed the presence of recombinant nitrilase with a molecular mass of about 50 kDa. The temperature and pH optima of the nitrilase were 45°C and pH 7.5, respectively. Cu2+ , Zn2+ , and Tween 80 strongly inhibited the enzyme activity, but the optical purity of the product R-mandelic acid (R-MA) was stable, with practically 100% enantiomeric excess (ee). The nitrilase-producing P. pastoris strain developed in this study provides a basis for further research on the enzyme.


Assuntos
Alcaligenes faecalis , Alcaligenes faecalis/química , Alcaligenes faecalis/genética , Aminoidrolases/genética , Aminoidrolases/metabolismo , Concentração de Íons de Hidrogênio , Ácidos Mandélicos/química , Ácidos Mandélicos/metabolismo , Pichia/genética , Pichia/metabolismo , Saccharomycetales
5.
Biotechnol Lett ; 43(1): 287-296, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32936375

RESUMO

OBJECTIVES: Chiral 2-hydroxycarboxylic acids and 2-hydroxycarboxamides are valuable synthons for the chemical industry. RESULTS: The biocatalytic syntheses of (R)-mandelic acid and (R)-mandelic acid amide by recombinant Escherichia coli clones were studied. Strains were constructed which simultaneously expressed a (R)-specific oxynitrilase (hydroxynitrile lyase) from the plant Arabidopsis thaliana together with the arylacetonitrilase from the bacterium Pseudomonas fluorescens EBC191. In addition, recombinant strains were constructed which expressed a previously described acid tolerant variant of the oxynitrilase and an amide forming variant of the nitrilase. The whole cell catalysts which simultaneously expressed the (R)-specific oxynitrilase and the wild-type nitrilase transformed in slightly acidic buffer systems benzaldehyde plus cyanide preferentially to (R)-mandelic acid with ee-values > 95%. The combination of the (R)-specific oxynitrilase with the amide forming nitrilase variant gave whole cell catalysts which converted at pH-values ≤ pH 5 benzaldehyde plus cyanide with a high degree of enantioselectivity (ee > 90%) to (R)-mandelic acid amide. The acid and the amide forming catalysts also converted chlorinated benzaldehydes with cyanide to chlorinated mandelic acid or chlorinated mandelic acid amides. CONCLUSIONS: Efficient systems for the biocatalytic production of (R)-2-hydroxycarboxylic acids and (R)-2-hydroxycarboxamides were generated.


Assuntos
Aldeído Liases , Proteínas de Bactérias , Escherichia coli/genética , Ácidos Mandélicos , Proteínas Recombinantes , Aldeído Liases/genética , Aldeído Liases/metabolismo , Amidas/metabolismo , Aminoidrolases/genética , Aminoidrolases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biotransformação , Escherichia coli/metabolismo , Ácidos Mandélicos/química , Ácidos Mandélicos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estereoisomerismo
6.
Biophys J ; 118(2): 492-504, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31839263

RESUMO

The attractant chemotaxis response of Escherichia coli to norepinephrine requires that it be converted to 3,4-dihydroxymandelic acid (DHMA) by the monoamine oxidase TynA and the aromatic aldehyde dehydrogenase FeaB. DHMA is sensed by the serine chemoreceptor Tsr, and the attractant response requires that at least one subunit of the periplasmic domain of the Tsr homodimer (pTsr) has an intact serine-binding site. DHMA that is generated in vivo by E. coli is expected to be a racemic mixture of the (R) and (S) enantiomers, so it has been unclear whether one or both chiral forms are active. Here, we used a combination of state-of-the-art tools in molecular docking and simulations, including an in-house simulation-based docking protocol, to investigate the binding properties of (R)-DHMA and (S)-DHMA to E. coli pTsr. Our studies computationally predicted that (R)-DHMA should promote a stronger attractant response than (S)-DHMA because of a consistently greater-magnitude piston-like pushdown of the pTsr α-helix 4 toward the membrane upon binding of (R)-DHMA than upon binding of (S)-DHMA. This displacement is caused primarily by interaction of DHMA with Tsr residue Thr156, which has been shown by genetic studies to be critical for the attractant response to L-serine and DHMA. These findings led us to separate the two chiral species and test their effectiveness as chemoattractants. Both the tethered cell and motility migration coefficient assays validated the prediction that (R)-DHMA is a stronger attractant than (S)-DHMA. Our study demonstrates that refined computational docking and simulation studies combined with experiments can be used to investigate situations in which subtle differences between ligands may lead to diverse chemotactic responses.


Assuntos
Proteínas de Bactérias/metabolismo , Quimiotaxia , Escherichia coli/citologia , Escherichia coli/metabolismo , Ácidos Mandélicos/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Proteínas de Bactérias/química , Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Conformação Proteica
7.
Metab Eng ; 60: 168-182, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32335188

RESUMO

Bio-based production of industrial chemicals using synthetic biology can provide alternative green routes from renewable resources, allowing for cleaner production processes. To efficiently produce chemicals on-demand through microbial strain engineering, biomanufacturing foundries have developed automated pipelines that are largely compound agnostic in their time to delivery. Here we benchmark the capabilities of a biomanufacturing pipeline to enable rapid prototyping of microbial cell factories for the production of chemically diverse industrially relevant material building blocks. Over 85 days the pipeline was able to produce 17 potential material monomers and key intermediates by combining 160 genetic parts into 115 unique biosynthetic pathways. To explore the scale-up potential of our prototype production strains, we optimized the enantioselective production of mandelic acid and hydroxymandelic acid, achieving gram-scale production in fed-batch fermenters. The high success rate in the rapid design and prototyping of microbially-produced material building blocks reveals the potential role of biofoundries in leading the transition to sustainable materials production.


Assuntos
Bactérias/metabolismo , Microbiologia Industrial/métodos , Engenharia Metabólica/métodos , Benchmarking , Vias Biossintéticas , Indústria Química , Simulação por Computador , Fermentação , Ácidos Mandélicos/metabolismo , Estereoisomerismo
8.
Appl Environ Microbiol ; 86(17)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32561586

RESUMO

Benzenoid-derived metabolites act as precursors for a wide variety of products involved in essential metabolic roles in eukaryotic cells. They are synthesized in plants and some fungi through the phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) pathways. Ascomycete yeasts and animals both lack the capacity for PAL/TAL pathways, and metabolic reactions leading to benzenoid synthesis in these organisms have remained incompletely known for decades. Here, we show genomic, transcriptomic, and metabolomic evidence that yeasts use a mandelate pathway to synthesize benzenoids, with some similarities to pathways used by bacteria. We conducted feeding experiments using a synthetic fermentation medium that contained either 13C-phenylalanine or 13C-tyrosine, and, using methylbenzoylphosphonate (MBP) to inhibit benzoylformate decarboxylase, we were able to accumulate intracellular intermediates in the yeast Hanseniaspora vineae To further confirm this pathway, we tested in separate fermentation experiments three mutants with deletions in the key genes putatively proposed to form benzenoids (Saccharomyces cerevisiaearo10Δ, dld1Δ, and dld2Δ strains). Our results elucidate the mechanism of benzenoid synthesis in yeast through phenylpyruvate linked with the mandelate pathway to produce benzyl alcohol and 4-hydroxybenzaldehyde from the aromatic amino acids phenylalanine and tyrosine, as well as sugars. These results provide an explanation for the origin of the benzoquinone ring, 4-hydroxybenzoate, and suggest that Aro10p has benzoylformate and 4-hydroxybenzoylformate decarboxylase functions in yeast.IMPORTANCE We present here evidence of the existence of the mandelate pathway in yeast for the synthesis of benzenoids. The link between phenylpyruvate- and 4-hydroxyphenlypyruvate-derived compounds with the corresponding synthesis of benzaldehydes through benzoylformate decarboxylation is demonstrated. Hanseniaspora vineae was used in these studies because of its capacity to produce benzenoid derivatives at a level 2 orders of magnitude higher than that produced by Saccharomyces Contrary to what was hypothesized, neither ß-oxidation derivatives nor 4-coumaric acid is an intermediate in the synthesis of yeast benzenoids. Our results might offer an answer to the long-standing question of the origin of 4-hydroxybenzoate for the synthesis of Q10 in humans.


Assuntos
Derivados de Benzeno/metabolismo , Hanseniaspora/metabolismo , Ácidos Mandélicos/metabolismo , Redes e Vias Metabólicas
9.
Arch Biochem Biophys ; 681: 108258, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31917961

RESUMO

Phenylglyoxal (PGO), known to cause post-translational modifications of Arg residues, was used to highlight the role of arginine residues of the F1FO-ATPase, which may be crucial to yield the mitochondrial permeability transition pore (mPTP). In swine heart mitochondria PGO inhibits ATP hydrolysis by the F1FO-ATPase either sustained by the natural cofactor Mg2+ or by Ca2+ by a similar uncompetitive inhibition mechanism, namely the tertiary complex (ESI) only forms when the ATP substrate is already bound to the enzyme, and with similar strength, as shown by the similar K'i values (0.82 ± 0.07 mM in presence of Mg2+ and 0.64 ± 0.05 mM in the presence of Ca2+). Multiple inhibitor analysis indicates that features of the F1 catalytic sites and/or the FO proton binding sites are apparently unaffected by PGO. However, PGO and F1 or FO inhibitors can bind the enzyme combine simultaneously. However they mutually hinder to bind the Mg2+-activated F1FO-ATPase, whereas they do not mutually exclude to bind the Ca2+-activated F1FO-ATPase. The putative formation of PGO-arginine adducts, and the consequent spatial rearrangement in the enzyme structure, inhibits the F1FO-ATPase activity but, as shown by the calcium retention capacity evaluation in intact mitochondria, apparently favours the mPTP formation.


Assuntos
Glioxilatos/metabolismo , Ácidos Mandélicos/metabolismo , Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Animais , Cálcio/metabolismo , Magnésio/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Suínos
10.
Bioprocess Biosyst Eng ; 43(7): 1299-1307, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32193756

RESUMO

(R)-Mandelic acid (R-MA) is a key precursor for the synthesis of semi-synthetic penicillin, cephalosporin, anti-obesity drugs, antitumor agents, and chiral resolving agents for the resolution of racemic alcohols and amines. In this study, an enzymatic method for the large-scale production of R-MA by a stereospecific nitrilase in an aqueous system was developed. The nitrilase activity of the Escherichia coli BL21(DE3)/pET-Nit whole cells reached 138.6 U/g in a 20,000-L fermentor. Using recombinant E. coli cells as catalyst, 500 mM R,S-mandelonitrile (R,S-MN) was resolved into 426 mM (64.85 g/L) R-MA within 8 h, and the enantiomeric excess (ee) value of R-MA reached 99%. During the purification process, pure R-MA with a recovery rate of 78.8% was obtained after concentration and crystallization. This study paved the foundation for the upscale production of R-MA using E. coli whole cells as biocatalyst.


Assuntos
Aminoidrolases/metabolismo , Ácidos Mandélicos/metabolismo , Reatores Biológicos , Catálise , Meios de Cultura , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Fermentação , Concentração de Íons de Hidrogênio , Ácidos Mandélicos/química , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Água
11.
Molecules ; 25(8)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340302

RESUMO

The reactions of phenylglyoxylic acids during the synthesis and biological evaluation of fungal metabolites led to the discovery of hitherto unknown compounds with a p-quinone methide (p-QM) structure. The formation of these p-QMs using 13C-labelled starting materials revealed a key-step of this reaction being a retro-Friedel-Crafts alkylation.


Assuntos
Fungos , Glioxilatos/química , Ácidos Mandélicos/química , Fungos/química , Fungos/metabolismo , Glioxilatos/metabolismo , Espectroscopia de Ressonância Magnética , Ácidos Mandélicos/metabolismo , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Temperatura
12.
Biosci Biotechnol Biochem ; 83(2): 309-317, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30343629

RESUMO

(R)-2-Chloromandelic acid (R-CM) is one of the chiral building blocks used in the pharmaceutical industry. As a result of screening for microorganisms that asymmetrically hydrolyze racemic 2-chloromandelic acid methyl ester (CMM), Exophiala dermatitidis NBRC6857 was found to produce R-CM at optical purity of 97% ee. The esterase that produces R-CM, EstE, was purified from E. dermatitidis NBRC6857, and the optimal temperature and pH of EstE were 30°C and 7.0, respectively. The estE gene that encodes EstE was isolated and overexpressed in Escherichia coli JM109. The activity of recombinant E. coli JM109 cells overexpressing estE was 553 times higher than that of E. dermatitidis NBRC6857. R-CM was produced at conversion rate of 49% and at optical purity of 97% ee from 10% CMM with 0.45 mg-dry-cell/L recombinant E. coli JM109 cells. Based on these findings, R-CM production by bioconversion of CMM may be of interest for future industrial applications.


Assuntos
Ácidos Mandélicos/metabolismo , Preparações Farmacêuticas/metabolismo , Sequência de Aminoácidos , Escherichia coli/genética , Esterases/química , Esterases/genética , Esterases/metabolismo , Exophiala/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Recombinação Genética , Estereoisomerismo , Especificidade por Substrato , Temperatura
13.
J Bacteriol ; 200(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29038253

RESUMO

The detection of norepinephrine (NE) as a chemoattractant by Escherichia coli strain K-12 requires the combined action of the TynA monoamine oxidase and the FeaB aromatic aldehyde dehydrogenase. The role of these enzymes is to convert NE into 3,4-dihydroxymandelic acid (DHMA), which is a potent chemoattractant sensed by the Tsr chemoreceptor. These two enzymes must be induced by prior exposure to NE, and cells that are exposed to NE for the first time initially show minimal chemotaxis toward it. The induction of TynA and FeaB requires the QseC quorum-sensing histidine kinase, and the signaling cascade requires new protein synthesis. Here, we demonstrate that the cognate response regulator for QseC, the transcription factor QseB, is also required for induction. The related quorum-sensing kinase QseE appears not to be part of the signaling pathway, but its cognate response regulator, QseF, which is also a substrate for phosphotransfer from QseC, plays a nonessential role. The promoter of the feaR gene, which encodes a transcription factor that has been shown to be essential for the expression of tynA and feaB, has two predicted QseB-binding sites. One of these sites appears to be in an appropriate position to stimulate transcription from the P1 promoter of the feaR gene. This study unites two well-known pathways: one for expression of genes regulated by catecholamines (QseBC) and one for expression of genes required for metabolism of aromatic amines (FeaR, TynA, and FeaB). This cross talk allows E. coli to convert the host-derived and chemotactically inert NE into the potent bacterial chemoattractant DHMA.IMPORTANCE The chemotaxis of E. coli K-12 to norepinephrine (NE) requires the conversion of NE to 3,4-dihydroxymandleic acid (DHMA), and DHMA is both an attractant and inducer of virulence gene expression for a pathogenic enterohemorrhagic E. coli (EHEC) strain. The induction of virulence by DHMA and NE requires QseC. The results described here show that the cognate response regulator for QseC, QseB, is also required for conversion of NE into DHMA. Production of DHMA requires induction of a pathway involved in the metabolism of aromatic amines. Thus, the QseBC sensory system provides a direct link between virulence and chemotaxis, suggesting that chemotaxis to host signaling molecules may require that those molecules are first metabolized by bacterial enzymes to generate the actual chemoattractant.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ácidos Mandélicos/metabolismo , Norepinefrina/metabolismo , Transativadores/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Quimiotaxia/genética , Escherichia coli/genética , Escherichia coli/patogenicidade , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Regiões Promotoras Genéticas , Percepção de Quorum , Transdução de Sinais , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência/genética
14.
Metab Eng ; 45: 246-254, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29330068

RESUMO

Mandelic acid (MA) and 4-hydroxymandelic acid (HMA) are valuable specialty chemicals used as precursors for flavors as well as for cosmetic and pharmaceutical purposes. Today they are mainly synthesized chemically. Their synthesis through microbial fermentation would allow for environmentally sustainable production. In this work, we engineered the yeast Saccharomyces cerevisiae for high-level production of MA and HMA. Expressing the hydroxymandelate synthase from Amycolatopsis orientalis in a yeast wild type strain resulted in the production of 119mg/L HMA from glucose. As the enzyme also accepts phenylpyruvate as a substrate aside from its native substrate 4-hydroxyphenylpyruvate, 0.7mg/L MA was also produced. Preventing binding of 4-hydroxyphenylpyruvate to the hydroxymandelate synthase by introducing a S201V replacement in its substrate binding site nearly completely prevented HMA production but increased MA production only 3.5-fold. To further increase HMA and MA production, the aromatic amino acid pathway was engineered. We increased the precursor supply by introducing modifications in the shikimic acid pathway (ARO1↑, ARO3K222L↑, ARO4K220L↑) and reducing flux into the Ehrlich pathway (aro10Δ), and thereby enhanced the HMA titer to 465mg/L and the MA titer to 2.9mg/L. A further increase in HMA and MA titers was achieved by replacing the hydroxymandelate synthase from A. orientalis with the corresponding enzyme from Nocardia uniformis. Subsequently, we introduced additional deletions to block the competing tryptophan branch (trp2Δ), to further decrease flux into the Ehrlich pathway (pdc5Δ) and to avoid transamination of phenylpyruvate and 4-hydroxyphenylpyruvate (aro8Δ, aro9Δ). We achieved more than 1g/L 4-hydroxymandelate when additionally preventing formation of phenylpyruvate by deleting PHA2. When deleting TYR1 to prevent formation of 4-hydroxyphenylpyruvate instead, an MA titer of 236mg/L was achieved. This is a more than 200-fold increase in MA production compared to the wild type strain expressing the hydroxymandelate synthase from A. orientalis. Finally, we showed that S. cerevisiae tolerates HMA and MA to concentrations as high as 3g/L and 7.5g/L, respectively. Our results demonstrate that S. cerevisiae is a promising host for sustainable MA and HMA production.


Assuntos
Actinobacteria/genética , Aminoácidos Aromáticos/metabolismo , Proteínas de Bactérias , Dioxigenases , Ácidos Mandélicos/metabolismo , Saccharomyces cerevisiae , Actinobacteria/enzimologia , Aminoácidos Aromáticos/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Dioxigenases/biossíntese , Dioxigenases/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
15.
Appl Microbiol Biotechnol ; 102(9): 3893-3900, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29525852

RESUMO

The aim of this study is to summarize the current progress in the design of biocatalytic processes applicable for the production of optically pure mandelic acids and their analogues. These compounds are used as building blocks for pharmaceutical chemistry and as chiral resolving agents. Their enzymatic syntheses mainly employed nitrile hydrolysis with nitrilases, ester hydrolysis, ammonolysis or esterification with lipases or esterases, and ketone reduction or alcohol oxidation with dehydrogenases. Each of these methods will be characterized in terms of its product concentrations, enantioselectivities, and the types of catalysts used. This review will focus on the dynamic kinetic resolution of mandelonitrile and analogues by nitrilases resulting in the production of high concentrations of (R)-mandelic acid or (R)-2-chloromandelic acid with excellent e.e. Currently, there is no comparable process for (S)-mandelic acids. However, the coupling of the S-selective cyanation of benzaldehyde with the enantioretentive hydrolysis of (S)-mandelonitrile thus obtained is a promising strategy. The major product can be changed from (S)-acid to (S)-amide using nitrilase mutants. The competitiveness of the biocatalytic and chemical processes will be assessed. This review covers the literature published within 2003-2017.


Assuntos
Microbiologia Industrial , Ácidos Mandélicos/metabolismo , Aminoidrolases/genética , Aminoidrolases/metabolismo , Biocatálise , Microbiologia Industrial/tendências , Cinética , Estereoisomerismo
16.
Xenobiotica ; 48(5): 478-487, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28608746

RESUMO

1. Oxybutynin hydrochloride is an antimuscarinic agent prescribed to patients with an overactive bladder (OAB) and symptoms of urinary urge incontinence. Oxybutynin undergoes pre-systemic metabolism, and the N-desethyloxybutynin (Oxy-DE), is reported to have similar anticholinergic effects. 2. We revisited the oxidative metabolic fate of oxybutynin by liquid chromatography-tandem mass spectrometry analysis of incubations with rat and human liver fractions, and by measuring plasma and urine samples collected after oral administration of oxybutynin in rats. This investigation highlighted that not only N-deethylation but also N-oxidation participates in the clearance of oxybutynin after oral administration. 3. A new metabolic scheme for oxybutynin was delineated, identifying three distinct oxidative metabolic pathways: N-deethylation (Oxy-DE) followed by the oxidation of the secondary amine function to form the hydroxylamine (Oxy-HA), N-oxidation (Oxy-NO) followed by rearrangement of the tertiary propargylamine N-oxide moiety (Oxy-EK), and hydroxylation on the cyclohexyl ring. 4. The functional activity of Oxy-EK was investigated on the muscarinic receptors (M1-3) demonstrating its lack of antimuscarinic activity. 5. Despite the presence of the α,ß-unsaturated function, Oxy-EK does not react with glutathione indicating that in the clearance of oxybutynin no reactive and potentially toxic metabolites were formed.


Assuntos
Cetonas/metabolismo , Ácidos Mandélicos/metabolismo , Pargilina/análogos & derivados , Propilaminas/metabolismo , Administração Oral , Animais , Cromatografia Líquida , Glucuronídeos/metabolismo , Humanos , Masculino , Ácidos Mandélicos/sangue , Ácidos Mandélicos/química , Ácidos Mandélicos/urina , Espectrometria de Massas , Redes e Vias Metabólicas , Microssomos Hepáticos/metabolismo , Oxirredução , Pargilina/química , Pargilina/metabolismo , Propilaminas/química , Ratos Sprague-Dawley , Ratos Wistar , Receptores Muscarínicos/metabolismo
17.
Infect Immun ; 85(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28717028

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) is a commonly occurring foodborne pathogen responsible for numerous multistate outbreaks in the United States. It is known to infect the host gastrointestinal tract, specifically, in locations associated with lymphoid tissue. These niches serve as sources of enteric neurotransmitters, such as epinephrine and norepinephrine, that are known to increase virulence in several pathogens, including enterohemorrhagic E. coli The mechanisms that allow pathogens to target these niches are poorly understood. We previously reported that 3,4-dihydroxymandelic acid (DHMA), a metabolite of norepinephrine produced by E. coli, is a chemoattractant for the nonpathogenic E. coli RP437 strain. Here we report that DHMA is also a chemoattractant for EHEC. In addition, DHMA induces the expression of EHEC virulence genes and increases attachment to intestinal epithelial cells in vitro in a QseC-dependent manner. We also show that DHMA is present in murine gut fecal contents and that its production requires the presence of the commensal microbiota. On the basis of its ability to both attract and induce virulence gene expression in EHEC, we propose that DHMA acts as a molecular beacon to target pathogens to their preferred sites of infection in vivo.


Assuntos
Quimiotaxia , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/patogenicidade , Ácidos Mandélicos/metabolismo , Microbiota/fisiologia , Simbiose , Fatores de Virulência/genética , Animais , Aderência Bacteriana , Escherichia coli Êntero-Hemorrágica/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Fezes/química , Expressão Gênica , Perfilação da Expressão Gênica , Camundongos , Virulência
18.
Microb Ecol ; 73(1): 236-252, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27844108

RESUMO

In this study, the mycosphere isolate Burkholderia terrae BS001 was confronted with the soil fungus Lyophyllum sp. strain Karsten on soil extract agar plates in order to examine its transcriptional responses over time. At the initial stages of the experiment (T1-day 3; T2-day 5), contact between both partner organisms was absent, whereas in the final stage (T3-day 8), the two populations made intimate physical contact. Overall, a strong modulation of the strain BS001 gene expression patterns was found. First, the stationary-phase sigma factor RpoS, and numerous genes under its control, were strongly expressed as a response to the soil extract agar, and this extended over the whole temporal regime. In the system, B. terrae BS001 apparently perceived the presence of the fungal hyphae already at the early experimental stages (T1, T2), by strongly upregulating a suite of chemotaxis and flagellar motility genes. With respect to specific metabolism and energy generation, a picture of differential involvement in different metabolic routes was obtained. Initial (T1, T2) up- or downregulation of ethanolamine and mandelate uptake and utilization pathways was substituted by a strong investment, in the presence of the fungus, in the expression of putative metabolic gene clusters (T3). Specifically at T3, five clustered genes that are potentially involved in energy generation coupled to an oxidative stress response, and two genes encoding short-chain dehydrogenases/oxidoreductases (SDR), were highly upregulated. In contrast, the dnaE2 gene (related to general stress response; encoding error-prone DNA polymerase) was transcriptionally downregulated at this stage. This study revealed that B. terrae BS001, from a stress-induced state, resulting from the soil extract agar milieu, responds positively to fungal hyphae that encroach upon it, in a temporally dynamic manner. The response is characterized by phases in which the modulation of (1) chemotaxis, (2) metabolic activity, and (3) oxidative stress responses are key mechanisms.


Assuntos
Agaricales/crescimento & desenvolvimento , Agaricales/metabolismo , Burkholderia/genética , Interações Microbianas/fisiologia , Microbiologia do Solo , Quimiotaxia/fisiologia , DNA Polimerase Dirigida por DNA/biossíntese , Etanolamina/metabolismo , Hifas/crescimento & desenvolvimento , Ácidos Mandélicos/metabolismo , Estresse Oxidativo/fisiologia , Fator sigma/genética , Solo , Transcriptoma/genética
19.
Biochim Biophys Acta ; 1854(8): 1001-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25936776

RESUMO

Benzoylformate decarboxylase (BFDC) is a thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the nonoxidative decarboxylation of benzoylformate. It is the penultimate enzyme in both the mandelate pathway and the d-phenylglycine degradation pathway. The ThDP-dependent Enzyme Engineering Database (TEED) now lists more than 800 sequences annotated as BFDCs, including one from Mycobacterium smegmatis (MsBFDC). However, there is no evidence that either pathway for benzoylformate formation exists in the M. smegmatis genome. Further, sequence alignments of MsBFDC with the well characterized enzyme isolated from Pseudomonas putida (PpBFDC) indicate that there will be active site substitutions in MsBFDC likely to reduce activity with benzoylformate. Taken together these data would suggest that the annotation is unlikely to be correct. To test this hypothesis the putative MsBFDC was cloned, expressed, purified, and the X-ray structure was solved to a resolution of 2.2Å. While showing no evidence for ThDP in the active site, the structure was very similar to that of PpBFDC. A number of 2-oxo acids were tested as substrates. For MsBFDC the K(m) value for benzoylformate was ~23 mM, nearly 100-fold greater than that of PpBFDC while the k(cat) value was reduced 60-fold. These values would suggest that benzoylformate is not the physiological substrate for this enzyme, and that annotation as a 2-oxo acid decarboxylase may be more appropriate.


Assuntos
Proteínas de Bactérias/química , Carboxiliases/química , Glioxilatos/química , Ácidos Mandélicos/química , Mycobacterium smegmatis/enzimologia , Tiamina Pirofosfato/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Glioxilatos/metabolismo , Cinética , Ácidos Mandélicos/metabolismo , Mycobacterium smegmatis/genética , Tiamina Pirofosfato/metabolismo
20.
Microb Cell Fact ; 15: 90, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27234226

RESUMO

BACKGROUND: 4-Hydroxymandelic acid (4-HMA) is a valuable aromatic fine chemical and widely used for production of pharmaceuticals and food additives. 4-HMA is conventionally synthesized by chemical condensation of glyoxylic acid with excessive phenol, and the process is environmentally unfriendly. Microbial cell factory would be an attractive approach for 4-HMA production from renewable and sustainable resources. RESULTS: In this study, a biosynthetic pathway for 4-HMA production was constructed by heterologously expressing the fully synthetic 4-hydroxymandelic acid synthase (shmaS) in our L-tyrosine-overproducing Escherichia coli BKT5. The expression level of shmaS was optimized to improve 4-HMA production by fine tuning of four promoters of different strength combined with three plasmids of different copy number. Furthermore, two genes aspC and tyrB in the competitive pathway were deleted to block the formation of byproduct to enhance 4-HMA biosynthesis. The final engineered E. coli strain HMA15 utilized glucose and xylose simultaneously and produced 15.8 g/L of 4-HMA by fed-batch fermentation in 60 h. CONCLUSIONS: Metabolically engineered E. coli strain for 4-HMA production was designed and constructed, and efficiently co-fermented glucose and xylose, the major components in the hydrolysate mixture of agricultural biomass. Our research provided a promising biomanufacturing route to produce 4-HMA from lignocellulosic biomass.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli/metabolismo , Glucose/metabolismo , Ácidos Mandélicos/metabolismo , Xilose/metabolismo , Actinobacteria/enzimologia , Actinobacteria/genética , Reatores Biológicos , Cromatografia Líquida de Alta Pressão , Escherichia coli/crescimento & desenvolvimento , Ácidos Mandélicos/análise , Ácidos Mandélicos/química , Engenharia Metabólica , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA