Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 97(7): e0060023, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37338342

RESUMO

Experimental simian immunodeficiency virus (SIV) infection of Asian macaques is an excellent model for HIV disease progression and therapeutic development. Recent coformulations of nucleoside analogs and an integrase inhibitor have been used for parenteral antiretroviral (ARV) administration in SIV-infected macaques, successfully resulting in undetectable plasma SIV RNA. In a cohort of SIVmac239-infected macaques, we recently observed that administration of coformulated ARVs resulted in an unexpected increase in plasma levels of soluble CD14 (sCD14), associated with stimulation of myeloid cells. We hypothesized that the coformulation solubilizing agent Kleptose (2-hydroxypropyl-ß-cyclodextrin [HPßCD]) may induce inflammation with myeloid cell activation and the release of sCD14. Herein, we stimulated peripheral blood mononuclear cells (PBMCs) from healthy macaques with HPßCD from different commercial sources and evaluated inflammatory cytokine production in vitro. Treatment of PBMCs resulted in increased sCD14 release and myeloid cell interleukin-1ß (IL-1ß) production-with stimulation varying significantly by HPßCD source-and destabilized lymphocyte CCR5 surface expression. We further treated healthy macaques with Kleptose alone. In vivo, we observed modestly increased myeloid cell activation in response to Kleptose treatment without significant perturbation of the immunological transcriptome or epigenome. Our results demonstrate a need for vehicle-only controls and highlight immunological perturbations that can occur when using HPßCD in pharmaceutical coformulations. IMPORTANCE SIV infection of nonhuman primates is the principal model system for assessing HIV disease progression and therapeutic development. HPßCD has recently been incorporated as a solubilizing agent in coformulations of ARVs in SIV-infected nonhuman primates. Although HPßCD has historically been considered inert, recent findings suggest that HPßCD may contribute to inflammation. Herein, we investigate the contribution of HPßCD to healthy macaque inflammation in vitro and in vivo. We observe that HPßCD causes an induction of sCD14 and IL-1ß from myeloid cells in vitro and demonstrate that HPßCD stimulatory capacity varies by commercial source. In vivo, we observe modest myeloid cell activation in blood and bronchoalveolar lavage specimens absent systemic immune activation. From our findings, it is unclear whether HPßCD stimulation may improve or diminish immune reconstitution in ARV-treated lentiviral infections. Our results demonstrate a need for vehicle-only controls and highlight immunological perturbations that can occur when using HPßCD in pharmaceutical coformulations.


Assuntos
Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Progressão da Doença , Inflamação , Leucócitos Mononucleares , Receptores de Lipopolissacarídeos , Macaca mulatta , Carga Viral
2.
J Neurosci ; 42(2): 325-348, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34819339

RESUMO

Globally, more than 67 million people are living with the effects of ischemic stroke. Importantly, many stroke survivors develop a chronic inflammatory response that may contribute to cognitive impairment, a common and debilitating sequela of stroke that is insufficiently studied and currently untreatable. 2-Hydroxypropyl-ß-cyclodextrin (HPßCD) is an FDA-approved cyclic oligosaccharide that can solubilize and entrap lipophilic substances. The goal of the present study was to determine whether the repeated administration of HPßCD curtails the chronic inflammatory response to stroke by reducing lipid accumulation within stroke infarcts in a distal middle cerebral artery occlusion mouse model of stroke. To achieve this goal, we subcutaneously injected young adult and aged male mice with vehicle or HPßCD 3 times per week, with treatment beginning 1 week after stroke. We evaluated mice at 7 weeks following stroke using immunostaining, RNA sequencing, lipidomic, and behavioral analyses. Chronic stroke infarct and peri-infarct regions of HPßCD-treated mice were characterized by an upregulation of genes involved in lipid metabolism and a downregulation of genes involved in innate and adaptive immunity, reactive astrogliosis, and chemotaxis. Correspondingly, HPßCD reduced the accumulation of lipid droplets, T lymphocytes, B lymphocytes, and plasma cells in stroke infarcts. Repeated administration of HPßCD also preserved NeuN immunoreactivity in the striatum and thalamus and c-Fos immunoreactivity in hippocampal regions. Additionally, HPßCD improved recovery through the protection of hippocampal-dependent spatial working memory and reduction of impulsivity. These results indicate that systemic HPßCD treatment following stroke attenuates chronic inflammation and secondary neurodegeneration and prevents poststroke cognitive decline.SIGNIFICANCE STATEMENT Dementia is a common and debilitating sequela of stroke. Currently, there are no available treatments for poststroke dementia. Our study shows that lipid metabolism is disrupted in chronic stroke infarcts, which causes an accumulation of uncleared lipid debris and correlates with a chronic inflammatory response. To our knowledge, these substantial changes in lipid homeostasis have not been previously recognized or investigated in the context of ischemic stroke. We also provide a proof of principle that solubilizing and entrapping lipophilic substances using HPßCD could be an effective strategy for treating chronic inflammation after stroke and other CNS injuries. We propose that using HPßCD for the prevention of poststroke dementia could improve recovery and increase long-term quality of life in stroke sufferers.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Encéfalo/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Inflamação/tratamento farmacológico , Fatores Etários , Animais , Encéfalo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Resultado do Tratamento
3.
Genet Med ; 25(3): 100349, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36470574

RESUMO

PURPOSE: Niemann-Pick disease type C1 (NPC1) is a neurodegenerative lysosomal disorder caused by pathogenic variants in NPC1. Disease progression is monitored using the NPC Neurological Severity Scale, but there are currently no established validated or qualified biomarkers. Neurofilament light chain (NfL) is being investigated as a biomarker in multiple neurodegenerative diseases. METHODS: Cross-sectional and longitudinal cerebrospinal fluid (CSF) samples were obtained from 116 individuals with NPC1. NfL levels were measured using a solid-phase sandwich enzyme-linked immunosorbent assay and compared with age-appropriate non-NPC1 comparison samples. RESULTS: Median levels of NfL were elevated at baseline (1152 [680-1840] pg/mL) in NPC1 compared with controls (167 [82-372] pg/mL; P < .001). Elevated NfL levels were associated with more severe disease as assessed by both the 17-domain and 5-domain NPC Neurological Severity Score. Associations were also observed with ambulation, fine motor, speech, and swallowing scores. Although treatment with the investigational drug 2-hydroxypropyl-ß-cyclodextrin (adrabetadex) did not decrease CSF NfL levels, miglustat therapy over time was associated with a decrease (odds ratio = 0.77, 95% CI = 0.62-0.96). CONCLUSION: CSF NfL levels are increased in individuals with NPC1, associated with clinical disease severity, and decreased with miglustat therapy. These data suggest that NfL is a biomarker that may have utility in future therapeutic trials.


Assuntos
Doença de Niemann-Pick Tipo A , Doença de Niemann-Pick Tipo C , Humanos , Filamentos Intermediários/patologia , Estudos Transversais , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/líquido cefalorraquidiano , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Biomarcadores
4.
Exp Cell Res ; 412(1): 113007, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34990619

RESUMO

Mucopolysaccharidosis type II (MPS II), also known as Hunter syndrome, is a rare, lysosomal disorder caused by mutations in a gene encoding iduronate-2-sulfatase (IDS). IDS deficiency results in an accumulation of glycosaminoglycans (GAGs) and secondary accumulations of other lipids in lysosomes. Symptoms of MPS II include a variety of soft and hard tissue problems, developmental delay, and deterioration of multiple organs. Enzyme replacement therapy is an approved treatment for MPS II, but fails to improve neuronal symptoms. Cell-based neuronal models of MPS II disease are needed for compound screening and drug development for the treatment of the neuronal symptoms in MPS II. In this study, three induced pluripotent stem cell (iPSC) lines were generated from three MPS II patient-derived dermal fibroblast cell lines that were differentiated into neural stem cells and neurons. The disease phenotypes were measured using immunofluorescence staining and Nile red dye staining. In addition, the therapeutic effects of recombinant human IDS enzyme, delta-tocopherol (DT), and hydroxypropyl-beta-cyclodextrin (HPBCD) were determined in the MPS II disease cells. Finally, the neural stem cells from two of the MPS II iPSC lines exhibited typical disease features including a deficiency of IDS activity, abnormal glycosaminoglycan storage, and secondary lipid accumulation. Enzyme replacement therapy partially rescued the disease phenotypes in these cells. DT showed a significant effect in reducing the secondary accumulation of lipids in the MPS II neural stem cells. In contrast, HPBCD displayed limited or no effect in these cells. Our data indicate that these MPS II cells can be used as a cell-based disease model to study disease pathogenesis, evaluate drug efficacy, and screen compounds for drug development.


Assuntos
Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mucopolissacaridose II/tratamento farmacológico , Mucopolissacaridose II/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Linhagem Celular , Terapia de Reposição de Enzimas , Glicosaminoglicanos/metabolismo , Humanos , Iduronato Sulfatase/uso terapêutico , Células-Tronco Pluripotentes Induzidas/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Modelos Neurológicos , Mucopolissacaridose II/patologia , Células-Tronco Neurais/patologia , Fenótipo , Proteínas Recombinantes/uso terapêutico , Tocoferóis/uso terapêutico
5.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047307

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the primary reason for cancer-related deaths in the US. Genetic mutations, drug resistance, the involvement of multiple signaling pathways, cancer stem cells (CSCs), and desmoplastic stroma, which hinders drug penetrance, contribute to poor chemotherapeutic efficacy. Hence, there is a need to identify novel drugs with improved delivery to improve treatment outcomes. Curcumin is one such compound that can inhibit multiple signaling pathways and CSCs. However, curcumin's clinical applicability for treating PDAC is limited because of its poor solubility in water and metabolic instability. Hence, we developed a difluorinated curcumin (CDF) analog that accumulates selectively in the pancreas and inhibits PDAC growth in vitro and in vivo. In the present work, we developed its 2-hydroxy-propyl-ß-cyclodextrin (HCD) inclusion complex to increase its water solubility and hydrolytic stability. The CDFHCD inclusion complex was characterized by spectroscopic, thermal, and microscopic techniques. The inclusion complex exhibited increased aqueous solubility, hydrolytic stability, and antiproliferative activity compared to parent CDF. Moreover, CDF and CDFHCD inhibited colony and spheroid formation, and induced cell cycle and apoptosis in PDAC cell lines. Hence, CDFHCD self-assembly is an efficient approach to increase water solubility and anticancer therapeutic efficacy, which now warrants advancement towards a clinical proof of concept in PDAC patients.


Assuntos
Carcinoma Ductal Pancreático , Curcumina , Neoplasias Pancreáticas , Humanos , Curcumina/química , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Solubilidade , Água , Neoplasias Pancreáticas
6.
Circulation ; 142(5): 483-498, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32354235

RESUMO

BACKGROUND: Abdominal aortic aneurysm (AAA) is a severe aortic disease with a high mortality rate in the event of rupture. Pharmacological therapy is needed to inhibit AAA expansion and prevent aneurysm rupture. Transcription factor EB (TFEB), a master regulator of autophagy and lysosome biogenesis, is critical to maintain cell homeostasis. In this study, we aim to investigate the role of vascular smooth muscle cell (VSMC) TFEB in the development of AAA and establish TFEB as a novel target to treat AAA. METHODS: The expression of TFEB was measured in human and mouse aortic aneurysm samples. We used loss/gain-of-function approaches to understand the role of TFEB in VSMC survival and explored the underlying mechanisms through transcriptome and functional studies. Using VSMC-selective Tfeb knockout mice and different mouse AAA models, we determined the role of VSMC TFEB and a TFEB activator in AAA in vivo. RESULTS: We found that TFEB is downregulated in both human and mouse aortic aneurysm lesions. TFEB potently inhibits apoptosis in VSMCs, and transcriptome analysis revealed that TFEB regulates apoptotic signaling pathways, especially apoptosis inhibitor B-cell lymphoma 2. B-cell lymphoma 2 is significantly upregulated by TFEB and is required for TFEB to inhibit VSMC apoptosis. We consistently observed that TFEB deficiency increases VSMC apoptosis and promotes AAA formation in different mouse AAA models. Furthermore, we demonstrated that 2-hydroxypropyl-ß-cyclodextrin, a clinical agent used to enhance the solubility of drugs, activates TFEB and inhibits AAA formation and progression in mice. Last, we found that 2-hydroxypropyl-ß-cyclodextrin inhibits AAA in a VSMC TFEB-dependent manner in mouse models. CONCLUSIONS: Our study demonstrated that TFEB protects against VSMC apoptosis and AAA. TFEB activation by 2-hydroxypropyl-ß-cyclodextrin may be a promising therapeutic strategy for the prevention and treatment of AAA.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Aneurisma da Aorta Abdominal/prevenção & controle , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Modelos Animais de Doenças , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Aminopropionitrilo/toxicidade , Aneurisma Roto/etiologia , Angiotensina II/toxicidade , Animais , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Apoptose/efeitos dos fármacos , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/biossíntese , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/deficiência , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Colesterol/metabolismo , Regulação para Baixo , Avaliação Pré-Clínica de Medicamentos , Mutação com Ganho de Função , Regulação da Expressão Gênica , Vetores Genéticos/toxicidade , Humanos , Mutação com Perda de Função , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Transcriptoma/efeitos dos fármacos
7.
Mol Genet Metab ; 129(4): 292-302, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033912

RESUMO

Niemann-Pick type C (NPC) disease is a rare lysosomal storage disorder caused by mutations in either the NPC1 or the NPC2 gene. A new class of lipids, N-acyl-O-phosphocholineserines were recently identified as NPC biomarkers. The most abundant species in this class of lipid, N-palmitoyl-O-phosphocholineserine (PPCS), was evaluated for diagnosis of NPC disease and treatment efficacy assessment with 2-hydroxypropyl-ß-cyclodextrin (HPßCD) in NPC. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods were developed and validated to measure PPCS in human plasma and cerebrospinal fluid (CSF). A cutoff of 248 ng/mL in plasma provided a sensitivity of 100.0% and specificity of 96.6% in identifying NPC1 patients from control and NPC1 carrier subjects. PPCS was significantly elevated in CSF from NPC1 patients, and CSF PPCS levels were significantly correlated with NPC neurological disease severity scores. Plasma and CSF PPCS did not change significantly in response to intrathetical (IT) HPßCD treatment. In an intravenous (IV) HPßCD trial, plasma PPCS in all patients was significantly reduced. These results demonstrate that plasma PPCS was able to diagnose NPC1 patients with high sensitivity and specificity, and to evaluate the peripheral treatment efficacy of IV HPßCD treatment.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Doença de Niemann-Pick Tipo C/diagnóstico , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Fosforilcolina/sangue , Fosforilcolina/líquido cefalorraquidiano , Adolescente , Adulto , Idoso , Animais , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Gatos , Criança , Pré-Escolar , Cromatografia Líquida , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Índice de Gravidade de Doença , Espectrometria de Massas em Tandem , Resultado do Tratamento , Adulto Jovem
8.
Lipids Health Dis ; 18(1): 146, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31248418

RESUMO

BACKGROUND: Niemann-Pick disease type C1 (NPC1) is an autosomal-recessive lipid-storage disorder with an estimated minimal incidence of 1/120,000 live births. Besides other neuronal and visceral symptoms, NPC1 patients develop spleen dysfunction, isolated spleno- or hepatosplenomegaly and infections. The mechanisms of splenomegaly and alterations of lipid metabolism-related genes in NPC1 disease are still poorly understood. METHODS: Here, we used an NPC1 mouse model to study a splenoprotective effect of a treatment with miglustat, 2-hydroxypropyl-ß-cyclodextrin and allopregnanolone and showed that this treatment has a positive effect on spleen morphology and lipid metabolism. RESULTS: Disease progress can be halted and blocked at the molecular level. Mutant Npc1 (Npc1-/-) mice showed increased spleen weight and increased lipid accumulation that could be avoided by our treatment. Also, FACS analyses showed that the increased number of splenic myeloid cells in Npc1-/- mice was normalized by the treatment. Treated Npc1-/- mice showed decreased numbers of cytotoxic T cells and increased numbers of T helper cells. CONCLUSIONS: In summary, the treatment promotes normal spleen morphology, stabilization of lipid homeostasis and blocking of inflammation, but alters the composition of T cell subtypes.


Assuntos
1-Desoxinojirimicina/análogos & derivados , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Pregnanolona/uso terapêutico , Baço/metabolismo , 1-Desoxinojirimicina/uso terapêutico , Animais , Separação Celular , Modelos Animais de Doenças , Citometria de Fluxo , Genótipo , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Doença de Niemann-Pick Tipo C , Baço/efeitos dos fármacos
9.
Kidney Int ; 94(6): 1151-1159, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30301568

RESUMO

Studies suggest that altered renal lipid metabolism plays a role in the pathogenesis of diabetic kidney disease and that genetic or pharmacological induction of cholesterol efflux protects from the development of diabetic kidney disease and focal segmental glomerulosclerosis (FSGS). Here we tested whether altered lipid metabolism contributes to renal failure in the Col4a3 knockout mouse model for Alport Syndrome. There was an eight-fold increase in the cholesterol content in renal cortexes of mice with Alport Syndrome. This was associated with increased glomerular lipid droplets and cholesterol crystals. Treatment of mice with Alport Syndrome with hydroxypropyl-ß-cyclodextrin (HPßCD) reduced cholesterol content in the kidneys of mice with Alport Syndrome and protected from the development of albuminuria, renal failure, inflammation and tubulointerstitial fibrosis. Cholesterol efflux and trafficking-related genes were primarily affected in mice with Alport Syndrome and were differentially regulated in the kidney cortex and isolated glomeruli. HPßCD also protected from proteinuria and mesangial expansion in a second model of non-metabolic kidney disease, adriamycin-induced nephropathy. Consistent with our experimental findings, microarray analysis confirmed dysregulation of several lipid-related genes in glomeruli isolated from kidney biopsies of patients with primary FSGS enrolled in the NEPTUNE study. Thus, lipid dysmetabolism occurs in non-metabolic glomerular disorders such as Alport Syndrome and FSGS, and HPßCD improves renal function in experimental Alport Syndrome and FSGS.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Glomérulos Renais/patologia , Nefrite Hereditária/tratamento farmacológico , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Animais , Autoantígenos/genética , Biópsia , Colesterol/metabolismo , Colágeno Tipo IV/genética , Doxorrubicina/toxicidade , Feminino , Glomerulosclerose Segmentar e Focal/induzido quimicamente , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Nefrite Hereditária/patologia , Estudos Observacionais como Assunto
10.
Int J Mol Sci ; 19(4)2018 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-29587349

RESUMO

Niemann-Pick-disease type C1 (NPC1) is an autosomal-recessive cholesterol-storage disorder. Besides other symptoms, NPC1 patients develop liver dysfunction and hepatosplenomegaly. The mechanisms of hepatomegaly and alterations of lipid metabolism-related genes in NPC1 disease are still poorly understood. Here, we used an NPC1 mouse model to study an additive hepatoprotective effect of a combination of 2-hydroxypropyl-ß-cyclodextrin (HPßCD), miglustat and allopregnanolone (combination therapy) with the previously established monotherapy using HPßCD. We examined transgene effects as well as treatment effects on liver morphology and hepatic lipid metabolism, focusing on hepatic cholesterol transporter genes. Livers of Npc1-/- mice showed hepatic cholesterol sequestration with consecutive liver injury, an increase of lipogenetic gene expression, e.g., HMG-CoA, a decrease of lipolytic gene expression, e.g., pparα and acox1, and a decrease of lipid transporter gene expression, e.g., acat1, abca1 and fatp2. Both, combination therapy and monotherapy, led to a reduction of hepatic lipids and an amelioration of NPC1 liver disease symptoms. Monotherapy effects were related to pparα- and acox1-associated lipolysis/ß-oxidation and to fatp2-induced fatty acid transport, whereas the combination therapy additionally increased the cholesterol transport via abca1 and apoE. However, HPßCD monotherapy additionally increased cholesterol synthesis as indicated by a marked increase of the HMG-CoA and srebp-2 mRNA expression, probably as a result of increased hepatocellular proliferation.


Assuntos
1-Desoxinojirimicina/análogos & derivados , 2-Hidroxipropil-beta-Ciclodextrina/administração & dosagem , Hepatomegalia/tratamento farmacológico , Hepatomegalia/etiologia , Fígado/patologia , Doença de Niemann-Pick Tipo C/complicações , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Pregnanolona/administração & dosagem , 1-Desoxinojirimicina/administração & dosagem , 1-Desoxinojirimicina/uso terapêutico , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Acil-CoA Oxidase/genética , Acil-CoA Oxidase/metabolismo , Animais , Colesterol/metabolismo , Modelos Animais de Doenças , Quimioterapia Combinada , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Pregnanolona/uso terapêutico , Proteínas/genética , Proteínas/metabolismo
11.
Neurol Sci ; 38(5): 727-743, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28155026

RESUMO

Niemann-Pick type C (NP-C) is a rare neurodegenerative disorder. Management is mainly supportive and symptomatic. The investigational use of 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) showed a promising role in treating NP-C, although efficacy and safety have not been established. We conducted searches of MEDLINE, Cochrane, EMBASE, and other databases of reported cases of HP-ß-CD compassionate use in NP-C disease. Sixteen reported cases were eligible, including evaluable information of 17 patients. The median onset age of HP-ß-CD was 14 years (range 2-49 years). Intrathecal route was employed in 16 patients, in 3 patients simultaneously to IV infusions. Intracerebroventricular route was used in two patients. An objective improvement of clinical outcomes was measured in 14 patients, mainly by the NIH NP-C Clinical Severity Score and brainstem auditory evoked potential. Besides, an increase in metabolism and activities of the brain were observed in image tests and cholesterol biomarkers. Most patients showed some clinical benefit or a stabilization of NP-C progression. There were 17 adverse events (AEs) reported in 11 patients, 11 of them related to the drug and 6 to the route of administration. Loss of hearing was reported in four patients. The most severe AE were fever and chemical meningitis. Results suggest that efficacy may be partial and dependent on the early administration of the drug, the severity of the disease, and interpersonal variability. HP-ß-CD could help stabilize NP-C with low toxicity potential, although some AEs have been reported. Moreover, controlled clinical trials would be necessary to evaluate the role of HP-ß-CD in NP-C.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Excipientes/uso terapêutico , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Bases de Dados Bibliográficas/estatística & dados numéricos , Humanos
12.
Brain Dev ; 46(5): 207-212, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38448301

RESUMO

BACKGROUND AND OBJECTIVES: Niemann-Pick type C (NPC) is a rare lysosomal storage disease characterized by hepatosplenomegaly and progressive neurological deterioration due to abnormal intracellular cholesterol transport. Cyclic oligosaccharide 2-hydroxypropyl-ß-cyclodextrin (HPBCD) is an effective treatment for NPC; however, few reports have shown its long-term efficacy and safety. To demonstrate long-term efficacy and safety of intrathecal HPBCD (IT-HPBCD) treatment for NPC, we herein reports five patients with NPC treated using IT-HPBCD for 4-11 years. CASES AND RESULTS: Patients' ages at the onset ranged from 1.5 to 20 years. Notably, all patients showed rapid disease progression despite treatment with miglustat before IT-HPBCD treatment. Similarly, some patients showed transient improvement; however, all patients' conditions stabilized after long-term IT-HPBCD therapy. Mild-to-moderate hearing loss was observed in three patients. Furthermore, long-term treatment with IT-HPBCD may suppress neurological deterioration in patients with NPC; however, patients still experience some disease progression. CONCLUSIONS: Long-term treatment with IT-HPBCD may suppress neurological deterioration in patients with NPC; however, the treatment outcome is dependent on the neurological status at the time of diagnosis, and disease progression is not completely inhibited. Awareness of the disease and newborn screening is needed for earlier disease detection. In addition, further optimization of the treatment protocol and additional treatments are needed to improve patient outcomes.


Assuntos
Ciclodextrinas , Doença de Niemann-Pick Tipo C , Recém-Nascido , Humanos , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Ciclodextrinas/uso terapêutico , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Resultado do Tratamento , Progressão da Doença
13.
Biosci Rep ; 43(5)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37128889

RESUMO

An inclusion complex formation with cyclodextrin is a promising method to improve the bioavailability of water-insoluble drugs. The pharmacokinetic characteristics of Hyperoside-2-hydroxypropyl-ß-cyclodextrin inclusion complex in rats were evaluated. Compared with Hyperoside, the results showed that maximum plasma concentration and AUC0-t indexes of Hyperoside inclusion complex in rat plasma were increased, the value of half-life time was prolonged, and the value of apparent clearance was decreased, which proved that Hyperoside complexed with 2-hydroxypropyl-ß-cyclodextrin could improve its bioavailability and increase its blood concentration. Secondly, the therapeutic effect of Hyperoside before and after complexing was further compared through the dextran sodium sulfate-induced colitis in mice. The experimental results showed that under the same dose, the Hyperoside inclusion complex had a better therapeutic effect, which could significantly increase the body weight of mice, improve the disease activity index, alleviate colon shortening, improve pathological colon changes, and have a better protective effect on colitis mice. According to 16S rDNA sequencing analyses, Hyperoside-2-hydroxypropyl-ß-cyclodextrin may have an anti-inflammatory effect by increasing the abundance of beneficial bacteria (e.g. Firmicuria) and decreasing the proportion of harmful bacteria (e.g. Bacteroidetes) to balance the colon's microbiota.


Assuntos
Colite , Camundongos , Ratos , Animais , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Quercetina , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
14.
Physiol Res ; 72(3): 371-382, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37449749

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a general term for fatty liver disease not caused by viruses or alcohol. Fibrotic hepatitis, cirrhosis, and hepatocellular carcinoma can develop. The recent increase in NAFLD incidence worldwide has stimulated drug development efforts. However, there is still no approved treatment. This may be due in part to the fact that non-alcoholic steatohepatitis (NASH) pathogenesis is very complex, and its mechanisms are not well understood. Studies with animals are very important for understanding the pathogenesis. Due to the close association between the establishment of human NASH pathology and metabolic syndrome, several animal models have been reported, especially in the context of overnutrition. In this study, we investigated the induction of NASH-like pathology by enhancing cholesterol absorption through treatment with hydroxypropyl-beta-cyclodextrin (CDX). Female Sprague-Dawley rats were fed a normal diet with normal water (control group); a high-fat (60 kcal%), cholesterol (1.25 %), and cholic acid (0.5 %) diet with normal water (HFCC group); or HFCC diet with 2 % CDX water (HFCC+CDX group) for 16 weeks. Compared to the control group, the HFCC and HFCC+CDX groups showed increased blood levels of total cholesterol, aspartate aminotransferase, and alanine aminotransferase. At autopsy, parameters related to hepatic lipid synthesis, oxidative stress, inflammation, and fibrosis were elevated, suggesting the development of NAFLD/NASH. Elevated levels of endoplasmic reticulum stress-related genes were evident in the HFCC+CDX group. In the novel rat model, excessive cholesterol intake and accelerated absorption contributed to NAFLD/NASH pathogenesis.


Assuntos
Hipercolesterolemia , Hiperlipidemias , Hepatopatia Gordurosa não Alcoólica , Humanos , Ratos , Feminino , Animais , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , 2-Hidroxipropil-beta-Ciclodextrina/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Ratos Sprague-Dawley , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Colesterol , Hipercolesterolemia/metabolismo , Modelos Animais de Doenças
15.
Biomolecules ; 13(4)2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37189413

RESUMO

Cyclodextrins are often used as molecular carriers for small active ingredients in medicine. Recently, the intrinsic medicinal activity of some of these compounds has been under investigation, mainly related to their ability to interfere with cholesterol and, therefore, prevent and treat cholesterol-related diseases such as cardiovascular disease and neuronal diseases arising from altered cholesterol and lipid metabolism. One of the most promising compounds within the cyclodextrin family is 2-hydroxypropyl-ß-cyclodextrin (HPßCD), owing to its superior biocompatibility profile. This work presents the most recent advances in the research and clinical use of HPßCD against Niemann-Pick disease, a congenital condition involving cholesterol accumulation inside lysosomes in brain cells, Alzheimer's and Parkinson's. HPßCD plays a complex role in each of these ailments, going beyond the mere sequestering of cholesterol molecules and involving an overall regulation of protein expression that helps restore the normal functioning of the organism.


Assuntos
Ciclodextrinas , Doenças Neurodegenerativas , Doença de Niemann-Pick Tipo C , Humanos , Ciclodextrinas/farmacologia , Ciclodextrinas/uso terapêutico , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/metabolismo , Colesterol/metabolismo
16.
Int Immunopharmacol ; 125(Pt A): 111168, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37939513

RESUMO

Triple negative breast cancer (TNBC) is regarded as one of the most aggressive forms of breast cancer. Hydroxypropyl-ß-cyclodextrin (HP-ß-CD) has been used as a therapeutic agent for Niemann-Pick disease Type C (NPC). However, the exact actions and mechanisms of HP-ß-CD on TNBC are not fully understood. To examine the influence of HP-ß-CD on the proliferation and migration of TNBC cell lines, particularly 4T1 and MDA-MB-231 cells, a range of assays, including MTT, scratch, cell cycle, and clonal formation assays, were performed. Furthermore, the effectiveness of HP-ß-CD in the treatment of TNBC was assessed in vivo using a 4T1 tumor-bearing BALB/c mouse model. We demonstrated the anti-proliferation and anti-migration effect of HP-ß-CD on TNBC both in vitro and in vivo. High cholesterol diet can attenuate HP-ß-CD-inhibited TNBC growth. Mechanistically, HP-ß-CD reduced tumor cholesterol levels by increasing ABCA1 and ABCG1-mediated cholesterol reverse transport. HP-ß-CD promoted the infiltration of T cells into the tumor microenvironment (TME) and improved exhaustion of CD8+ T cells via reducing immunological checkpoint molecules expression. Additionally, HP-ß-CD inhibited the recruitment of tumor associated macrophages to the TME via reducing CCL2-p38MAPK-NF-κB axis. HP-ß-CD also inhibited the epithelial mesenchymal transition (EMT) of TNBC cells mediated by the TGF-ß signaling pathway. In summary, our study suggests that HP-ß-CD effectively inhibited the proliferation and metastasis of TNBC, highlighting HP-ß-CD may hold promise as a potential antitumor drug.


Assuntos
Neoplasias de Mama Triplo Negativas , Camundongos , Animais , Humanos , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Linfócitos T CD8-Positivos/metabolismo , NF-kappa B , Colesterol/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Movimento Celular , Microambiente Tumoral
17.
J Am Soc Mass Spectrom ; 34(4): 668-675, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36920149

RESUMO

Niemann-Pick, type C (NPC) is a fatal, neurovisceral lysosomal storage disorder with progressive neurodegeneration and no FDA-approved therapy. Significant efforts have been focused on the development of therapeutic options, and 2-hydroxypropyl-ß-cyclodextrin (HP-b-CD) has emerged as a promising candidate. In cell culture, HP-b-CD ameliorates cholesterol storage in endo/lysosomes, a hallmark of the disorder. Furthermore, in animal studies, treatment with HP-b-CD delays neurodegeneration and extends lifespan. While HP-b-CD has been promising in vitro and in vivo, a clear understanding of the mechanism(s) of action is lacking. Utilizing a neuron-like cell culture model of SH-SY5Y differentiated cells and U18666A to induce the NPC phenotype, we report here a large-scale mass-spectrometry-based proteomic study to evaluate proteome changes upon treatment with these small molecules. In this study, we show that differentiated SH-SY5Y cells display morphological changes representative of neuronal-like cells along with increased levels of proliferation markers. Inhibition of the NPC cholesterol transporter 1 protein by U18666A resulted in increased levels of known NPC markers including SCARB2/LIMP2 and LAMP2. Finally, investigation of HP-b-CD treatment was performed where we observe that, although HP-b-CD reduces cholesterol storage, levels of NPC1 and NPC2 are not normalized to control levels. This finding further supports the need for a proteostasis strategy for NPC drug development. Moreover, proteins that were dysregulated in the U18666A model of NPC and normalized to control levels suggest that HP-b-CD promotes exocytosis in this neuron-like model. Utilizing state of the art mass spectrometry analysis, these data demonstrate newly reported changes with pharmacological perturbations related to NPC disease and provide insight into the mechanisms of HP-b-CD as a potential therapeutic.


Assuntos
Neuroblastoma , Doença de Niemann-Pick Tipo C , beta-Ciclodextrinas , Animais , Humanos , 2-Hidroxipropil-beta-Ciclodextrina/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , beta-Ciclodextrinas/farmacologia , beta-Ciclodextrinas/metabolismo , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Proteômica , Neuroblastoma/metabolismo , Neurônios , Colesterol
18.
Nanomedicine (Lond) ; 17(15): 1055-1075, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-36066036

RESUMO

Aim: To formulate and assess the oral anti-obesity effect of polymeric-based pterostilbene (PS)-loaded nanoparticles. Methods: Pterostilbene-hydroxypropyl ß-cyclodextrin inclusion complex loaded in chitosan nanoparticles (PS/HPßCD-NPs) were prepared and characterized in vitro. Cytotoxicity, pharmacokinetics and anti-obesity effects were assessed on Caco-2 cell line and high-fat-diet-induced obesity rat model, respectively. In vivo assessment included histological examination, protein and gene expression of obesity biomarkers in adipose tissues. Results: Safe PS/HPßCD-NPs were successfully prepared with improved bioavailability compared with free PS. PS/HPßCD-NPs showed an improved anti-obesity effect, as supported by histological examination, lipid profile, UCP1 gene expression and protein expression of SIRT1, COX2, IL-6 and leptin. Conclusion: Orally administered PS nanoparticles represent a new and promising anti-obesity strategy owing to the sustainable weight loss and minimal side effects; this may be of great socio-economic impact.


Weight gain or obesity represents a major health risk and leads to diseases including cancer and heart disease. Most anti-obesity medications have significant side effects, and there are notable challenges concerning their availability in the body to produce an effect. Pterostilbene is a herbal drug with beneficial anti-obesity effects. However, it has problems such as poor solubility which restrict its use. The aim of the study was to formulate pterostilbene in a nano-based delivery system and fully characterize its anti-obesity effect when given orally. We evaluated the safety and anti-obesity effects of pterostilbene nanoparticles in cells and in obese rats fed on a high-fat diet. We also looked at how the body absorbs, distributes and gets rid of these nanoparticles. The prepared nanoparticles were nontoxic, with an improved anti-obesity effect; they decreased cholesterol levels and helped in changing white fat (which stores fat) to brown fat (which burns calories). We conclude that the developed pterostilbene nanoparticles, given orally, are a new and promising anti-obesity strategy given their long-lasting effect on weight loss and the minimal side effects. This may be of great economic and societal impact.


Assuntos
Quitosana , Nanopartículas , Animais , Ratos , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Células CACO-2 , Ciclo-Oxigenase 2 , Suplementos Nutricionais , Interleucina-6 , Leptina/genética , Leptina/uso terapêutico , Lipídeos/uso terapêutico , Obesidade/tratamento farmacológico , Sirtuína 1/uso terapêutico
19.
PLoS One ; 17(12): e0268613, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36584173

RESUMO

Niemann-Pick Type C is a rare metabolic disorder characterized by the cellular accumulation of cholesterol within endosomal and lysosomal compartments. 2-Hydroxypropyl-ß-cyclodextrin (HP-ß-CD) containing polyrotaxanes represent an attractive approach for treating this disease due to their ability to circulate in the blood stream for longer periods of time as a prodrug form of HP-ß-CD. Once inside the cell, the macromolecular structure is thought to break down into the Pluronic precursor and the active cyclodextrin agent that promotes cholesterol mobilization from the aberrant accumulations within NPC-deficient cells. We now report that both cholesterol and decaarginine (R10) endcapped polyrotaxanes are able to remove cholesterol from NPC1 patient fibroblasts. R10 endcapped materials enter these cells and are localized within endosomes after 16 h. The cholesterol mobilization from endo-lysosomal compartments of NPC1 cells by the polyrotaxanes was directly related to their extent of endcapping and their threading efficiency. Incorporation of 4-sulfobutylether-ß-cyclodextrin (SBE-ß-CD) significantly improved cholesterol mobilization due to the improved solubility of the compounds. Additionally, in our efforts to scale-up the synthesis for preclinical studies, we prepared a library of polyrotaxanes using a solid phase synthesis method. These compounds also led to significant cholesterol mobilization from the cells, however, cytotoxicity studies showed that they were substantially more toxic than those prepared by the solvent-assisted method, thus limiting the therapeutic utility of agents prepared by this expedited method. Our findings demonstrate that complete endcapping of the polyrotaxanes and improved solubility are important design features for delivering high copy numbers of therapeutic ß-CD to promote enhanced sterol clearance in human NPC1-deficient cells.


Assuntos
Doença de Niemann-Pick Tipo C , Rotaxanos , Humanos , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Rotaxanos/química , Rotaxanos/metabolismo , Rotaxanos/uso terapêutico , Colesterol/metabolismo , Lisossomos/metabolismo , Relação Estrutura-Atividade , Doença de Niemann-Pick Tipo C/metabolismo , Proteína C1 de Niemann-Pick
20.
Sci Rep ; 12(1): 2162, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140266

RESUMO

Niemann-Pick disease type C1 (NPC1) is a rare, prematurely fatal lysosomal storage disorder which exhibits highly variable severity and disease progression as well as a wide-ranging age of onset, from perinatal stages to adulthood. This heterogeneity has made it difficult to obtain prompt diagnosis and to predict disease course. In addition, small NPC1 patient sample sizes have been a limiting factor in acquiring genome-wide transcriptome data. In this study, primary fibroblasts from an extensive cohort of 41 NPC1 patients were used to validate our previous findings that the lysosomal quantitative probe LysoTracker can be used as a predictor for age of onset and disease severity. We also examined the correlation between these clinical parameters and RNA expression data from primary fibroblasts and identified a set of genes that were significantly associated with lysosomal defects or age of onset, in particular neurological symptom onset. Hierarchical clustering showed that these genes exhibited distinct expression patterns among patient subgroups. This study is the first to collect transcriptomic data on such a large scale in correlation with clinical and cellular phenotypes, providing a rich genomic resource to address NPC1 clinical heterogeneity and discover potential biomarkers, disease modifiers, or therapeutic targets.


Assuntos
Lisossomos/metabolismo , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Transcriptoma , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Adolescente , Idade de Início , Linhagem Celular , Criança , Pré-Escolar , Progressão da Doença , Corantes Fluorescentes , Humanos , Lactente , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA