Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 37(7): 1218-1228, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38963334

RESUMO

Abrin and ricin are toxic proteins produced by plants. Both proteins are composed of two subunits, an A-chain and a B-chain. The A-chain is responsible for the enzymatic activity, which causes toxicity. The B-chain binds to glycoproteins on the cell surface to direct the A-chain to its target. Both toxins depurinate 28S rRNA, making it impossible to differentiate these toxins based on only their enzymatic activity. We developed an analytical workflow for both ricin and abrin using a single method and sample. We have developed a novel affinity enrichment technique based on the ability of the B-chain to bind a glycoprotein, asialofetuin. After the toxin is extracted with asialofetuin-coated magnetic beads, an RNA substrate is added. Then, depurination is detected by a benchtop matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectrometer to determine the presence or absence of an active toxin. Next, the beads are subjected to tryptic digest. Toxin fingerprinting is done on a benchtop MALDI-TOF MS. We validated the assay through sensitivity and specificity studies and determined the limit of detection for each toxin as nanogram level for enzymatic activity and µg level for toxin fingerprinting. We examined potential cross-reactivity from proteins that are near neighbors of the toxins and examined potential false results in the presence of white powders.


Assuntos
Abrina , Ricina , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ricina/análise , Ricina/metabolismo , Ricina/química , Abrina/análise , Abrina/metabolismo , Abrina/química
2.
Analyst ; 149(14): 3783-3792, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38845587

RESUMO

Abrin toxin, highly dangerous with an estimated human lethal dose of 0.1-1 µg per kg body weight, has attracted much attention regarding criminal and terroristic misuse over the past decade. Therefore, developing a rapid detection method for abrin toxin is of great significance in the field of biosecurity. In this study, based on the specific dissociation method of an immobilized enzyme reactor, the trypsin immobilized reactor Fe3O4@CTS-GA-Try was prepared to replace free trypsin, and the immobilized enzyme digestion process was systematically investigated and optimized by using bovine serum albumin as the simulant of abrin. After 5 min one-step denaturation and reduction, a satisfactory peptide number and coverage were yielded with only 15 s assisted by an ultrasound probe to identify model proteins. Subsequently, abrin was rapidly digested using the established method, resulting in a stable and highly reproducible characteristic peptide number of 39, which can be analyzed by nanoelectrospray ionization coupled with high-resolution mass spectrometry. With the acquisition mode of full MS scan coupled with PRM, not only MS spectroscopy of total abrin peptides but also the corresponding MS/MS spectroscopy of specific abrin peptides can achieve the characteristic detection of abrin toxin and its different isoforms in less than 10 minutes, with high repeatability. This assay provides a universal platform and has great potential for the development of on-site detection and rapid mass spectrometric analysis techniques for macromolecular protein toxins and can further be applied to the integrated detection of chemical and biological agents.


Assuntos
Abrina , Enzimas Imobilizadas , Soroalbumina Bovina , Tripsina , Abrina/análise , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Tripsina/metabolismo , Tripsina/química , Soroalbumina Bovina/química , Animais , Bovinos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Proteólise
3.
Anal Bioanal Chem ; 414(2): 1095-1104, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34854959

RESUMO

Abrin is a highly toxic ribosome-inactivating protein, which could be used as a biological warfare agent and terrorist weapon, and thus needs to be detected efficiently and accurately. Affibodies are a new class of engineered affinity proteins with small size, high affinity, high stability, favorable folding and good robustness, but they have rarely played a role in biological detection. In this work, we establish a novel electrochemiluminescence (ECL) method for abrin detection with a phage display affibody as the specific probe for the first time, to our knowledge, and a portable biosensor based on a screen-printed electrode (SPE) as the testing platform. On the basis of the double antibody sandwich structure in our previous work, we used a phage display affibody instead of monoclonal antibody as a new specific labeled probe. Due to numerous signal molecules labeled on M13 phages, significant signal amplification was achieved in this experiment. Under optimized conditions, a linear dependence was observed from 0.005 to 100 ng/mL with a limit of detection (LOD) of 5 pg/mL. This assay also showed good reproducibility and specificity, and performed well in the detection of simulated samples. Considering its high sensitivity, interference resistance and convenience, this new biosensing system based on phage display affibodies and a portable ECL biosensor holds promise for in situ detection of toxins and pollutants in different environments.


Assuntos
Abrina/análise , Técnicas Biossensoriais/métodos , Técnicas de Visualização da Superfície Celular , Técnicas Eletroquímicas/métodos , Eletrodos , Limite de Detecção , Luminescência
4.
Sensors (Basel) ; 22(9)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35591151

RESUMO

Ricin and abrin are phytotoxins that can be easily used as biowarfare and bioterrorism agents. Therefore, developing a rapid detection method for both toxins is of great significance in the field of biosecurity. In this study, a novel nanoforest silicon microstructure was prepared by the micro-electro-mechanical systems (MEMS) technique; particularly, a novel microfluidic sensor chip with a capillary self-driven function and large surface area was designed. Through binding with the double antibodies sandwich immunoassay, the proposed sensor chip is confirmed to be a candidate for sensing the aforementioned toxins. Compared with conventional immunochromatographic test strips, the proposed sensor demonstrates significantly enhanced sensitivity (≤10 pg/mL for both toxins) and high specificity against the interference derived from juice or milk, while maintaining good linearity in the range of 10-6250 pg/mL. Owing to the silicon nanoforest microstructure and improved homogeneity of the color signal, short detection time (within 15 min) is evidenced for the sensor chip, which would be helpful for the rapid tracking of ricin and abrin for the field of biosecurity.


Assuntos
Abrina , Ricina , Toxinas Biológicas , Abrina/análise , Microfluídica , Silício
5.
Mikrochim Acta ; 187(2): 127, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31938848

RESUMO

Abrin is one of the most toxic phytotoxins to date, and is a potential biological warfare agent. A bio-barcode triggered isothermal amplification for fluorometric determination of abrin is described. Free abrin competes with abrin-coated magnetic microparticles (MMP) probes to bind to gold nanoparticle (AuNP) probes modified with abrin antibody and bio-barcoded DNA. Abundant barcodes are released from the MMP-AuNP complex via dithiothreitol treatment. This triggers an exponential amplification reaction (EXPAR) that is monitored by real-time fluorometry, at typical excitation/emission wavelengths of 495/520 nm. The EXPAR assay is easily operated, highly sensitive and specific. It was used to quantify abrin in spiked commercial samples. The detection limit (at S/N = 3; for n = 6) is 5.6 pg·mL-1 which is considerably lower than previous reports. This assay provides a universal sensing platform and has great potential for determination of various analytes, including small molecules, proteins, DNA, and cells. Graphical abstract Schematic representation of the bio-barcode triggered exponential amplification reaction (EXPAR) for a fluorometric competitive immunoassay for abrin. The limit of detection is 5.6 pg mL-1 with a large dynamic range from 10 pg mL-1 to 1 µg mL-1.


Assuntos
Abrina/análise , Imunoensaio/métodos , Toxinas Biológicas/análise , Abrina/imunologia , Abrina/metabolismo , Anticorpos/imunologia , Ligação Competitiva , Código de Barras de DNA Taxonômico , Fluorometria/métodos , Fluorometria/normas , Ouro , Imunoensaio/normas , Limite de Detecção , Magnetismo , Nanopartículas Metálicas/química
6.
Analyst ; 144(20): 6108-6117, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31532409

RESUMO

There is an increasing urge to investigate facile solutions for monitoring biotoxins, which are a major concern in both the food safety and the anti-terrorism fields. Current techniques, such as immunochromatographic tests (ICT), enzyme-linked immunosorbent assay (ELISA) and mass spectrometry, are still insufficient to satisfy the needs for fast, label-free, and ultra-sensitive detection. Herein, a single-molecular, label-free detection method based on atomic force microscopy was employed to solve the abovementioned problem via a photo-induced force spectrum; typically, three important biotoxins, i.e. abrin toxin (ABR), ricin toxin (RT) and Clostridium perfringens exotoxin (ETX), were used for the demonstration of single molecule detection. The photo-induced force spectrum could be successfully obtained for each of the single protein particles with molecular weights down to 30 kDa. Furthermore, principal component analysis (PCA) was applied for each protein, resulting in a standard PCA identification database. Then, individual components in a mixture of these toxin proteins were well distinguished from each other via matching with the as-built database. Using this strategy, PiFM not only could be used as a powerful tool for single protein detection, but could also be used as a potential tool in protein structural analysis.


Assuntos
ADP Ribose Transferases/análise , Abrina/análise , Toxinas Bacterianas/análise , Luz , Ricina/análise , Análise de Célula Única/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
7.
Anal Chem ; 89(21): 11719-11727, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-28984440

RESUMO

Abrin expressed by the tropical plant Abrus precatorius is highly dangerous with an estimated human lethal dose of 0.1-1 µg/kg body weight. Due to the potential misuse as a biothreat agent, abrin is in the focus of surveillance. Fast and reliable methods are therefore of great importance for early identification. Here, we have developed an innovative and rapid multiepitope immuno-mass spectrometry workflow which is capable of unambiguously differentiating abrin and its isoforms in complex matrices. Toxin-containing samples were incubated with magnetic beads coated with multiple abrin-specific antibodies, thereby concentrating and extracting all the isoforms. Using an ultrasonic bath for digestion enhancement, on-bead trypsin digestion was optimized to obtain efficient and reproducible peptide recovery in only 30 min. Improvements made to the workflow reduced total analysis time to less than 3 h. A large panel of common and isoform-specific peptides was monitored by multiplex LC-MS/MS through the parallel reaction monitoring mode on a quadrupole-Orbitrap high resolution mass spectrometer. Additionally, absolute quantification was accomplished by isotope dilution with labeled AQUA peptides. The newly established method was demonstrated as being sensitive and reproducible with quantification limits in the low ng/mL range in various food and clinical matrices for the isoforms of abrin and also the closely related, less toxic Abrus precatorius agglutinin. This method allows for the first time the rapid detection, differentiation, and simultaneous quantification of abrin and its isoforms by mass spectrometry.


Assuntos
Abrina/análise , Abrina/isolamento & purificação , Fracionamento Químico/métodos , Espectrometria de Massas em Tandem , Toxinas Biológicas/análise , Toxinas Biológicas/isolamento & purificação , Abrina/química , Abrina/metabolismo , Abrus/química , Sequência de Aminoácidos , Animais , Leite/química , Modelos Moleculares , Conformação Proteica , Proteólise , Fatores de Tempo , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo
8.
Anal Chem ; 87(2): 967-74, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25496503

RESUMO

Type 2 ribosome-inactivating protein toxins (RIP-II toxins) were enriched and purified prior to enzymatic digestion and LC-MS analysis. The enrichment of the RIP-II family of plant proteins, such as ricin, abrin, viscumin, and volkensin was based on their affinity for galactosyl moieties. A macroporous chromatographic material was modified with a galactose-terminated substituent and packed into miniaturized columns that were used in a chromatographic system to achieve up to 1000-fold toxin enrichment. The galactose affinity of the RIP-II proteins enabled their selective enrichment from water, beverages, and extracts of powder and wipe samples. The enriched fractions were digested with trypsin and RIP-II peptides were identified based on accurate mass LC-MS data. Their identities were unambiguously confirmed by LC-MS/MS product ion scans of peptides unique to each of the toxins. The LC-MS detection limit achieved for ricin target peptides was 10 amol and the corresponding detection limit for the full method was 10 fmol/mL (0.6 ng/mL). The affinity enrichment method was applied to samples from a forensic investigation into a case involving the illegal production of ricin and abrin toxins.


Assuntos
Cromatografia de Afinidade/métodos , Cromatografia Líquida/métodos , Galactose/metabolismo , Extratos Vegetais/química , Proteínas Inativadoras de Ribossomos Tipo 2/análise , Espectrometria de Massas em Tandem/métodos , Tripsina/metabolismo , Abrina/análise , Abrina/isolamento & purificação , Abrina/metabolismo , Adulto , Humanos , Masculino , Fragmentos de Peptídeos/análise , Proteínas Inativadoras de Ribossomos Tipo 2/isolamento & purificação , Proteínas Inativadoras de Ribossomos Tipo 2/metabolismo , Ricina/análise , Ricina/isolamento & purificação , Ricina/metabolismo , Toxinas Biológicas/análise , Toxinas Biológicas/isolamento & purificação , Toxinas Biológicas/metabolismo
9.
Appl Environ Microbiol ; 81(5): 1610-5, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25527549

RESUMO

Abrin is a toxic protein produced by the ornamental plant Abrus precatorius, and it is of concern as a biothreat agent. The small coextracting molecule N-methyl-l-tryptophan (l-abrine) is specific to members of the genus Abrus and thus can be used as a marker for the presence or ingestion of abrin. Current methods for the detection of abrin or l-abrine in foods and other matrices require complex sample preparation and expensive instrumentation. To develop a fast and portable method for the detection of l-abrine in beverages and foods, the Escherichia coli proteins N-methyltryptophan oxidase (MTOX) and tryptophanase were expressed and purified. The two enzymes jointly degraded l-abrine to products that included ammonia and indole, and colorimetric assays for the detection of those analytes in beverage and food samples were evaluated. An indole assay using a modified version of Ehrlich's/Kovac's reagent was more sensitive and less subject to negative interferences from components in the samples than the Berthelot ammonia assay. The two enzymes were added into food and beverage samples spiked with l-abrine, and indole was detected as a degradation product, with the visual lower detection limit being 2.5 to 10.0 µM (∼0.6 to 2.2 ppm) l-abrine in the samples tested. Results could be obtained in as little as 15 min. Sample preparation was limited to pH adjustment of some samples. Visual detection was found to be about as sensitive as detection with a spectrophotometer, especially in milk-based matrices.


Assuntos
Abrina/análise , Biomarcadores/análise , Enzimas , Proteínas de Escherichia coli , Análise de Perigos e Pontos Críticos de Controle/métodos , Alcaloides Indólicos/análise , Oxirredutases N-Desmetilantes , Triptofanase , Colorimetria/métodos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Concentração de Íons de Hidrogênio , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Sensibilidade e Especificidade , Fatores de Tempo , Triptofanase/genética , Triptofanase/metabolismo
10.
Analyst ; 140(10): 3581-6, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25854313

RESUMO

In this study we propose a simple and sensitive colorimetric aptasensor for the quantitative analysis of abrin by using catalytic AuNPs for the first time. AuNPs possess the peroxidase-like activity that can catalyse 3,3,5,5-tetramethylbenzidine (TMB) in the presence of H2O2, leading to color change of the solution. It is interesting to find that the peroxidase-like activity of AuNPs can be improved by surface activation with a target-specific aptamer. However, with a target molecule, the aptamer is desorbed from the AuNPs surface, resulting in a decrease of the catalytic abilities of AuNPs. The color change of the solution is relevant to the target concentration, and this can be judged by the naked eye and monitored by using a UV-vis spectrometer. The linear range for the current analytical system was from 0.2 nM to 17.5 nM. The corresponding limit of detection (LOD) was 0.05 nM. Some other proteins such as thrombin (Th), glucose oxidase (GOx), and bovine serum albumin (BSA) all had a negligible effect on the determination of abrin. Furthermore, several practical samples spiked with abrin were analyzed using the proposed method with excellent recoveries. This aptamer-based colorimetric biosensor is superior to other conventional methods owing to its simplicity, low cost, and high sensitivity.


Assuntos
Abrina/análise , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Colorimetria/métodos , Ouro/química , Nanopartículas Metálicas/química , Abrina/química , Animais , Aptâmeros de Nucleotídeos/genética , Sequência de Bases , Benzidinas/química , Técnicas Biossensoriais/economia , Catálise , Bovinos , Colorimetria/economia , Análise Custo-Benefício , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Limite de Detecção , Leite/química , Temperatura , Fatores de Tempo
11.
Toxins (Basel) ; 16(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39057952

RESUMO

Abrin and ricin, both type II ribosome-inactivating proteins, are toxins of significant concern and are under international restriction by the Chemical Weapons Convention and the Biological and Toxin Weapons Convention. The development of a rapid and sensitive detection method for these toxins is of the utmost importance for the first emergency response. Emerging rapid detection techniques, such as surface-enhanced Raman spectroscopy (SERS) and lateral flow assay (LFA), have garnered attention due to their high sensitivity, good selectivity, ease of operation, low cost, and disposability. In this work, we generated stable and high-affinity nanotags, via an efficient freezing method, to serve as the capture module for SERS-LFA. We then constructed a sandwich-style lateral flow test strip using a pair of glycoproteins, asialofetuin and concanavalin A, as the core affinity recognition molecules, capable of trace measurement for both abrin and ricin. The limit of detection for abrin and ricin was 0.1 and 0.3 ng/mL, respectively. This method was applied to analyze eight spiked white powder samples, one juice sample, and three actual botanic samples, aligning well with cytotoxicity assay outcomes. It demonstrated good inter-batch and intra-batch reproducibility among the test strips, and the detection could be completed within 15 min, indicating the suitability of this SERS-LFA method for the on-site rapid detection of abrin and ricin toxins.


Assuntos
Abrina , Ricina , Análise Espectral Raman , Ricina/análise , Abrina/análise , Análise Espectral Raman/métodos , Glicoproteínas/análise , Limite de Detecção , Humanos , Substâncias para a Guerra Química/análise , Substâncias para a Guerra Química/toxicidade
12.
ACS Appl Mater Interfaces ; 16(29): 37748-37756, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38990678

RESUMO

Multitarget assay has always been a hot topic in electrochemiluminescence (ECL) methods. Herein, a "on-off-on" ECL aptasensor was developed for the ultrasensitive and sequential detection of possible biological warfare agents, deoxynivalenol (DON) and abrin (ABR). As a luminophore, polymer dots (Pdots) with aggregation-induced emission exhibit high ECL efficiency in the aptasensor, i.e., the signal "on" state. The DON assays mainly depend on ECL quenching due to the efficient quenching effect between ferrocene-H2-ferrocene (Fc-H2-Fc) and Pdots, i.e., the signal "off" state. When the aptasensor is incubated with the oligonucleotide sequence S2 to replace Fc-H2-Fc, obvious ECL recovery occurs, i.e., the signal "on" state, which can be used to sequentially detect ABR. The limit of detection (LOD) for DON is 0.73 fg·mL-1 in the range of 5.0 to 50 ng·mL-1; and the LOD for ABR is ∼0.38 pg·mL-1 in the range of 1.25 pg·mL-1 to 1.25 µg·mL-1. The as-designed ECL aptasensor exhibits good stability and reproducibility, high specificity, and favorable practicality. Therefore, this work provides a new approach for assays of DON and ABR in food safety and can be used as a model to design an ultrasensitive ECL biosensor for multitarget detection.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Medições Luminescentes , Polímeros , Pontos Quânticos , Tricotecenos , Técnicas Biossensoriais/métodos , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodos , Polímeros/química , Tricotecenos/análise , Pontos Quânticos/química , Abrina/análise , Limite de Detecção , Aptâmeros de Nucleotídeos/química
13.
Se Pu ; 39(3): 260-270, 2021 Mar.
Artigo em Zh | MEDLINE | ID: mdl-34227307

RESUMO

Type Ⅱ ribosome-inactivating proteins (RIPs) are an important class of protein toxins that consist of A and B chains linked by an interchain disulfide bond. The B-chain with lectin-like activity is responsible for binding to the galactose-containing receptors on eukaryotic cell surfaces, which is essential for A-chain internalization by endocytosis. The A-chain has N-glycosidase activity that irreversibly depurinates a specific adenine from 28S ribosomal RNA (28S rRNA) and terminates protein synthesis. The synergistic effect of the A-B chain inactivates the ribosome, inhibits protein synthesis, and exhibits high cytotoxicity. Ricin and abrin that are expressed by the plants Ricinus communis and Abrus precatorius, respectively, are typical type Ⅱ RIPs. The toxicity of ricin and abrin are 385 times and 2885 times, respectively, more that of the nerve agent VX. Owing to their ease of preparation, wide availability, and potential use as a bioterrorism agent, type Ⅱ RIPs have garnered increasing attention in recent years. Ricin is listed as a prohibited substance under schedule 1A of the Chemical Weapons Convention (CWC). The occurrence of ricin-related bioterrorism incidents in recent years has promoted the development of accurate, sensitive, and rapid detection and identification technology for type Ⅱ RIPs. Significant progress has been made in the study of toxicity mechanisms and detection methods of type Ⅱ RIPs, which primarily involve qualitative and quantitative analysis methods including immunological assays, mass spectrometry analysis methods, and toxin activity detection methods based on depurination and cytotoxicity. Immunoassays generally involve the specific recognition of antigens and antibodies, which is based on oligonucleotide molecular recognition elements called aptamers. These methods are fast and highly sensitive, but for highly homologous proteins in complex samples, they provide false positive results. With the rapid development of biological mass spectrometry detection technology, techniques such as electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) are widely used in the identification of proteins. These methods not only provide accurate information on molecular weight and structure of proteins, but also demonstrate accurate quantification. Enzyme digestion combined with mass spectrometry is the predominantly used detection method. Accurate identification of protein toxins can be achieved by fingerprint analysis of enzymatically digested peptides. For analysis of protein toxins in complex samples, abundant peptide markers are obtained using a multi-enzyme digestion strategy. Targeted mass spectrometry analysis of peptide markers is used to obtain accurate qualitative and quantitative information, which effectively improves the accuracy and sensitivity of the identification of type Ⅱ RIP toxins. Although immunoassay and mass spectrometry detection methods can provide accurate identification of type Ⅱ RIPs, they cannot determine whether the toxins will retain potency. The widely used detection methods for activity analysis of type Ⅱ RIPs include depurination assay based on N-glycosidase activity and cytotoxicity assay. Both the methods provide simple, rapid, and sensitive analysis of type Ⅱ RIP toxicity, and complement other detection methods. Owing to the importance of type Ⅱ RIP toxins, the Organization for the Prohibition of Chemical Weapons (OPCW) has proposed clear technical requirements for the identification and analysis of relevant samples. We herein reviewed the structural characteristics, mechanism of action, and the development and application of type Ⅱ RIP detection methods; nearly 70 studies on type Ⅱ RIP toxins and their detection methods have been cited. In addition to the technical requirements of OPCW for the unambiguous identification of biotoxins, the trend of future development of type Ⅱ RIP-based detection technology has been explored.


Assuntos
Abrina , Proteínas Inativadoras de Ribossomos/análise , Ricina , Abrina/análise , Proteínas de Plantas/análise , Ribossomos , Ricina/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
14.
Toxins (Basel) ; 13(1)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450857

RESUMO

The toxin abrin found in the seeds of Abrus precatorius has attracted much attention regarding criminal and terroristic misuse over the past decade. Progress in analytical methods for a rapid and unambiguous identification of low abrin concentrations in complex matrices is essential. Here, we report on the development and evaluation of a MALDI-TOF mass spectrometry approach for the fast, sensitive and robust abrin isolectin identification, differentiation and quantification in complex food matrices. The method combines immunoaffinity-enrichment with specific abrin antibodies, accelerated trypsin digestion and the subsequent MALDI-TOF analysis of abrin peptides using labeled peptides for quantification purposes. Following the optimization of the workflow, common and isoform-specific peptides were detected resulting in a ~38% sequence coverage of abrin when testing ng-amounts of the toxin. The lower limit of detection was established at 40 ng/mL in milk and apple juice. Isotope-labeled versions of abundant peptides with high ionization efficiency were added. The quantitative evaluation demonstrated an assay variability at or below 22% with a linear range up to 800 ng/mL. MALDI-TOF mass spectrometry allows for a simple and fast (<5 min) analysis of abrin peptides, without a time-consuming peptide chromatographic separation, thus constituting a relevant alternative to liquid chromatography-tandem mass spectrometry.


Assuntos
Abrina/análise , Contaminação de Alimentos/análise , Imunoensaio/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Toxinas Biológicas/análise , Abrus , Marcação por Isótopo/métodos , Proteínas de Plantas/análise , Sementes/química , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem
15.
Toxins (Basel) ; 13(4)2021 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919561

RESUMO

Abrin, the toxic lectin from the rosary pea plant Abrus precatorius, has gained considerable interest in the recent past due to its potential malevolent use. However, reliable and easy-to-use assays for the detection and discrimination of abrin from related plant proteins such as Abrus precatorius agglutinin or the homologous toxin ricin from Ricinus communis are sparse. To address this gap, a panel of highly specific monoclonal antibodies was generated against abrin and the related Abrus precatorius agglutinin. These antibodies were used to establish two sandwich ELISAs to preferentially detect abrin or A. precatorius agglutinin (limit of detection 22 pg/mL for abrin; 35 pg/mL for A. precatorius agglutinin). Furthermore, an abrin-specific lateral flow assay was developed for rapid on-site detection (limit of detection ~1 ng/mL abrin). Assays were validated for complex food, environmental and clinical matrices illustrating broad applicability in different threat scenarios. Additionally, the antibodies turned out to be suitable for immuno-enrichment strategies in combination with mass spectrometry-based approaches for unambiguous identification. Finally, we were able to demonstrate for the first time how the developed assays can be applied to detect, identify and quantify abrin from a clinical sample derived from an attempted suicide case involving A. precatorius.


Assuntos
Abrina/análise , Abrus/química , Anticorpos Monoclonais/imunologia , Ensaio de Imunoadsorção Enzimática , Lectinas de Plantas/análise , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Abrina/imunologia , Abrina/intoxicação , Abrus/imunologia , Especificidade de Anticorpos , Fezes/química , Humanos , Limite de Detecção , Lectinas de Plantas/imunologia , Reprodutibilidade dos Testes , Tentativa de Suicídio
16.
Toxins (Basel) ; 13(5)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069935

RESUMO

The high toxic abrin from the plant Abrus precatorius is a type II ribosome-inactivating protein toxin with a human lethal dose of 0.1-1.0 µg/kg body weight. Due to its high toxicity and the potential misuse as a biothreat agent, it is of great importance to developing fast and reliable methods for the identification and quantification of abrin in complex matrices. Here, we report rapid and efficient acetonitrile (ACN)- and ultrasound-assisted on-bead trypsin digestion method combined with HPLC-MS/MS for the quantification of abrin isoforms in complex matrices. Specific peptides of abrin isoforms were generated by direct ACN-assisted trypsin digestion and analyzed by HPLC-HRMS. Combined with in silico digestion and BLASTp database search, fifteen marker peptides were selected for differential detection of abrin isoforms. The abrin in milk and plasma was enriched by immunomagnetic beads prepared by biotinylated anti-abrin polyclonal antibodies conjugated to streptavidin magnetic beads. The ultrasound-assisted on-bead trypsin digestion method was carried out under the condition of 10% ACN as denaturant solvent, the entire digestion time was further shortened from 90 min to 30 min. The four peptides of T3Aa,b,c,d, T12Aa, T15Ab, and T9Ac,d were chosen as quantification for total abrin, abrin-a, abrin-b, and abrin-c/d, respectively. The absolute quantification of abrin and its isoforms was accomplished by isotope dilution with labeled AQUA peptides and analyzed by HPLC-MS/MS (MRM). The developed method was fully validated in milk and plasma matrices with quantification limits in the range of 1.0-9.4 ng/mL for the isoforms of abrin. Furthermore, the developed approach was applied for the characterization of abrin isoforms from various fractions from gel filtration separation of the seeds, and measurement of abrin in the samples of biotoxin exercises organized by the Organization for the Prohibition of Chemical Weapons (OPCW). This study provided a recommended method for the differential identification of abrin isoforms, which are easily applied in international laboratories to improve the capabilities for the analysis of biotoxin samples.


Assuntos
Abrina/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Abrina/química , Abrina/isolamento & purificação , Abrus/química , Animais , Cromatografia Líquida , Simulação por Computador , Leite , Isoformas de Proteínas , Coelhos , Toxinas Biológicas , Tripsina/metabolismo , Ultrassom
17.
J Food Prot ; 71(9): 1868-74, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18810871

RESUMO

Abrin is a toxic ribosome-inactivating protein present in beans of Abrus precatorius, also known as rosary peas. The possibility that abrin could be used to adulterate food has made the development of assays for the detection of abrin a priority. Rabbit-derived polyclonal antibodies and mouse monoclonal antibodies were prepared against a mixture of abrin isozymes. The specificity and cross-reactivity of the antibodies were evaluated against a challenge library of 40 grains, nuts, legumes, and foods. An enzyme-linked immunosorbent assay (ELISA) and an electrochemiluminescence (ECL)-based assay were assembled and optimized. Polyclonal (capture) and polyclonal (detection) ELISAs, polyclonal and monoclonal ELISAs, and polyclonal and monoclonal ECL assays had limits of detection (LODs) of 0.1 to 0.5 ng/ml for abrin in buffer. The LOD for abrin dissolved into juices, dairy products, soda, chocolate drink, and condiments and analyzed with the ECL assay ranged from 0.1 to 0.5 ng/ml in the analytical sample. In contrast, the LODs for the ELISAs ranged from 0.5 to 10 ng/ml in the analytical sample.


Assuntos
Abrina/análise , Abrus/química , Ensaio de Imunoadsorção Enzimática/métodos , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Medições Luminescentes/métodos , Abrina/isolamento & purificação , Anticorpos Monoclonais , Qualidade de Produtos para o Consumidor , Reações Cruzadas , Humanos , Sensibilidade e Especificidade
18.
J Food Prot ; 71(9): 1875-83, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18810872

RESUMO

The oral and intraperitoneal (i.p.) toxicities to female BALB/c mice of ricin and abrin in phosphate-buffered saline (PBS), spring water, apple juice, and half-and-half (only oral) were examined after brief (2 h) and prolonged (11 to 13 days) storage. The ricin and abrin samples prepared in PBS had oral toxicities consistent with those previous studies, indicating oral and i.p. 50% lethal doses of > 1 mg/kg of body weight and between 2 and 20 microg/kg of body weight, respectively. The toxicities of ricin and abrin in PBS were greater than those in apple juice and water. The oral toxicity of ricin and abrin in half-and-half appeared comparable to or less than that observed for the toxins in water. Spiked samples stored for a maximum of 11 days (13 for the abrin samples) at 4 degrees C induced similar numbers of fatalities as did samples stored for only 2 h. Enzyme-linked immunosorbent assays of the samples administered by i.p. injection indicated a decrease in detectable toxin at 0.5 microg/ml.


Assuntos
Abrina/toxicidade , Bebidas/análise , Qualidade de Produtos para o Consumidor , Contaminação de Alimentos/análise , Ricina/toxicidade , Abrina/análise , Administração Oral , Animais , Bioensaio , Relação Dose-Resposta a Droga , Feminino , Humanos , Injeções Intraperitoneais , Dose Letal Mediana , Malus/química , Camundongos , Camundongos Endogâmicos BALB C , Leite/química , Distribuição Aleatória , Ricina/análise , Temperatura , Fatores de Tempo
19.
Biosens Bioelectron ; 22(11): 2456-63, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17055241

RESUMO

Abrin toxin as the target protein, belongs to class II ribosome-inactivating proteins family, has high toxicity to eukaryotic cells. Here, we firstly report the DNA aptamers, isolated by in vitro selection, recognize abrin toxin with high affinity and specificity, and have the advantage of no cross-reaction with structure-similar protein ricin toxin over antibodies. Then, a highly selective and sensitive aptamer-based abrin assay was established using a molecular light switching reagent [Ru(phen)(2)(dppz)](2+) with a limit of detection of 1 nM and a wide linear range from 1 to 400 nM with the correlation coefficient of 0.993. This assay can be successfully directly performed not only in physiological buffer but also in more complicated biological matrix, such as diluted serum.


Assuntos
Abrina/análise , Abrina/química , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Microscopia de Fluorescência/métodos , Técnica de Seleção de Aptâmeros/métodos , Aptâmeros de Nucleotídeos/análise , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/química , Ligação Proteica
20.
Toxins (Basel) ; 9(10)2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29057799

RESUMO

Abrin, one of the most highly potent toxins in the world, is derived from the plant, Abrus precatorius. Because of its high toxicity, it poses potential bioterror risks. Therefore, a need exists for new reagents and technologies that would be able to rapidly detect abrin contamination as well as lead to new therapeutics. We report here a group of abrin-specific monoclonal antibodies (mAbs) that recognize abrin A-chain, intact A-B chain toxin, and agglutinin by Western blot. Additionally, these mAbs were evaluated for their ability to serve as capture antibodies for a sandwich (capture) ELISA. All possible capture-detector pairs were evaluated and the best antibody pair identified and optimized for a capture ELISA. The capture ELISA based on this capture-detector mAb pair had a limit of detection (L.O.D) of ≈1 ng/mL measured using three independent experiments. The assay did not reveal any false positives with extracts containing other potential ribosome-inactivating proteins (RIPs). Thus, this new capture ELISA uses mAbs for both capture and detection; has no cross-reactivity against other plant RIPs; and has a sensitivity comparable to other reported capture ELISAs using polyclonal antibodies as either capture or detector.


Assuntos
Abrina/análise , Anticorpos Monoclonais/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Abrina/imunologia , Animais , Chlorocebus aethiops , Limite de Detecção , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA