Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054959

RESUMO

N-acetylglucosamine (GlcNAc) is an amino sugar that has been widely used in the nutraceutical and pharmaceutical industries. Recently, microbial production of GlcNAc has been developed. One major challenge for efficient biosynthesis of GlcNAc is to achieve appropriate carbon flux distribution between growth and production. Here, a synergistic substrate co-utilization strategy was used to address this challenge. Specifically, glycerol was utilized to support cell growth and generate glutamine and acetyl-CoA, which are amino and acetyl donors, respectively, for GlcNAc biosynthesis, while glucose was retained for GlcNAc production. Thanks to deletion of the 6-phosphofructokinase (PfkA and PfkB) and glucose-6-phosphate dehydrogenase (ZWF) genes, the main glucose catabolism pathways of Escherichia coli were blocked. The resultant mutant showed a severe defect in glucose consumption. Then, the GlcNAc production module containing glucosamine-6-phosphate synthase (GlmS*), glucosamine-6-phosphate N-acetyltransferase (GNA1*) and GlcNAc-6-phosphate phosphatase (YqaB) expression cassettes was introduced into the mutant, to drive the carbon flux from glucose to GlcNAc. Furthermore, co-utilization of glucose and glycerol was achieved by overexpression of glycerol kinase (GlpK) gene. Using the optimized fermentation medium, the final strain produced GlcNAc with a high stoichiometric yield of 0.64 mol/mol glucose. This study offers a promising strategy to address the challenge of distributing carbon flux in GlcNAc production.


Assuntos
Acetilglucosamina/biossíntese , Escherichia coli/metabolismo , Fermentação , Glucose/metabolismo , Glicerol/metabolismo , Meios de Cultura , Escherichia coli/genética , Cinética , Engenharia Metabólica , Redes e Vias Metabólicas , Mutação
2.
Biotechnol Bioeng ; 118(1): 383-396, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32965679

RESUMO

Bacillus subtilis is a preferred microbial host for the industrial production of nutraceuticals and a promising candidate for the synthesis of functional sugars, such as N-acetylglucosamine (GlcNAc). Previously, a GlcNAc-overproducer B. subtilis SFMI was constructed using glmS ribozyme dual-regulatory tool. Herein, we further engineered to enhance carbon flux from glucose towards GlcNAc synthesis. As a result, the increased flux towards GlcNAc synthesis triggered phosphosugar stress response, which caused abnormal cell growth. Unfortunately, the mechanism of phosphosugar stress response had not been elucidated in B. subtilis. To reveal the stress mechanism and overcome its negative effect in bioproduction, we performed comparative transcriptome analysis. The results indicate that cells slow glucose utilization by repression of glucose import and accelerate catabolic reactions of phosphosugar. To verify these results, we overexpressed the phosphatase YwpJ, which relieved phosphosugar stress and allowed us to identify the enzyme responsible for GlcNAc synthesis from GlcNAc 6-phosphate. In addition, the deletion of nagBB and murQ, responsible for GlcNAc precursor degradation, further improved GlcNAc synthesis. The best engineered strain, B. subtilis FMIP34, increased GlcNAc titer from 11.5 to 26.1 g/L in shake flasks and produced 87.5 g/L GlcNAc in 30-L fed-batch bioreactor. Our results not only elucidate, for the first time, the phosphosugar stress response mechanism in B. subtilis, but also demonstrate how the combination of rational metabolic engineering with novel insights into physiology and metabolism allows the construction of highly efficient microbial cell factories for the production of high-value chemicals.


Assuntos
Acetilglucosamina/biossíntese , Bacillus subtilis , Proteínas de Bactérias , Engenharia Metabólica , Acetilglucosamina/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
Genes Dev ; 27(10): 1132-45, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23666921

RESUMO

Many bacterial small RNAs (sRNAs) regulate gene expression through base-pairing with mRNAs, and it has been assumed that these sRNAs act solely by this one mechanism. Here we report that the multicellular adhesive (McaS) sRNA of Escherichia coli uniquely acts by two different mechanisms: base-pairing and protein titration. Previous work established that McaS base pairs with the mRNAs encoding master transcription regulators of curli and flagella synthesis, respectively, resulting in down-regulation and up-regulation of these important cell surface structures. In this study, we demonstrate that McaS activates synthesis of the exopolysaccharide ß-1,6 N-acetyl-D-glucosamine (PGA) by binding the global RNA-binding protein CsrA, a negative regulator of pgaA translation. The McaS RNA bears at least two CsrA-binding sequences, and inactivation of these sites compromises CsrA binding, PGA regulation, and biofilm formation. Moreover, ectopic McaS expression leads to induction of two additional CsrA-repressed genes encoding diguanylate cyclases. Collectively, our study shows that McaS is a dual-function sRNA with roles in the two major post-transcriptional regulons controlled by the RNA-binding proteins Hfq and CsrA.


Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Acetilglucosamina/biossíntese , Proteínas da Membrana Bacteriana Externa/biossíntese , Proteínas da Membrana Bacteriana Externa/genética , Pareamento de Bases , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Genes Bacterianos/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Fósforo-Oxigênio Liases/biossíntese , Fósforo-Oxigênio Liases/genética , Polissacarídeos Bacterianos/biossíntese , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regulon/genética , Proteínas Repressoras/metabolismo
4.
Hum Mol Genet ; 27(6): 1055-1066, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29346549

RESUMO

Autosomal recessive loss-of-function mutations in N-glycanase 1 (NGLY1) cause NGLY1 deficiency, the only known human disease of deglycosylation. Patients present with developmental delay, movement disorder, seizures, liver dysfunction and alacrima. NGLY1 is a conserved cytoplasmic component of the Endoplasmic Reticulum Associated Degradation (ERAD) pathway. ERAD clears misfolded proteins from the ER lumen. However, it is unclear how loss of NGLY1 function impacts ERAD and other cellular processes and results in the constellation of problems associated with NGLY1 deficiency. To understand how loss of NGLY1 contributes to disease, we developed a Drosophila model of NGLY1 deficiency. Loss of NGLY1 function resulted in developmental delay and lethality. We used RNAseq to determine which processes are misregulated in the absence of NGLY1. Transcriptome analysis showed no evidence of ER stress upon NGLY1 knockdown. However, loss of NGLY1 resulted in a strong signature of NRF1 dysfunction among downregulated genes, as evidenced by an enrichment of genes encoding proteasome components and proteins involved in oxidation-reduction. A number of transcriptome changes also suggested potential therapeutic interventions, including dysregulation of GlcNAc synthesis and upregulation of the heat shock response. We show that increasing the function of both pathways rescues lethality. Together, transcriptome analysis in a Drosophila model of NGLY1 deficiency provides insight into potential therapeutic approaches.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Acetilglucosamina/biossíntese , Animais , Deficiências do Desenvolvimento/metabolismo , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Retículo Endoplasmático/metabolismo , Degradação Associada com o Retículo Endoplasmático/genética , Glicosilação , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Convulsões/metabolismo , Análise de Sequência de RNA/métodos , Transcriptoma/genética
5.
Metab Eng ; 61: 96-105, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32502621

RESUMO

Enzyme clustering can improve catalytic efficiency by facilitating the processing of intermediates. Functional membrane microdomains (FMMs) in bacteria can provide a platform for enzyme clustering. However, the amount of FMMs at the cell basal level is still facing great challenges in multi-enzyme immobilization. Here, using the nutraceutical N-acetylglucosamine (GlcNAc) synthesis in Bacillus subtilis as a model, we engineered FMM components to improve the enzyme assembly in FMMs. First, by overexpression of the SPFH (stomatin-prohibitin-flotillin-HflC/K) domain and YisP protein, an enzyme involved in the synthesis of squalene-derived polyisoprenoid, the membrane order of cells was increased, as verified using di-4-ANEPPDHQ staining. Then, two heterologous enzymes, GlcNAc-6-phosphate N-acetyltransferase (GNA1) and haloacid dehalogenase-like phosphatases (YqaB), required for GlcNAc synthesis were assembled into FMMs, and the GlcNAc titer in flask was increased to 8.30 ± 0.57 g/L, which was almost three times that of the control strains. Notably, FMM component modification can maintain the OD600 in stationary phase and reduce cell lysis in the later stage of fermentation. These results reveal that the improved plasma membrane ordering achieved by the engineering FMM components could not only promote the enzyme assembly into FMMs, but also improve the cell fitness.


Assuntos
Acetilglucosamina/biossíntese , Bacillus subtilis , Proteínas de Bactérias , Microdomínios da Membrana , Engenharia Metabólica , Acetilglucosamina/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Microdomínios da Membrana/enzimologia , Microdomínios da Membrana/genética
6.
Microb Cell Fact ; 19(1): 181, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32933546

RESUMO

Chitinase and chitin-oligosaccaride can be used in multiple field, so it is important to develop a high-yield chitinase producing strain. Here, a recombinant Pichia pastoris with 4 copies of ChiA gene from Bacillus licheniformis and co-expression of molecular chaperon HAC1 was constructed. The amount of recombinant ChiA in the supernatant of high-cell-density fermentation reaches a maximum of 12.7 mg/mL, which is 24-fold higher than that reported in the previous study. The recombinant ChiA can hydrolyze 30% collodidal chitin with 74% conversion ratio, and GlcNAc is the most abundant hydrolysis product, followed by N, N'-diacetylchitobiose. Combined with BsNagZ, the hydrolysate of ChiA can be further transformed into GlcNAc with 88% conversion ratio. Additionally, the hydrolysate of ChiA can obviously accelerate the germination growth of rice and wheat, increasing the seedling height and root length by at least 1.6 folds within 10 days.


Assuntos
Acetilglucosamina/biossíntese , Acetilglucosaminidase/metabolismo , Bacillus licheniformis/enzimologia , Quitina/metabolismo , Quitinases/biossíntese , Reguladores de Crescimento de Plantas/biossíntese , Saccharomycetales/metabolismo , Acetilglucosamina/farmacologia , Bacillus licheniformis/genética , Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Biotecnologia , Quitinases/genética , Quitosana/farmacologia , Fermentação , Germinação/efeitos dos fármacos , Hidrólise , Chaperonas Moleculares/biossíntese , Chaperonas Moleculares/genética , Oligossacarídeos/farmacologia , Oryza/efeitos dos fármacos , Proteínas Recombinantes/biossíntese , Saccharomycetales/genética , Plântula/crescimento & desenvolvimento , Triticum/efeitos dos fármacos
7.
Biotechnol Appl Biochem ; 67(1): 123-132, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31654432

RESUMO

N-acetylglucosamine (GlcNAc) is a nitrogen-containing compound, which is widely used as a nutraceutical and pharmaceutical. In our previous work, we constructed a recombinant Bacillus subtilis strain for the biosynthesis of GlcNAc by engineering the central carbon metabolism. However, nitrogen is also required for the synthesis of GlcNAc. Hence, it is necessary to simultaneously coordinate the carbon and nitrogen metabolism to improve production of GlcNAc. In this work, we attempted to enhance GlcNAc production in B. subtilis by increasing supply of precursors N-acetylglucosamine 6-phosphate (GlcNAc6P) and glutamate. The expression of a key enzyme, GlcNAc6P N-acetyltransferase (GNA1), was enhanced by engineering the promoter and ribosome binding site to enhance the production of GlcNAc6P. Next, we examined the effect of different nitrogen sources on GlcNAc synthesis. We observed that urea can promote nitrogen assimilation for GlcNAc synthesis. The glutamate synthesis was improved by deleting the two endogenous glutamate dehydrogenase genes (rocG and gudB) and by integrating one exogenous glutamate dehydrogenase gene (gdh). This strategy enhanced the intracellular glutamate and glutamine by 69.8% and 46.9%, respectively. The synergetic engineering of central carbon and nitrogen metabolisms increased the GlcNAc titer from 14.0 to 22.2 g/L in the shaker flask. Hence, our study demonstrated the importance of carbon and nitrogen metabolism coordination in the production of nitrogen-containing compounds.


Assuntos
Acetilglucosamina/biossíntese , Bacillus subtilis/metabolismo , Carbono/metabolismo , Engenharia Metabólica , Nitrogênio/metabolismo
8.
J Biol Chem ; 293(42): 16464-16478, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30201609

RESUMO

The mechanistic target of rapamycin (mTOR) controls metabolic pathways in response to nutrients. Recently, we have shown that mTOR complex 2 (mTORC2) modulates the hexosamine biosynthetic pathway (HBP) by promoting the expression of the key enzyme of the HBP, glutamine:fructose-6-phosphate aminotransferase 1 (GFAT1). Here, we found that GFAT1 Ser-243 phosphorylation is also modulated in an mTORC2-dependent manner. In response to glutamine limitation, active mTORC2 prolongs the duration of Ser-243 phosphorylation, albeit at lower amplitude. Blocking glycolysis using 2-deoxyglucose robustly enhances Ser-243 phosphorylation, correlating with heightened mTORC2 activation, increased AMPK activity, and O-GlcNAcylation. However, when 2-deoxyglucose is combined with glutamine deprivation, GFAT1 Ser-243 phosphorylation and mTORC2 activation remain elevated, whereas AMPK activation and O-GlcNAcylation diminish. Phosphorylation at Ser-243 promotes GFAT1 expression and production of GFAT1-generated metabolites including ample production of the HBP end-product, UDP-GlcNAc, despite nutrient starvation. Hence, we propose that the mTORC2-mediated increase in GFAT1 Ser-243 phosphorylation promotes flux through the HBP to maintain production of UDP-GlcNAc when nutrients are limiting. Our findings provide insights on how the HBP is reprogrammed via mTORC2 in nutrient-addicted cancer cells.


Assuntos
Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Hexosaminas/biossíntese , Alvo Mecanístico do Complexo 2 de Rapamicina/fisiologia , Inanição/metabolismo , Acetilglucosamina/biossíntese , Animais , Vias Biossintéticas , Humanos , Fosforilação , Serina/metabolismo , Uridina Difosfato N-Acetilglicosamina/biossíntese
9.
Metab Eng ; 51: 59-69, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30343048

RESUMO

One of the primary goals of microbial metabolic engineering is to achieve high titer, yield and productivity (TYP) of engineered strains. This TYP index requires optimized carbon flux toward desired molecule with minimal by-product formation. De novo redesign of central carbon and redox metabolism holds great promise to alleviate pathway bottleneck and improve carbon and energy utilization efficiency. The engineered strain, with the overexpression or deletion of multiple genes, typically can't meet the TYP index, due to overflow of central carbon and redox metabolism that compromise the final yield, despite a high titer or productivity might be achieved. To solve this challenge, we reprogramed the central carbon and redox metabolism of Bacillus subtilis and achieved high TYP production of N-acetylglucosamine. Specifically, a "push-pull-promote" approach efficiently reduced the overflown acetyl-CoA flux and eliminated byproduct formation. Four synthetic NAD(P)-independent metabolic routes were introduced to rewire the redox metabolism to minimize energy loss. Implementation of these genetic strategies led us to obtain a B. subtilis strain with superior TYP index. GlcNAc titer in shake flask was increased from 6.6 g L-1 to 24.5 g L-1, the yield was improved from 0.115 to 0.468 g GlcNAc g-1 glucose, and the productivity was increased from 0.274 to 0.437 g L-1 h-1. These titer and yield are the highest levels ever reported and, the yield reached 98% of the theoretical pathway yield (0.478 g g-1 glucose). The synthetic redesign of carbon metabolism and redox metabolism represent a novel and general metabolic engineering strategy to improve the performance of microbial cell factories.


Assuntos
Acetilglucosamina/biossíntese , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Carbono/metabolismo , Acetilcoenzima A/metabolismo , DNA Bacteriano/genética , Técnicas de Inativação de Genes , Glucose/metabolismo , Engenharia Metabólica , NADP/metabolismo , Oxirredução , Reação em Cadeia da Polimerase , Ácido Pirúvico/metabolismo
10.
Appl Environ Microbiol ; 85(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31444197

RESUMO

Lactobacillus plantarum is a potential starter and health-promoting probiotic bacterium. Effective, precise, and diverse genome editing of Lactobacillus plantarum without introducing exogenous genes or plasmids is of great importance. In this study, CRISPR/Cas9-assisted double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) recombineering was established in L. plantarum WCFS1 to seamlessly edit the genome, including gene knockouts, insertions, and point mutations. To optimize our editing method, phosphorothioate modification was used to improve the dsDNA insertion, and adenine-specific methyltransferase was used to improve the ssDNA recombination efficiency. These strategies were applied to engineer L. plantarum WCFS1 toward producing N-acetylglucosamine (GlcNAc). nagB was truncated to eliminate the reverse reaction of fructose-6-phosphate (F6P) to glucosamine 6-phosphate (GlcN-6P). Riboswitch replacement and point mutation in glmS1 were introduced to relieve feedback repression. The resulting strain produced 797.3 mg/liter GlcNAc without introducing exogenous genes or plasmids. This strategy may contribute to the available methods for precise and diverse genetic engineering in lactic acid bacteria and boost strain engineering for more applications.IMPORTANCE CRISPR/Cas9-assisted recombineering is restricted in lactic acid bacteria because of the lack of available antibiotics and vectors. In this study, a seamless genome editing method was carried out in Lactobacillus plantarum using CRISPR/Cas9-assisted double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) recombineering, and recombination efficiency was effectively improved by endogenous adenine-specific methyltransferase overexpression. L. plantarum WCFS1 produced 797.3 mg/liter N-acetylglucosamine (GlcNAc) through reinforcement of the GlcNAc pathway, without introducing exogenous genes or plasmids. This seamless editing strategy, combined with the potential exogenous GlcNAc-producing pathway, makes this strain an attractive candidate for industrial use in the future.


Assuntos
Acetilglucosamina/biossíntese , Sistemas CRISPR-Cas , Edição de Genes/métodos , Lactobacillus plantarum/genética , Engenharia Metabólica/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA , DNA de Cadeia Simples , Técnicas de Inativação de Genes , Genes Bacterianos/genética , Engenharia Genética , Genoma Bacteriano , Redes e Vias Metabólicas/genética , Recombinação Genética
11.
Biotechnol Bioeng ; 116(1): 5-18, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30229865

RESUMO

In prokaryotic cells, 3'-5' exonucleases can attenuate messenger RNA (mRNA) directionally from the direction of the 3'-5' untranslated region (UTR), and thus improving the stability of mRNAs without influencing normal cell growth and metabolism is a key challenge for protein production and metabolic engineering. Herein, we significantly improved mRNA stability by using synthetic repetitive extragenic palindromic (REP) sequences as an effective mRNA stabilizer in two typical prokaryotic microbes, namely, Escherichia coli for the production of cyclodextrin glucosyltransferase (CGTase) and Corynebacterium glutamicum for the production of N-acetylglucosamine (GlcNAc). First, we performed a high-throughput screen to select 4 out of 380 REP sequences generated by randomizing 6 nonconservative bases in the REP sequence designed as the degenerate base "N." Secondly, the REP sequence was inserted at several different positions after the stop codon of the CGTase-encoding gene. We found that mRNA stability was improved only when the space between the REP sequence and stop codon was longer than 12 base pairs (bp). Then, by reconstructing the spacer sequence and secondary structure of the REP sequence, a REP sequence with 8 bp in a stem-loop was obtained, and the CGTase activity increased from 210.6 to 291.5 U/ml. Furthermore, when this REP sequence was added to the 3'-UTR of glucosamine-6-phosphate N-acetyltransferase 1 ( GNA1), which is a gene encoding a key enzyme GNA1 in the GlcNAc synthesis pathway, the GNA1 activity was increased from 524.8 to 890.7 U/mg, and the GlcNAc titer was increased from 4.1 to 6.0 g/L in C. glutamicum. These findings suggest that the REP sequence plays an important function as an mRNA stabilizer in prokaryotic cells to stabilize its 3'-terminus of the mRNA by blocking the processing action of the 3'-5' exonuclease. Overall, this study provides new insight for the high-efficiency overexpression of target genes and pathway fine-tuning in bacteria.


Assuntos
Corynebacterium glutamicum/metabolismo , Escherichia coli/metabolismo , Sequências Repetidas Invertidas , Engenharia Metabólica/métodos , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas Recombinantes/biossíntese , Acetilglucosamina/biossíntese , Corynebacterium glutamicum/genética , Escherichia coli/genética , Glucosiltransferases/biossíntese , Glucosiltransferases/genética , RNA Mensageiro/genética , Proteínas Recombinantes/genética
12.
World J Microbiol Biotechnol ; 35(8): 114, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332537

RESUMO

N-acetyl-D-glucosamine (GlcNAc) is an important amino-monosaccharide with great potential for biotechnological applications. It has traditionally been produced by the chemical hydrolysis of chitin, despite certain industrial and environmental drawbacks, including acidic wastes, low yields and high costs. Therefore, enzymatic production has gained attention as a promising environmentally-friendly alternative to the chemical processes. In this study we demonstrate the GlcNAc bioproduction from colloidal α-chitin using an enzyme cocktail containing endochitinases and exochitinases (chitobiosidases and N-acetyl-glucosaminidases). The enzyme cocktail was extracted after fermentation in a bioreactor by Aeromonas caviae CHZ306, a chitinolytic marine bacterium with great potential for chitinase production. Hydrolysis parameters were studied in terms of temperature, pH, enzyme and substrate concentration, and reaction time, achieving over 90% GlcNAc yield within 6 h. The use of colloidal α-chitin as substrate showed a substantial improvement of GlcNAc yields, when compared with ß-chitin and α-chitin polymorphs. Such result is directly related to a significant decrease in crystallinity and viscosity from natural α-chitin, providing the chitinase with greater accessibility to the depolymerized chains. This study provides valuable information on the GlcNAc bioproduction from chitin using an enzymatic approach, addressing the key points for its production, including the enzyme cocktail composition and the substrate structures.


Assuntos
Acetilglucosamina/biossíntese , Aeromonas caviae/enzimologia , Quitina/metabolismo , Quitinases/metabolismo , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Hidrólise , Espectroscopia de Ressonância Magnética , Peso Molecular , Temperatura , Viscosidade , Difração de Raios X
13.
J Biol Chem ; 292(23): 9637-9651, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28424265

RESUMO

GNE (UDP-GlcNAc 2-epimerase/ManNAc kinase) myopathy is a rare muscle disorder associated with aging and is related to sporadic inclusion body myositis, the most common acquired muscle disease of aging. Although the cause of sporadic inclusion body myositis is unknown, GNE myopathy is associated with mutations in GNE. GNE harbors two enzymatic activities required for biosynthesis of sialic acid in mammalian cells. Mutations to both GNE domains are linked to GNE myopathy. However, correlation between mutation-associated reductions in sialic acid production and disease severity is imperfect. To investigate other potential effects of GNE mutations, we compared sialic acid production in cell lines expressing wild type or mutant forms of GNE. Although we did not detect any differences attributable to disease-associated mutations, lectin binding and mass spectrometry analysis revealed that GNE deficiency is associated with unanticipated effects on the structure of cell-surface glycans. In addition to exhibiting low levels of sialylation, GNE-deficient cells produced distinct N-linked glycan structures with increased branching and extended poly-N-acetyllactosamine. GNE deficiency may affect levels of UDP-GlcNAc, a key metabolite in the nutrient-sensing hexosamine biosynthetic pathway, but this modest effect did not fully account for the change in N-linked glycan structure. Furthermore, GNE deficiency and glucose supplementation acted independently and additively to increase N-linked glycan branching. Notably, N-linked glycans produced by GNE-deficient cells displayed enhanced binding to galectin-1, indicating that changes in GNE activity can alter affinity of cell-surface glycoproteins for the galectin lattice. These findings suggest an unanticipated mechanism by which GNE activity might affect signaling through cell-surface receptors.


Assuntos
Acetilglucosamina/biossíntese , Membrana Celular/metabolismo , Polissacarídeos/biossíntese , Ácidos Siálicos/biossíntese , Acetilglucosamina/genética , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Linhagem Celular , Membrana Celular/genética , Humanos , Mutação , Miosite de Corpos de Inclusão/genética , Miosite de Corpos de Inclusão/metabolismo , Polissacarídeos/genética , Domínios Proteicos
14.
Metab Eng ; 49: 232-241, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30176395

RESUMO

Glucose and xylose are the two most abundant sugars in renewable lignocellulose sources; however, typically they cannot be simultaneously utilized due to carbon catabolite repression. N-acetylglucosamine (GlcNAc) is a typical nutraceutical and has many applications in the field of healthcare. Here, we have developed a gene repressor system based on xylose-induced CRISPR interference (CRISPRi) in Bacillus subtilis, aimed at downregulating the expression of three genes (zwf, pfkA, glmM) that control the major competing reactions of GlcNAc synthesis (pentose phosphate pathway (HMP), glycolysis, and peptidoglycan synthesis pathway (PSP)), with the potential to relieve glucose repression and allow the co-utilization of both glucose and xylose. Simultaneous repression of these three genes by CRISPRi improved GlcNAc titer by 13.2% to 17.4 ±â€¯0.47 g/L, with the GlcNAc yield on glucose and xylose showing an 84.1% improvement, reaching 0.42 ±â€¯0.036 g/g. In order to further engineer the synergetic utilization of glucose and xylose, a combinatorial approach was developed based on 27 arrays containing sgRNAs with different repression capacities targeting the three genes. We further optimized the temporal control of the system and found that when 15 g/L xylose was added 6 h after inoculation, the most efficient strain, BNX122, synthesized 20.5 ±â€¯0.85 g/L GlcNAc with a yield of 0.46 ±â€¯0.010 g/g glucose and xylose in shake flask culture. Finally, the GlcNAc titer and productivity in a 3-L fed-batch bioreactor reached 103.1 ±â€¯2.11 g/L and 1.17 ±â€¯0.024 g/L/h, which were 5.0-fold and 2.7-fold of that in shake flask culture, respectively. Taken together, these findings suggest that a CRISPRi-enabled regulation method provides a simple, efficient, and universal way to promote the synergetic utilization of multiple carbon sources by microbial cell factories.


Assuntos
Acetilglucosamina/biossíntese , Bacillus subtilis , Sistemas CRISPR-Cas , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Xilose/metabolismo , Acetilglucosamina/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Glucose/genética , Xilose/genética
15.
Glycoconj J ; 35(4): 345-351, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29909448

RESUMO

Bisecting GlcNAc, a branch structure in N-glycan, has unique functions and is involved in several diseases including Alzheimer's disease (AD). In this review, we provide an overview of the biosynthesis of bisecting GlcNAc and its physiological and pathological functions, particularly in the nervous system where bisecting GlcNAc is most highly expressed. The biosynthetic enzyme of bisecting GlcNAc is N-acetylglucosaminyltransferase-III (GnT-III). Overexpression, knockdown, and knockout of GnT-III have so far revealed various functions of bisecting GlcNAc, which are mediated by regulating the functions of key carrier proteins. GnT-III-deficient AD model mice showed reduced amyloid-ß (Aß) accumulation in the brain by suppressing the function of a key Aß-generating enzyme, ß-site APP-cleaving enzyme-1 (BACE1), and greatly improved AD pathology. Altered BACE1 subcellular localization in GnT-III-deficient cells, from early endosomes to lysosomes, suggests that bisecting GlcNAc serves as a trafficking tag for the movement of modified proteins to an endosomal compartment. For therapeutic application, we have employed high-throughput screening to search for GnT-III inhibitors. These findings highlight the importance of bisecting GlcNAc modification in the nervous system.


Assuntos
Acetilglucosamina/metabolismo , Encéfalo/metabolismo , Acetilglucosamina/biossíntese , Acetilglucosamina/química , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Humanos , Modelos Biológicos , Regulação para Cima
16.
FEMS Yeast Res ; 18(7)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29945236

RESUMO

Candida albicans N-acetylglucosaminylphosphatidylinositol de-N-acetylase (CaGpi12) recognises N-acetylglucosaminylphosphatidylinositol (GlcNAc-PI) from Saccharomyces cerevisiae and is able to complement ScGPI12 function. Both N- and C-terminal ends of CaGpi12 are important for its function. CaGpi12 was biochemically characterised using rough endoplasmic reticulum microsomes prepared from BWP17 strain of C. albicans. CaGpi12 is optimally active at 30°C and pH 7.5. It is a metal-dependent enzyme that is stimulated by divalent cations but shows no preference for Zn2+ unlike the mammalian homologue. It irreversibly loses activity upon incubation with a metal chelator. Two conserved motifs, HPDDE and HXXH, are both important for its function in the cell. CaGPI12 is essential for growth and viability of C. albicans. Its loss causes reduction of GlcNAc-PI de-N-acetylase activity, cell wall defects and filamentation defects. The filamentation defects could be specifically correlated to an upregulation of the HOG1 pathway.


Assuntos
Acetilesterase/metabolismo , Acetilglucosamina/análogos & derivados , Candida albicans/enzimologia , Proteínas Fúngicas/metabolismo , Fosfatidilinositóis/biossíntese , Acetilesterase/química , Acetilesterase/genética , Acetilglucosamina/biossíntese , Motivos de Aminoácidos , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Catálise , Parede Celular/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Teste de Complementação Genética , Concentração de Íons de Hidrogênio , Hifas/enzimologia , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Metais/química , Viabilidade Microbiana , Microssomos/metabolismo , Mutação , Saccharomyces cerevisiae/genética , Temperatura
17.
Appl Microbiol Biotechnol ; 102(17): 7441-7454, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29943052

RESUMO

Thermostable enzymes are a promising alternative for chemical catalysts currently used for the production of N-acetylglucosamine (GlcNAc) from chitin. In this study, a novel thermostable ß-N-acetylglucosaminidase MthNAG was cloned and purified from the thermophilic fungus Myceliophthora thermophila C1. MthNAG is a protein with a molecular weight of 71 kDa as determined with MALDI-TOF-MS. MthNAG has the highest activity at 50 °C and pH 4.5. The enzyme shows high thermostability above the optimum temperature: at 55 °C (144 h, 75% activity), 60 °C (48 h, 85% activity; half-life 82 h), and 70 °C (24 h, 33% activity; half-life 18 h). MthNAG releases GlcNAc from chitin oligosaccharides (GlcNAc)2-5, p-nitrophenol derivatives of chitin oligosaccharides (GlcNAc)1-3-pNP, and the polymeric substrates swollen chitin and soluble chitosan. The highest activity was detected towards (GlcNAc)2. MthNAG released GlcNAc from the non-reducing end of the substrate. We found that MthNAG and Chitinase Chi1 from M. thermophila C1 synergistically degraded swollen chitin and released GlcNAc in concentration of approximately 130 times higher than when only MthNAG was used. Therefore, chitinase Chi1 and MthNAG have great potential in the industrial production of GlcNAc.


Assuntos
Acetilglucosaminidase/metabolismo , Quitina/metabolismo , Microbiologia Industrial , Sordariales/enzimologia , Acetilglucosamina/biossíntese , Acetilglucosaminidase/isolamento & purificação , Quitinases/metabolismo , Concentração de Íons de Hidrogênio , Especificidade por Substrato
18.
Am J Respir Cell Mol Biol ; 56(2): 213-222, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27632412

RESUMO

N-acetylglucosamine (GlcNAc) serves as an essential structural sugar on the cell surface of organisms. For example, GlcNAc is a major component of bacterial peptidoglycan, it is an important building block of fungal cell walls, including a major constituent of chitin and mannoproteins, and it is also required for extracellular matrix generation by animal cells. Herein, we provide evidence for a uridine diphospho (UDP)-GlcNAc pathway in Pneumocystis species. Using an in silico search of the Pneumocystis jirovecii and P. murina (Pm) genomic databases, we determined the presence of at least four proteins implicated in the Saccharomyces cerevisiae UDP-GlcNAc biosynthetic pathway. These genes, termed GFA1, GNA1, AGM1, and UDP-GlcNAc pyrophosphorylase (UAP1), were either confirmed to be present in the Pneumocystis genomes by PCR, or, in the case of Pm uap1 (Pmuap1), functionally confirmed by direct enzymatic activity assay. Expression analysis using quantitative PCR of Pneumocystis pneumonia in mice demonstrated abundant expression of the Pm uap1 transcript. A GlcNAc-binding recombinant protein and a novel GlcNAc-binding immune detection method both verified the presence of GlcNAc in P. carinii (Pc) lysates. Studies of Pc cell wall fractions using high-performance gas chromatography/mass spectrometry documented the presence of GlcNAc glycosyl residues. Pc was shown to synthesize GlcNAc in vitro. The competitive UDP-GlcNAc substrate synthetic inhibitor, nikkomycin Z, suppressed incorporation of GlcNAc by Pc preparations. Finally, treatment of rats with Pneumocystis pneumonia using nikkomycin Z significantly reduced organism burdens. Taken together, these data support an important role for GlcNAc generation in the cell surface of Pneumocystis organisms.


Assuntos
Acetilglucosamina/biossíntese , Terapia de Alvo Molecular , Pneumocystis/metabolismo , Aminoglicosídeos/farmacologia , Animais , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Western Blotting , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Modelos Animais de Doenças , Imunofluorescência , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Genes Fúngicos , Lectinas/metabolismo , Camundongos , Pneumocystis/efeitos dos fármacos , Pneumocystis/genética , Pneumonia por Pneumocystis/microbiologia , Pneumonia por Pneumocystis/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
19.
Microbiology (Reading) ; 163(12): 1890-1901, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29165235

RESUMO

Bacterial O-antigens are synthesized on lipid carriers before being transferred to lipopolysaccharide core structures. Rhizobium etli CE3 lipopolysaccharide is a model for understanding O-antigen biological function. CE3 O-antigen structure and genetics are known. However, proposed enzymology for CE3 O-antigen synthesis has been examined very little in vitro, and even the sugar added to begin the synthesis is uncertain. A model based on mutagenesis studies predicts that 2-acetamido-2,6-dideoxy-d-glucose (QuiNAc) is the first O-antigen sugar and that genes wreV, wreQ and wreU direct QuiNAc synthesis and O-antigen initiation. Previously, synthesis of UDP-QuiNAc was shown to occur in vitro with a WreV orthologue (4,6-hexose dehydratase) and WreQ (4-reductase), but the WreQ catalysis in this conventional deoxyhexose-synthesis pathway was very slow. This seeming deficiency was explained in the present study after WreU transferase activity was examined in vitro. Results fit the prediction that WreU transfers sugar-1-phosphate to bactoprenyl phosphate (BpP) to initiate O-antigen synthesis. Interestingly, WreU demonstrated much higher activity using the product of the WreV catalysis [UDP-4-keto-6-deoxy-GlcNAc (UDP-KdgNAc)] as the sugar-phosphate donor than using UDP-QuiNAc. Furthermore, the WreQ catalysis with WreU-generated BpPP-KdgNAc as the substrate was orders of magnitude faster than with UDP-KdgNAc. The inferred product BpPP-QuiNAc reacted as an acceptor substrate in an in vitro assay for addition of the second O-antigen sugar, mannose. These results imply a novel pathway for 6-deoxyhexose synthesis that may be commonly utilized by bacteria when QuiNAc is the first sugar of a polysaccharide or oligosaccharide repeat unit: UDP-GlcNAc → UDP-KdgNAc → BpPP-KdgNAc → BpPP-QuiNAc.


Assuntos
Acetilglucosamina/análogos & derivados , Acetilglucosamina/química , Lipídeos/química , Antígenos O/química , Rhizobium etli/química , Acetilglucosamina/biossíntese , Acetilglucosamina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Hidroliases/genética , Hidroliases/metabolismo , Cinética , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/química , Manose/química , Modelos Biológicos , Mutação , Antígenos O/biossíntese , Oxirredutases/genética , Oxirredutases/metabolismo , Fosfatos de Poli-Isoprenil/química , Rhizobium etli/enzimologia , Rhizobium etli/genética , Rhizobium etli/metabolismo
20.
Biochem J ; 473(1): 21-30, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26467158

RESUMO

ß-Site amyloid precursor protein-cleaving enzyme-1 (BACE1) is a protease essential for amyloid-ß (Aß) production in Alzheimer's disease (AD). BACE1 protein is known to be up-regulated by oxidative stress-inducing stimuli but the mechanism for this up-regulation still needs to be clarified. We have recently found that BACE1 is modified with bisecting N-acetylglucosamine (GlcNAc) by N-acetylglucosaminyltransferase-III (GnT-III, encoded by the Mgat3 gene) and that GnT-III deficiency reduces Aß-plaque formation in the brain by accelerating lysosomal degradation of BACE1. Therefore, we hypothesized that bisecting GlcNAc would stabilize BACE1 protein on oxidative stress. In the present study, we first show that Aß deposition in the mouse brain induces oxidative stress, together with an increase in levels of BACE1 and bisecting GlcNAc. Furthermore, prooxidant treatment induces expression of BACE1 protein in wild-type mouse embryonic fibroblasts (MEFs), whereas it reduces BACE1 protein in GnT-III (Mgat3) knock-out MEFs by accelerating lysosomal degradation of BACE1. We purified BACE1 from Neuro2A cells and performed LC/ESI/MS analysis for BACE1-derived glycopeptides and mapped bisecting GlcNAc-modified sites on BACE1. Point mutations at two N-glycosylation sites (Asn(153) and Asn(223)) abolish the bisecting GlcNAc modification on BACE1. These mutations almost cancelled the enhanced BACE1 degradation seen in Mgat3(-/-) MEFs, indicating that bisecting GlcNAc on BACE1 indeed regulates its degradation. Finally, we show that traumatic brain injury-induced BACE1 up-regulation is significantly suppressed in the Mgat3(-/-) brain. These results highlight the role of bisecting GlcNAc in oxidative stress-induced BACE1 expression and offer a novel glycan-targeted strategy for suppressing Aß generation.


Assuntos
Acetilglucosamina/biossíntese , Secretases da Proteína Precursora do Amiloide/biossíntese , Ácido Aspártico Endopeptidases/biossíntese , Estresse Oxidativo/fisiologia , Acetilglucosamina/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas/genética , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA