Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 715: 149975, 2024 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-38676997

RESUMO

Many GTPases have been shown to utilize ATP too as the phosphoryl donor. Both GTP and ATP are important molecules in the cellular environments and play multiple and discrete functional role within the cells. In our present study, we showed that one of the purine metabolic enzymes Adenylosuccinate synthetase from Leishmania donovani (LdAdSS) which belongs to the BioD-superfamily of GTPases can also carry out the catalysis by hydrolysing ATP instead of its cognate substrate GTP albeit with less efficiency. Biochemical and biophysical studies indicated its ability to bind to ATP too but at a higher concentration of ATP compared to that of GTP. Sequence analysis and molecular dynamic simulations suggested that residues of the switch loop and the G4-G5 (593SAXD596) connected motif of LdAdSS plays a role in determining the nucleotide specificity. Though the crucial interaction between Asp596 and the nucleotide is broken when ATP is bound, interactions between the Ala594 and the adenine ring of ATP could still hold ATP in the GTP binding site. The results of the present study suggested that though LdAdSS is GTP specific, it still shows ATP hydrolysing activity.


Assuntos
Trifosfato de Adenosina , Adenilossuccinato Sintase , Guanosina Trifosfato , Leishmania donovani , Leishmania donovani/enzimologia , Leishmania donovani/metabolismo , Leishmania donovani/genética , Trifosfato de Adenosina/metabolismo , Guanosina Trifosfato/metabolismo , Adenilossuccinato Sintase/metabolismo , Adenilossuccinato Sintase/química , Especificidade por Substrato , Simulação de Dinâmica Molecular , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/química
2.
J Enzyme Inhib Med Chem ; 39(1): 2372734, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39149761

RESUMO

The current therapies against gastric pathogen Helicobacter pylori are ineffective in over 20% of patients. Enzymes belonging to the purine salvage pathway are considered as novel drug targets in this pathogen. Therefore, the main aim of the current study was to determine the antibacterial activity of pyridoxal 5'-phosphate (PLP), an active form of vitamin B6, against reference and clinical strains of H. pylori. Using a broad set of microbiological, physicochemical (UV absorption, LC-MS, X-ray analysis) and in silico experiments, we were able to prove that PLP inhibits adenylosuccinate synthetase (AdSS) from H. pylori by the competition with GTP (IC50eq ∼30 nM). This behaviour was attributed to formation of a Schiff base with a lysine residue (a covalent bond with Lys322 in the GTP binding site of AdSS) and was potentiated by the presence of vitamin C. This antibacterial activity of PLP gives hope for its future use against H. pylori.


Assuntos
Adenilossuccinato Sintase , Antibacterianos , Relação Dose-Resposta a Droga , Helicobacter pylori , Testes de Sensibilidade Microbiana , Vitamina B 6 , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/enzimologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Vitamina B 6/farmacologia , Vitamina B 6/química , Vitamina B 6/síntese química , Relação Estrutura-Atividade , Adenilossuccinato Sintase/metabolismo , Adenilossuccinato Sintase/química , Adenilossuccinato Sintase/antagonistas & inibidores , Adenilossuccinato Sintase/farmacologia , Estrutura Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Farmacorresistência Bacteriana/efeitos dos fármacos , Fosfato de Piridoxal/farmacologia , Fosfato de Piridoxal/química , Modelos Moleculares
3.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39062851

RESUMO

The requirement for fast and dependable protein purification methods is constant, either for functional studies of natural proteins or for the production of biotechnological protein products. The original procedure has to be formulated for each individual protein, and this demanding task was significantly simplified by the introduction of affinity tags. Helicobacter pylori adenylosuccinate synthetase (AdSS) is present in solution in a dynamic equilibrium of monomers and biologically active homodimers. The addition of the His6-tag on the C-terminus (C-His-AdSS) was proven to have a negligible effect on the characteristics of this enzyme. This paper shows that the same enzyme with the His6-tag fused on its N-terminus (N-His-AdSS) has a high tendency to precipitate. Circular dichroism and X-ray diffraction studies do not detect any structural change that could explain this propensity. However, the dynamic light scattering, differential scanning fluorimetry, and analytical ultracentrifugation measurements indicate that the monomer of this construct is prone to aggregation, which shifts the equilibrium towards the insoluble precipitant. In agreement, enzyme kinetics measurements showed reduced enzyme activity, but preserved affinity for the substrates, in comparison with the wild-type and C-His-AdSS. The presented results reinforce the notion that testing the influence of the tag on protein properties should not be overlooked.


Assuntos
Adenilossuccinato Sintase , Helicobacter pylori , Histidina , Helicobacter pylori/enzimologia , Histidina/metabolismo , Histidina/química , Adenilossuccinato Sintase/metabolismo , Adenilossuccinato Sintase/química , Adenilossuccinato Sintase/genética , Cinética , Dicroísmo Circular , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Difração de Raios X
4.
Biochemistry ; 55(17): 2491-9, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27050719

RESUMO

In enzymes that conduct complex reactions involving several substrates and chemical transformations, the active site must reorganize at each step to complement the transition state of that chemical step. Adenylosuccinate synthetase (ADSS) utilizes a molecule each of guanosine 5'-monophosphate (GTP) and aspartate to convert inosine 5'-monophosphate (IMP) into succinyl adenosine 5'-monophosphate (sAMP) through several kinetic intermediates. Here we followed catalysis by ADSS through high-resolution vibrational spectral fingerprints of each substrate and intermediate involved in the forward reaction. Vibrational spectra show differential ligand distortion at each step of catalysis, and band positions of substrates are influenced by binding of cosubstrates. We found that the bound IMP is distorted toward its N1-deprotonated form even in the absence of any other ligands. Several specific interactions between GTP and active-site amino acid residues result in large Raman shifts and contribute substantially to intrinsic binding energy. When both IMP and GTP are simultaneously bound to ADSS, IMP is converted into an intermediate 6-phosphoryl inosine 5'-monophosphate (6-pIMP). The 6-pIMP·ADSS complex was found to be stable upon binding of the third ligand, hadacidin (HDA), an analogue of l-aspartate. We find that in the absence of HDA, 6-pIMP is quickly released from ADSS, is unstable in solution, and converts back into IMP. HDA allosterically stabilizes ADSS through local conformational rearrangements. We captured this complex and determined the spectra and structure of 6-pIMP in its enzyme-bound state. These results provide important insights into the exquisite tuning of active-site interactions with changing substrate at each kinetic step of catalysis.


Assuntos
Monofosfato de Adenosina/metabolismo , Adenilossuccinato Sintase/química , Adenilossuccinato Sintase/metabolismo , Ácido Aspártico/metabolismo , Glicina/análogos & derivados , Guanosina Trifosfato/metabolismo , Inosina Monofosfato/metabolismo , Methanocaldococcus/enzimologia , Sítios de Ligação , Catálise , Domínio Catalítico , Cristalografia por Raios X , Glicina/metabolismo , Cinética , Ligantes , Modelos Moleculares , Conformação Proteica
5.
Biochim Biophys Acta ; 1824(4): 589-97, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22289630

RESUMO

Plasmodium falciparum adenylosuccinate synthetase, a homodimeric enzyme, contains 10 cysteine residues per subunit. Among these, Cys250, Cys328 and Cys368 lie at the dimer interface and are not conserved across organisms. PfAdSS has a positively charged interface with the crystal structure showing additional electron density around Cys328 and Cys368. Biochemical characterization of site directed mutants followed by equilibrium unfolding studies permits elucidation of the role of interface cysteines and positively charged interface in dimer stability. Mutation of interface cysteines, Cys328 and Cys368 to serine, perturbed the monomer-dimer equilibrium in the protein with a small population of monomer being evident in the double mutant. Introduction of negative charge in the form of C328D mutation resulted in stabilization of protein dimer as evident by size exclusion chromatography at high ionic strength buffer and equilibrium unfolding in the presence of urea. These observations suggest that cysteines at the dimer interface of PfAdSS may indeed be charged and exist as thiolate anion.


Assuntos
Adenilossuccinato Sintase/genética , Cisteína/genética , Mutagênese Sítio-Dirigida , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/genética , Adenilossuccinato Sintase/química , Adenilossuccinato Sintase/isolamento & purificação , Substituição de Aminoácidos , Cromatografia em Gel , Cobre/química , Cisteína/química , Estabilidade Enzimática , Ácido Iodoacético/química , Cinética , Manganês/química , Modelos Moleculares , Desnaturação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/isolamento & purificação , Triptofano/química , Ureia/química
6.
Artigo em Inglês | MEDLINE | ID: mdl-23989157

RESUMO

With increasingly large immunocompromised populations around the world, opportunistic fungal pathogens such as Cryptococcus neoformans are a growing cause of morbidity and mortality. To combat the paucity of antifungal compounds, new drug targets must be investigated. Adenylosuccinate synthetase is a crucial enzyme in the ATP de novo biosynthetic pathway, catalyzing the formation of adenylosuccinate from inosine monophosphate and aspartate. Although the enzyme is ubiquitous and well characterized in other kingdoms, no crystallographic studies on the fungal protein have been performed. Presented here are the expression, purification, crystallization and initial crystallographic analyses of cryptococcal adenylosuccinate synthetase. The crystals had the symmetry of space group P2(1)2(1)2(1) and diffracted to 2.2 Šresolution.


Assuntos
Adenilossuccinato Sintase/química , Cryptococcus neoformans/química , Proteínas Fúngicas/química , Adenilossuccinato Sintase/genética , Adenilossuccinato Sintase/isolamento & purificação , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/genética , Cristalografia por Raios X , Escherichia coli/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Expressão Gênica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
7.
Artigo em Inglês | MEDLINE | ID: mdl-23989158

RESUMO

Alcohol dehydrogenases (ADHs) are a group of dehydrogenase enzymes that facilitate the interconversion between alcohols and aldehydes or ketones with the reduction of NAD(+) to NADH. In bacteria, some alcohol dehydrogenases catalyze the opposite reaction as part of fermentation to ensure a constant supply of NAD(+). The adh gene from Kangiella koreensis was cloned and the protein (KkADH) was expressed, purified and crystallized. A KkADH crystal diffracted to 2.5 Šresolution and belonged to the monoclinic space group P2(1), with unit-cell parameters a = 94.1, b = 80.9, c = 115.6 Å, ß = 111.9°. Four monomers were present in the asymmetric unit, with a corresponding VM of 2.55 Å(3) Da(-1) and a solvent content of 51.8%.


Assuntos
Adenilossuccinato Sintase/química , Proteínas de Bactérias/química , Oceanospirillaceae/química , Adenilossuccinato Sintase/genética , Adenilossuccinato Sintase/isolamento & purificação , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Cristalografia por Raios X , Escherichia coli/genética , Expressão Gênica , Dados de Sequência Molecular , Oceanospirillaceae/enzimologia , Oceanospirillaceae/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
8.
J Gen Appl Microbiol ; 69(2): 109-116, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37302828

RESUMO

Adenylosuccinate synthetase (PurA) is an enzyme responsible for the nitrogen addition to inosine monophosphate (IMP) by aspartate in the purine nucleotide biosynthetic pathway. And after which the fumarate is removed by adenylosuccinate lyase (PurB), leaving an amino group. There are two other enzymes that catalyze aspartate addition reactions similar to PurA, one in the purine nucleotide biosynthetic pathway (SAICAR synthetase, PurC) and the other in the arginine biosynthetic pathway (argininosuccinate sythetase, ArgG). To investigate the origin of these nitrogen-adding enzymes, PurA from Thermus thermophilus HB8 (TtPurA) was purified and crystallized, and crystal structure complexed with IMP was determined with a resolution of 2.10 Å. TtPurA has a homodimeric structure, and at the dimer interface, Arg135 of one subunit interacts with the IMP bound to the other subunit, suggesting that IMP binding contributes to dimer stability. The different conformation of His41 side chain in TtPurA and EcPurA suggests that side chain flipping of the His41 might play an important role in orienting γ-phosphate of GTP close to oxygen at position 6 of IMP, to receive the nucleophilic attack. Moreover, through comparison of the three-dimensional structures and active sites of PurA, PurC, and ArgG, it was suggested that the active sites of PurA and PurC converged to similar structures for performing similar reactions.


Assuntos
Adenilossuccinato Sintase , Ácido Aspártico , Adenilossuccinato Sintase/genética , Adenilossuccinato Sintase/química , Adenilossuccinato Sintase/metabolismo , Ácido Aspártico/metabolismo , Vias Biossintéticas , Nucleotídeos de Purina/metabolismo
9.
Int J Biol Macromol ; 226: 37-50, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36470440

RESUMO

Purine nucleotide synthesis is realised only through the salvage pathway in pathogenic bacterium Helicobacter pylori. Therefore, the enzymes of this pathway, among them also the adenylosuccinate synthetase (AdSS), present potential new drug targets. This paper describes characterization of His6-tagged AdSS from H. pylori. Thorough analysis of 3D-structures of fully ligated AdSS (in a complex with guanosine diphosphate, 6-phosphoryl-inosine monophosphate, hadacidin and Mg2+) and AdSS in a complex with inosine monophosphate (IMP) only, enabled identification of active site interactions crucial for ligand binding and enzyme activity. Combination of experimental and molecular dynamics (MD) simulations data, particularly emphasized the importance of hydrogen bond Arg135-IMP for enzyme dimerization and active site formation. The synergistic effect of substrates (IMP and guanosine triphosphate) binding was suggested by MD simulations. Several flexible elements of the structure (loops) are stabilized by the presence of IMP alone, however loops comprising residues 287-293 and 40-44 occupy different positions in two solved H. pylori AdSS structures. MD simulations discovered the hydrogen bond network that stabilizes the closed conformation of the residues 40-50 loop, only in the presence of IMP. Presented findings provide a solid basis for the design of new AdSS inhibitors as potential drugs against H. pylori.


Assuntos
Helicobacter pylori , Domínio Catalítico , Sítios de Ligação , Helicobacter pylori/metabolismo , Adenilossuccinato Sintase/química , Adenilossuccinato Sintase/metabolismo , Inosina Monofosfato/química , Inosina Monofosfato/metabolismo , Conformação Proteica , Simulação de Dinâmica Molecular
10.
Biochim Biophys Acta ; 1814(5): 630-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21440684

RESUMO

Enzymes from thermophiles are poorly active at temperatures at which their mesophilic homologs exhibit high activity and attain corresponding active states at high temperatures. In this study, comparative molecular dynamics (MD) simulations, supplemented by normal mode analysis, have been performed on an enzyme Adenylosuccinate synthetase (AdSS) from E. coli (mesophilic) and P. horikoshii (thermophilic) systems to understand the effects of loop dynamics on thermal stability of AdSS. In mesophilic AdSS, both ligand binding and catalysis are facilitated through the coordinated movement of five loops on the protein. The simulation results suggest that thermophilic P. horikoshii preserves structure and catalytic function at high temperatures by using the movement of only a subset of loops (two out of five) for ligand binding and catalysis unlike its mesophilic counterpart in E. coli. The pre-arrangement of the catalytic residues in P. horikoshii is well-preserved and salt bridges remain stable at high temperature (363K). The simulations suggest a general mechanism (including pre-arrangement of catalytic residues, increased polar residue content, stable salt bridges, increased rigidity, and fewer loop movements) used by thermophilic enzymes to preserve structure and be catalytically active at elevated temperatures.


Assuntos
Adenilossuccinato Sintase/química , Adenilossuccinato Sintase/metabolismo , Simulação de Dinâmica Molecular , Estabilidade Enzimática , Escherichia coli/enzimologia , Estrutura Secundária de Proteína , Pyrococcus horikoshii/enzimologia , Temperatura
11.
Biochim Biophys Acta ; 1804(10): 1996-2002, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20654742

RESUMO

Adenylosuccinate synthetase catalyzes a reversible reaction utilizing IMP, GTP and aspartate in the presence of Mg²+ to form adenylosuccinate, GDP and inorganic phosphate. Comparison of similarly liganded complexes of Plasmodium falciparum, mouse and Escherichia coli AdSS reveals H-bonding interactions involving nonconserved catalytic loop residues (Asn429, Lys62 and Thr307) that are unique to the parasite enzyme. Site-directed mutagenesis has been used to examine the role of these interactions in catalysis and structural organization of P. falciparum adenylosuccinate synthetase (PfAdSS). Mutation of Asn429 to Val, Lys62 to Leu and Thr307 to Val resulted in an increase in K(m) values for IMP, GTP and aspartate, respectively along with a 5 fold drop in the k(cat) value for N429V mutant suggesting the role of these residues in ligand binding and/or catalysis. We have earlier shown that the glycolytic intermediate, fructose 1,6 bisphosphate, which is an inhibitor of mammalian AdSS is an activator of the parasite enzyme. Enzyme kinetics along with molecular docking suggests a mechanism for activation wherein F16BP seems to be binding to the Asp loop and inducing a conformation that facilitates aspartate binding to the enzyme active site. Like in other AdSS, a conserved arginine residue (Arg155) is involved in dimer crosstalk and interacts with IMP in the active site of the symmetry related subunit of PfAdSS. We also report on the biochemical characterization of the arginine mutants (R155L, R155K and R155A) which suggests that unlike in E. coli AdSS, Arg155 in PfAdSS influences both ligand binding and catalysis.


Assuntos
Adenilossuccinato Sintase/metabolismo , Proteínas Mutantes/metabolismo , Plasmodium falciparum/enzimologia , Adenilossuccinato Sintase/química , Adenilossuccinato Sintase/genética , Animais , Arginina/química , Arginina/genética , Arginina/metabolismo , Sítios de Ligação , Catálise , Domínio Catalítico , Ativação Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Conformação Proteica
12.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 12): 1551-5, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22139164

RESUMO

Adenylosuccinate synthetase (AdSS) is a ubiquitous enzyme that catalyzes the first committed step in the conversion of inosine monophosphate (IMP) to adenosine monophosphate (AMP) in the purine-biosynthetic pathway. Although AdSS from the vast majority of organisms is 430-457 amino acids in length, AdSS sequences isolated from thermophilic archaea are 90-120 amino acids shorter. In this study, crystallographic studies of a short AdSS sequence from Pyrococcus horikoshii OT3 (PhAdSS) were performed in order to reveal the unusual structure of AdSS from thermophilic archaea. Crystals of PhAdSS were obtained by the microbatch-under-oil method and X-ray diffraction data were collected to 2.50 Å resolution. The crystal belonged to the trigonal space group P3(2)12, with unit-cell parameters a = b = 57.2, c = 107.9 Å. There was one molecule per asymmetric unit, giving a Matthews coefficient of 2.17 Å(3) Da(-1) and an approximate solvent content of 43%. In contrast, the results of native polyacrylamide gel electrophoresis and analytical ultracentrifugation showed that the recombinant PhAdSS formed a dimer in solution.


Assuntos
Adenilossuccinato Sintase/química , Pyrococcus horikoshii/enzimologia , Adenilossuccinato Sintase/isolamento & purificação , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Dados de Sequência Molecular , Alinhamento de Sequência
13.
Science ; 372(6541): 516-520, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33926955

RESUMO

Cells have two purine pathways that synthesize adenine and guanine ribonucleotides from phosphoribose via inosylate. A chemical hybrid between adenine and guanine, 2-aminoadenine (Z), replaces adenine in the DNA of the cyanobacterial virus S-2L. We show that S-2L and Vibrio phage PhiVC8 encode a third purine pathway catalyzed by PurZ, a distant paralog of succinoadenylate synthase (PurA), the enzyme condensing aspartate and inosylate in the adenine pathway. PurZ condenses aspartate with deoxyguanylate into dSMP (N6-succino-2-amino-2'-deoxyadenylate), which undergoes defumarylation and phosphorylation to give dZTP (2-amino-2'-deoxyadenosine-5'-triphosphate), a substrate for the phage DNA polymerase. Crystallography and phylogenetics analyses indicate a close relationship between phage PurZ and archaeal PurA enzymes. Our work elucidates the biocatalytic innovation that remodeled a DNA building block beyond canonical molecular biology.


Assuntos
2-Aminopurina/análogos & derivados , Adenilossuccinato Sintase/química , Bacteriófagos/química , Bacteriófagos/enzimologia , Vias Biossintéticas , DNA Viral/química , Proteínas não Estruturais Virais/química , 2-Aminopurina/química , 2-Aminopurina/metabolismo , Adenilossuccinato Sintase/classificação , Adenilossuccinato Sintase/genética , Bacteriófagos/genética , Cristalografia por Raios X , DNA Viral/genética , Genoma Viral , Filogenia , Proteínas não Estruturais Virais/classificação , Proteínas não Estruturais Virais/genética
14.
Science ; 372(6541): 512-516, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33926954

RESUMO

DNA modifications vary in form and function but generally do not alter Watson-Crick base pairing. Diaminopurine (Z) is an exception because it completely replaces adenine and forms three hydrogen bonds with thymine in cyanophage S-2L genomic DNA. However, the biosynthesis, prevalence, and importance of Z genomes remain unexplored. Here, we report a multienzyme system that supports Z-genome synthesis. We identified dozens of globally widespread phages harboring such enzymes, and we further verified the Z genome in one of these phages, Acinetobacter phage SH-Ab 15497, by using liquid chromatography with ultraviolet and mass spectrometry. The Z genome endows phages with evolutionary advantages for evading the attack of host restriction enzymes, and the characterization of its biosynthetic pathway enables Z-DNA production on a large scale for a diverse range of applications.


Assuntos
2-Aminopurina/metabolismo , Adenilossuccinato Sintase/química , Bacteriófagos/química , Bacteriófagos/enzimologia , DNA Viral/química , DNA Forma Z/química , Proteínas não Estruturais Virais/química , 2-Aminopurina/química , Adenilossuccinato Liase/química , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Adenilossuccinato Sintase/genética , Adenilossuccinato Sintase/metabolismo , Bacteriófagos/genética , Pareamento de Bases , Vias Biossintéticas , DNA Viral/biossíntese , DNA Viral/genética , DNA Forma Z/biossíntese , DNA Forma Z/genética , Genoma Viral , Ligação de Hidrogênio , Domínios Proteicos , Especificidade por Substrato , Timina/química , Timina/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
15.
Nat Commun ; 12(1): 4710, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354070

RESUMO

Cyanophage S-2L is known to profoundly alter the biophysical properties of its DNA by replacing all adenines (A) with 2-aminoadenines (Z), which still pair with thymines but with a triple hydrogen bond. It was recently demonstrated that a homologue of adenylosuccinate synthetase (PurZ) and a dATP triphosphohydrolase (DatZ) are two important pieces of the metabolism of 2-aminoadenine, participating in the synthesis of ZTGC-DNA. Here, we determine that S-2L PurZ can use either dATP or ATP as a source of energy, thereby also depleting the pool of nucleotides in dATP. Furthermore, we identify a conserved gene (mazZ) located between purZ and datZ genes in S-2L and related phage genomes. We show that it encodes a (d)GTP-specific diphosphohydrolase, thereby providing the substrate of PurZ in the 2-aminoadenine synthesis pathway. High-resolution crystal structures of S-2L PurZ and MazZ with their respective substrates provide a rationale for their specificities. The Z-cluster made of these three genes - datZ, mazZ and purZ - was expressed in E. coli, resulting in a successful incorporation of 2-aminoadenine in the bacterial chromosomal and plasmidic DNA. This work opens the possibility to study synthetic organisms containing ZTGC-DNA.


Assuntos
DNA Bacteriano/genética , Genes Virais , Siphoviridae/genética , 2-Aminopurina/análogos & derivados , 2-Aminopurina/metabolismo , Adenilossuccinato Sintase/química , Adenilossuccinato Sintase/genética , Adenilossuccinato Sintase/metabolismo , Bacteriófagos , Pareamento de Bases , Cristalografia por Raios X , DNA Bacteriano/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Desoxiadenosinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Viral , Redes e Vias Metabólicas , Modelos Moleculares , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Podoviridae/classificação , Podoviridae/genética , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Siphoviridae/classificação , Eletricidade Estática , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
16.
Neurology ; 95(11): e1500-e1511, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32646962

RESUMO

OBJECTIVE: To elucidate the prevalence of Japanese ADSSL1 myopathy and determine the clinicopathologic features of the disease. METHODS: We searched for ADSSL1 variants in myopathic patients from January 1978 to March 2019 in our repository and assessed the clinicopathologic features of patients with variants. RESULTS: We identified 63 patients from 59 families with biallelic variants of ADSSL1. Among the 7 distinct variants identified, c.781G>A and c.919delA accounted for 53.2% and 40.5% of alleles, respectively, suggesting the presence of common founders, while the other 5 were novel. Most of the identified patients displayed more variable muscle symptoms, including symptoms in the proximal and/or distal leg muscles, tongue, masseter, diaphragm, and paraspinal muscles, in adolescence than previously reported patients. Dysphagia with masticatory dysfunction developed in 26 out of 63 patients; hypertrophic cardiomyopathy developed in 12 out of 48 patients; and restrictive ventilatory insufficiency developed in 26 out of 34 patients in later stages. Radiologically, fat infiltration into the periphery of vastus lateralis, gastrocnemius, and soleus muscles was observed in all patients. Pathologically, nemaline bodies in addition to increased lipid droplets and myofibrillar disorganization were commonly observed in all patients, suggesting that the disease may be classified as nemaline myopathy. This finding revealed that ADSSL1 myopathy is the most frequent among all genetically diagnosable nemaline myopathies in our center. CONCLUSIONS: ADSSL1 myopathy is characterized by more variable manifestations than previously reported. It is the most common among all genetically diagnosable nemaline myopathies in our center, although mildly increased lipid droplets are also constantly observed features.


Assuntos
Adenilossuccinato Sintase/genética , Variação Genética/genética , Miopatias da Nemalina/diagnóstico por imagem , Miopatias da Nemalina/genética , Adenilossuccinato Sintase/química , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Japão/epidemiologia , Masculino , Pessoa de Meia-Idade , Miopatias da Nemalina/epidemiologia , Estrutura Secundária de Proteína , Adulto Jovem
17.
Biochim Biophys Acta ; 1784(12): 2019-28, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18786660

RESUMO

Two important attributes of enzymes produced by thermophilic organisms are thermophilicity and structural stability. This manuscript discusses the characterization of these two aspects in adenylosuccinate synthetase from the thermophilic archaeon, Methanocaldococcus jannaschii. Adenylosuccinate synthetase catalyzes the formation of succinyl-AMP from IMP and aspartate with the simultaneous conversion of GTP to GDP. Temperature dependence of M. jannaschii AdSS (MjAdSS) catalysis exhibited a biphasic Arrhenius Plot with a transition at 40 degrees C. Pre-steady-state kinetics as a function of temperature indicated a change in rate determining step of the reaction across the inflection point. Slow release of products from the enzyme active site probably accounts for the thermophilicity of MjAdSS. Thermal unfolding of MjAdSS exhibited a T(m) of 85 degrees C, with the process being only partially reversible. Stability of MjAdSS assessed by equilibrium unfolding revealed the robustness of the secondary and tertiary structure of the enzyme which remained intact even at 8 M concentration of urea. Guanidinium chloride induced denaturation of MjAdSS permitted estimation of thermodynamic parameters. The unfolding profiles could be described as a composite of atleast two distinct transitions, with a stable intermediate in the unfolding pathway.


Assuntos
Adenilossuccinato Sintase/química , Methanococcaceae/enzimologia , Dobramento de Proteína , Estabilidade Enzimática/fisiologia , Guanidina/química , Temperatura Alta , Cinética , Desnaturação Proteica , Relação Estrutura-Atividade , Ureia/química
18.
Structure ; 6(4): 421-7, 1998 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-9562553

RESUMO

BACKGROUND: Most soluble proteins are active as low-number oligomers. Statistical surveys of oligomeric proteins have defined the roles of hydrophobicity and complementarity in the stability of protein interfaces, but tend to average structural features over a diverse set of protein-protein interfaces, blurring information on how individual interfaces are stabilized. RESULTS: We report a visual survey of 136 homodimeric proteins from the Brookhaven Protein Data Bank, with images that highlight the major structural features of each protein-protein interaction surface. Nearly all of these proteins have interfaces formed between two globular subunits. Surprisingly, the pattern of hydrophilicity over the surface of these interfaces is quite variable. Approximately one-third of the interfaces show a recognizable hydrophobic core, with a single large, contiguous, hydrophobic patch surrounded by a ring of intersubunit polar interactions. The remaining two-thirds of the proteins show a varied mixture of small hydrophobic patches, polar interactions and water molecules scattered over the entire interfacial area. Ten proteins in the survey have intertwined interfaces formed by extensive interdigitation of the two subunit chains. These interfaces are very hydrophobic and are associated with proteins that require both stability and internal symmetry. CONCLUSIONS: The archetypal protein interface, with a defined hydrophobic core, is present in only a minority of the surveyed homodimeric proteins. Most homodimeric proteins are stabilized by a combination of small hydrophobic patches, polar interactions and a considerable number of bridging water molecules. The presence or absence of a hydrophobic core within these interfaces does not correlate with specific protein functions.


Assuntos
Proteínas/química , Adenilossuccinato Sintase/química , Proteína de Bence Jones/química , Citrato (si)-Sintase/química , Bases de Dados Factuais , Dimerização , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Conformação Proteica , Dobramento de Proteína , Superóxido Dismutase/química , Água/química
19.
ACS Infect Dis ; 2(9): 651-663, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27759389

RESUMO

Opportunistic fungal pathogens such as Cryptococcus neoformans are a growing cause of morbidity and mortality among immunocompromised populations worldwide. To address the current paucity of antifungal therapeutic agents, further research into fungal-specific drug targets is required. Adenylosuccinate synthetase (AdSS) is a crucial enzyme in the adeosine triphosphate (ATP) biosynthetic pathway, catalyzing the formation of adenylosuccinate from inosine monophosphate and aspartate. We have investigated the potential of this enzyme as an antifungal drug target, finding that loss of function results in adenine auxotrophy in C. neoformans, as well as complete loss of virulence in a murine model. Cryptococcal AdSS was expressed and purified in Escherichia coli and the enzyme's crystal structure determined, the first example of a structure of this enzyme from fungi. Together with enzyme kinetic studies, this structural information enabled comparison of the fungal enzyme with the human orthologue and revealed species-specific differences potentially exploitable via rational drug design. These results validate AdSS as a promising antifungal drug target and lay a foundation for future in silico and in vitro screens for novel antifungal compounds.


Assuntos
Trifosfato de Adenosina/biossíntese , Criptococose/microbiologia , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/patogenicidade , Adenilossuccinato Sintase/química , Adenilossuccinato Sintase/genética , Adenilossuccinato Sintase/metabolismo , Animais , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/genética , Feminino , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Virulência
20.
J Mol Biol ; 254(3): 431-46, 1995 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-7490761

RESUMO

Crystal structures of unligated adenylosuccinate synthetase from Escherichia coli in space groups P2(1) and P2(1)2(1)2(1) have been refined to R-factors of 0.199 and 0.206 against data to 2.0 and 2.5 A, respectively. Bond lengths and angles deviate from expected values by 0.011 A and 1.7 degrees for the P2(1) crystal form and by 0.015 A and 1.7 degrees for the P2(1)2(1)2(1) crystal form. The fold of the polypeptide chain is dominated by a central beta-sheet, which is composed of nine parallel strands and a tenth antiparallel strand. Extending off from this central beta-sheet are four subdomains. The four subdomains contribute loops of residues that are disordered or have high thermal parameters. At least three of these loops (residues 42 to 52, 120 to 131 and 298 to 304) contribute essential residues to the putative active site of the synthetase. In the absence of ligands, much of the active site of the synthetase exists in an ill-defined conformational state. Two, nearly independent regions contribute residues to the interface between polypeptide chains of the synthetase dimer. A pair of helices (H4 and H5) interact with their symmetry-equivalent mates by way of residues that are not conserved amongst the known sequences of the synthetase. The second interface region involves conserved residues belonging to structural elements that connect strands of the central beta-sheet. Residues putatively involved in the binding of IMP lie at or near the interface between polypeptide chains of the dimer. Of the four sequence elements putatively common to all GTP hydrolases, the synthetase has only the guanine recognition element and a glycine-rich loop (P-loop). Although the base recognition element is essentially identical with those of the p21 ras and G alpha proteins, the P-loop of the synthetase is extended in size relative to the P-loops of other GTP hydrolases. The P-loop has two acid residues (Asp13 and Glu14), which are found in the P-loops of only the synthetase family. Glu14 may be involved in the stabilization of the enlarged P-loop of the synthetase, whereas Asp13 may play a role in catalysis and in the coordination of Mg2+. The structural elements of the p21 ras and G alpha proteins responsible for binding Mg2+ are either absent from the synthetase or unavailable for the coordination of metal cations.


Assuntos
Adenilossuccinato Sintase/química , Escherichia coli/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Sequência Consenso , Cristalografia por Raios X , Engenharia Genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA