Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.623
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(13): 5289-5297, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507224

RESUMO

Paper spray mass spectrometry (PS-MS) has evolved into a promising tool for monitoring reactions in thin films and microdroplets, known as reactive PS, alongside its established role in ambient and direct ionization. This study addresses the need for rapid, cost-effective methods to improve analyte identification in biofluids by leveraging reactive PS-MS in clinical chemistry environments. The technique has proven effective in derivatizing target analytes, altering hydrophobicity to enhance elution and ionization efficiency, and refining detection through thin-film reactions on paper, significantly expediting reaction rates by using amino acids (AAs) as model analytes. These molecules are prone to interacting with substrates like paper, impeding elution and detection. Additionally, highly abundant species in biofluids, such as lipids, often suppress AA ionization. This study employs the Schiff base (SB) reaction utilizing aromatic aldehydes for AA derivatization to optimize reaction conditions time, temperature, and catalyst presence and dramatically increasing the conversion ratio (CR) of formed SB. For instance, using leucine as a model AA, the CR surged from 57% at room temperature to 89% at 70 °C, with added pyridine during and after 7.5 min, displaying a 43% CR compared to the bulk reaction. Evaluation of various aromatic aldehydes as derivatization agents highlighted the importance of specific oxygen substituents for achieving higher conversion rates. Furthermore, diverse derivatization agents unveiled unique fragmentation pathways, aiding in-depth annotation of the target analyte. Successfully applied to quantify AAs in human and rat plasma, this reactive PS-MS approach showcases promising potential in efficiently detecting conventionally challenging compounds in PS-MS analysis.


Assuntos
Aminoácidos , Bases de Schiff , Humanos , Animais , Ratos , Espectrometria de Massas/métodos , Aminas , Aldeídos/análise
2.
J Chem Ecol ; 50(5-6): 290-298, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38644438

RESUMO

Diatoms are key primary producers across marine, freshwater, and terrestrial ecosystems. They are responsible for photosynthesis and secondary production that, in part, support complex food webs. Diatoms can produce phytochemicals that have transtrophic ecological effects which increase their competitive fitness. Polyunsaturated aldehydes (PUAs) are one class of diatom-derived phytochemicals that are known to have allelopathic and anti-herbivory properties. The anti-herbivory capability of PUAs results from their negative effect on grazer fecundity. Since their discovery, research has focused on their production by pelagic marine diatoms, and their effects on copepod egg production, hatching success, and juvenile survival and development. Few investigations have explored PUA production by the prolific suite of benthic marine diatoms, despite their importance to coastal trophic systems. In this study, we tested eight species of benthic diatoms for the production of the bioactive PUAs 2,4-heptadienal, 2,4-octadienal, and 2,4-decadienal. Benthic diatom species were isolated from the Salish Sea, an inland sea within the North Pacific ecosystem. All species were found to be producers of at least two PUAs in detectable concentrations, with five species producing all three PUAs in quantifiable concentrations. Our results indicate that production of PUAs from Salish Sea benthic diatoms may be widespread, and thus these compounds may contribute to benthic coastal food web dynamics through heretofore unrecognized pathways. Future studies should expand the geographic scope of investigations into benthic diatom PUA production and explore the effects of benthic diatoms on benthic consumer fecundity.


Assuntos
Aldeídos , Diatomáceas , Diatomáceas/metabolismo , Diatomáceas/química , Aldeídos/metabolismo , Aldeídos/análise , Oceano Pacífico , Animais , Alcadienos
3.
Phytochem Anal ; 35(3): 567-578, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38191129

RESUMO

INTRODUCTION: Quisqualis indica L. (QIL) has a long history as a traditional Chinese herb in China, but the study of volatile components in QIL from different geographical sources has been relatively rare. OBJECTIVES: To establish an optimal headspace gas chromatography-mass spectrometry (HS-GC-MS) method to comprehensively analyse the volatile component profile and screen quality markers of QIL from different origins. METHODS: Response surface methodology (RSM) was used to optimise the conditions for headspace analysis. The volatile components of QIL from four main origins of southwest China were analysed and identified by HS-GC-MS. The similarity of all samples of QIL was evaluated by fingerprint. The differences of the volatile components in QIL from different origins were distinguished by chemometrics. RESULTS: According to the optimal conditions of RSM, a total of 31 volatile components were identified, including fatty acids, aldehydes, alcohols, alkyl pyrazines, and other volatile components. Similarity evaluation presented that there were 26 common volatile components with different contents in all samples. Principal component analysis (PCA) showed that QIL from four different origins could be roughly divided into four categories. Hierarchical cluster analysis (HCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) indicated that QIL from different origins had obvious regional characteristics. CONCLUSION: The optimised HS-GC-MS method provided a strategy to rapidly, effectively, and accurately elucidate the volatile component profile of QIL from different origins, and seven important differential components were screened for quality evaluation and origin traceability.


Assuntos
Quimiometria , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Análise por Conglomerados , Aldeídos/análise , Álcoois/análise , Compostos Orgânicos Voláteis/análise
4.
Molecules ; 29(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474451

RESUMO

This study focuses on the behavior of volatile organic compounds in beef after irradiation with 1 MeV accelerated electrons with doses ranging from 0.25 kGy to 5 kGy to find reliable dose-dependent markers that could be used for establishing an effective dose range for beef irradiation. GC/MS analysis revealed that immediately after irradiation, the chemical yield and accumulation rate of lipid oxidation-derived aldehydes was higher than that of protein oxidation-derived aldehydes. The nonlinear dose-dependent relationship of the concentration of volatile organic compounds was explained using a mathematical model based on the simultaneous occurrence of two competing processes: decomposition of volatile compounds due to direct and indirect action of accelerated electrons, and accumulation of volatile compounds due to decomposition of other compounds and biomacromolecules. A four-day monitoring of the beef samples stored at 4 °C showed that lipid oxidation-derived aldehydes, protein oxidation-derived aldehydes and alkanes as well as alcohol ethanol as an indicator of bacterial activity were dose-dependent markers of biochemical processes occurring in the irradiated beef samples during storage: oxidative processes during direct and indirect action of irradiation, oxidation due to the action of reactive oxygen species, which are always present in the product during storage, and microbial-enzymatic processes. According to the mathematical model of the change in the concentrations of lipid oxidation-derived aldehydes over time in the beef samples irradiated with different doses, it was found that doses ranging from 0.25 kGy to 1 kGy proved to be most effective for beef irradiation with accelerated electrons, since this dose range decreases the bacterial content without considerable irreversible changes in chemical composition of chilled beef during storage.


Assuntos
Compostos Orgânicos Voláteis , Animais , Bovinos , Elétrons , Oxirredução , Lipídeos , Aldeídos/análise
5.
Molecules ; 29(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338351

RESUMO

Sweet potato provides rich nutrients and bioactive substances for the human diet. In this study, the volatile organic compounds of five pigmented-fleshed sweet potato cultivars were determined, the characteristic aroma compounds were screened, and a correlation analysis was carried out with the aroma precursors. In total, 66 volatile organic compounds were identified. Terpenoids and aldehydes were the main volatile compounds, accounting for 59% and 17%, respectively. Fifteen compounds, including seven aldehydes, six terpenes, one furan, and phenol, were identified as key aromatic compounds for sweet potato using relative odor activity values (ROAVs) and contributed to flower, sweet, and fat flavors. The OR sample exhibited a significant presence of trans-ß-Ionone, while the Y sample showed high levels of benzaldehyde. Starch, soluble sugars, 20 amino acids, and 25 fatty acids were detected as volatile compounds precursors. Among them, total starch (57.2%), phenylalanine (126.82 ± 0.02 g/g), and fatty acids (6.45 µg/mg) were all most abundant in Y, and LY contained the most soluble sugar (14.65%). The results of the correlation analysis revealed the significant correlations were identified between seven carotenoids and trans-ß-Ionone, soluble sugar and nerol, two fatty acids and hexanal, phenylalanine and 10 fatty acids with benzaldehyde, respectively. In general, terpenoids and aldehydes were identified as the main key aromatic compounds in sweet potatoes, and carotenoids had more influence on the aroma of OR than other cultivars. Soluble sugars, amino acids, and fatty acids probably serve as important precursors for some key aroma compounds in sweet potatoes. These findings provide valuable insights for the formation of sweet potato aroma.


Assuntos
Ipomoea batatas , Norisoprenoides , Solanum tuberosum , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Benzaldeídos , Ipomoea batatas/química , Carotenoides , Odorantes/análise , Terpenos , Aldeídos/análise , Açúcares , Ácidos Graxos , Fenilalanina , Amido
6.
J Sci Food Agric ; 104(5): 2959-2970, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38050785

RESUMO

BACKGROUND: Aquatic products are rich in nutrients and unique in flavor, and are popular among the public. However, aquatic products are extremely susceptible to quality degradation during storage, of which odor deterioration is the most obvious and influential aspect. Odor deterioration in aquatic products is widespread and severely affects overall flavor and quality. In this study, odor deterioration and flavor-related quality degradation of tilapia during cold storage are discussed, focusing on the changes in volatile compounds and the evolution of free fatty acids (FFAs), free amino acids (FAAs), nucleotides, and microbial diversity. RESULTS: A total of 63 volatile compounds were detected by gas chromatography-mass spectrometry, including 11 hydrocarbons, 10 alcohols, 6 aldehydes, 8 ketones, 6 esters, 9 aromatics, 3 phenols, and 10 other compounds. Microbial diversity analysis revealed that Acinetobacter, Psychrobacter, Vagococcus, and Myroides were the main dominant species of tilapia at the end of cold storage and predicted that microorganisms could influence the flavor of tilapia by participating in important metabolic pathways. Meanwhile, the evolution of FFAs, FAAs, and nucleotides also had a significant impact on odor deterioration, as evidenced by the contribution of unsaturated fatty acids (such as oleic acid and linoleic acid), Lys, and off-flavor nucleotides (HxR and Hx) to the undesirable flavor. Oxidation of oleic acid and linoleic acid resulted in changes in aldehydes, with Lys, HxR, and Hx being key flavor precursors and off-flavor contributors. CONCLUSION: This study contributes to a comprehensive overview of odor deterioration and the evolution of flavor-related quality in tilapia during cold storage, providing new insights into the regulation of overall flavor and quality. © 2023 Society of Chemical Industry.


Assuntos
Tilápia , Compostos Orgânicos Voláteis , Animais , Armazenamento de Alimentos , Ácidos Graxos não Esterificados/análise , Aminoácidos/química , Aldeídos/análise , Ácidos Linoleicos , Ácidos Oleicos , Compostos Orgânicos Voláteis/química
7.
Evid Based Dent ; 25(2): 67-68, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38509213

RESUMO

STUDY DESIGN: A cross-sectional, age- and gender-matched study was conducted to investigate the effects of different forms of nicotine delivery on salivary lipid profiles among young adult novice smokers compared to non-smokers. OBJECTIVE: To assess the effect of smoking traditional cigarettes, e-cigarettes, and heated tobacco products (HTPs) on the levels of specific sphingolipids (sphingosine, sphinganine, and sphingosine-1-phosphate), various ceramides, and lipid peroxidation products [malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE)] in both unstimulated and stimulated saliva samples collected from healthy young adults who had been smoking for 1-3 years and used only 1 of the 3 nicotine delivering methods. METHODS: Selection criteria included healthy young adults under 30 years old, with normal BMI and typical diet composition, and with no oral inflammatory lesions, orthodontic/dental appliances, or recent intake of medications or supplements. A total of 75 smokers and 25 non-smokers were enrolled in the study. Smokers were categorized into three groups, each comprising 25 individuals: traditional cigarette smokers, e-cigarette users, and HTPs smokers. Saliva samples were collected and analyzed for sphingolipid concentrations using ultra-high-performance liquid chromatography-tandem mass spectrometry. The concentrations of MDA and 4-HNE were measured using colorimetric and ELISA assays, respectively. RESULTS: The average smoking intensity in the traditional cigarette group was 10 cigarettes per day. Salivary sphingolipid and ceramides concentrations were significantly lower in smokers compared to non-smokers across all nicotine delivery methods (p < 0.0001). Moreover, traditional cigarette smokers exhibited higher levels of 4-HNE and MDA in both stimulated and unstimulated saliva, compared to non-smokers (p < 0.01). In stimulated saliva, both MDA and 4-HNE in e-cigarette users, and MDA in HTPs users, showed significantly lower concentrations than their comparators in traditional cigarette smokers (p < 0.01). CONCLUSION: Different nicotine delivery methods impact salivary lipid profile during the initial period of smoking habit. Reduced sphingolipids and elevated lipid peroxidation products suggest a disturbed lipid balance in the oral cavity due to enhanced oxidative stress within the salivary glands of novice smokers.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Saúde Bucal , Saliva , Humanos , Saliva/química , Masculino , Feminino , Estudos Transversais , Adulto Jovem , Adulto , Esfingolipídeos/análise , Esfingolipídeos/metabolismo , Lipídeos/análise , Fumantes , Malondialdeído/análise , Peroxidação de Lipídeos , Aldeídos/análise
8.
Anal Chem ; 95(9): 4344-4352, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36815760

RESUMO

Analysis of volatile organic compounds (VOCs) in exhaled breath (EB) has shown great potential for disease detection including lung cancer, infectious respiratory diseases, and chronic obstructive pulmonary disease. Although many breath sample collection and analytical methods have been developed for breath analysis, analysis of metabolic VOCs in exhaled breath is still a challenge for clinical application. Many carbonyl compounds in exhaled breath are related to the metabolic processes of diseases. This work reports a method of ultrahigh-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-MS) for the analysis of a broad range of carbonyl metabolites in exhaled breath. Carbonyl compounds in the exhaled breath were captured by a fabricated silicon microreactor with a micropillar array coated with 2-(aminooxy)ethyl-N,N,N-trimethylammonium (ATM) triflate. A total of six subgroups consisting of saturated aldehydes and ketones, hydroxy-aldehydes, and hydroxy-ketones, unsaturated 2-alkenals, and 4-hydroxy-2-alkenals were identified in the exhaled breath. The combination of a silicon microreactor for the selective capture of carbonyl compounds with UHPLC-MS analysis may provide a quantitative method for the analysis of carbonyls to identify disease markers in exhaled breath.


Assuntos
Silício , Compostos Orgânicos Voláteis , Cromatografia Líquida de Alta Pressão , Compostos Orgânicos Voláteis/análise , Aldeídos/análise , Cetonas/análise , Testes Respiratórios/métodos
9.
Environ Res ; 228: 115824, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37030408

RESUMO

BACKGROUND: Asphalt road paving and its subsequent complex airborne emissions have raised concerns about occupational exposures and environmental impacts. Although several studies described bitumen fumes or Polycyclic Aromatic Hydrocarbons (PAH) emissions at specific worksites, no comprehensive studies have characterised road paving emissions and identified the main determinants of exposure. METHODS: A 10-year study from 2012 to 2022 was performed to examine the pollutants resulting from bitumen fume emissions and covering the main processes used in road paving (asphalt production, mechanical rolled asphalt paving, manual paving, mastic asphalt paving, emulsion paving, and coal-tar asphalt milling). A total of 623 air samples were collected at 63 worksites (on 290 workers, in the environment and near emission sources), and bitumen fumes, PAHs, aldehydes and volatile organic compounds were analysed. Biomonitoring campaigns were performed on 130 workers to assess internal exposure to PAHs. RESULTS: Fume emissions revealed complex mixtures of C10-C30 compounds, including linear saturated hydrocarbons (C6-C12), alicyclic hydrocarbons and aliphatic ketones. PAHs were dominated by 2-3 aromatic ring compounds (naphthalene, fluorene, and phenanthrene), and C1-C13 aldehydes were identified. Binder proportion, paving temperature, outdoor temperature, workload and job category influenced airborne concentrations. A significant temporal trend was observed over the time period of the study, with decreasing BF and PAH exposures. PAH biomonitoring was consistent with air samples, and urinary metabolites of 2-3 ring PAHs dominated over 4-5 ring PAHs. Occupational exposures were generally far lower than exposure limits, except coal-tar asphalt milling activities. Very low environmental concentrations were measured, which highlights a negligible contribution of paving emissions to global environmental pollution. CONCLUSION: The present study confirmed the complex nature of bitumen fumes and characterised the main determinants of exposure. The results highlight the need to reduce the paving temperature and binder proportion. Recycled asphalt pavement use was not associated with higher emissions. The impact of paving activities on environmental airborne pollution was deemed negligible.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Hidrocarbonetos Policíclicos Aromáticos/urina , Exposição Ocupacional/análise , Hidrocarbonetos , Temperatura , Gases , Monitoramento Ambiental/métodos , Aldeídos/análise , Carvão Mineral , Poluentes Ocupacionais do Ar/análise
10.
Molecules ; 28(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37049712

RESUMO

Odor is an important characteristic of walnut oil; walnut oil aromas from different varieties smell differently. In order to compare the differences of volatile flavor characteristics in different varieties of walnut oil, the volatile organic compounds (VOCs) of walnut oil from five different walnut varieties in Northwest China were detected and analyzed using headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS). The results showed that 41 VOCs in total were identified in walnut oil from five different varieties, including 14 aldehydes, 8 alcohols, 4 ketones, and 2 esters. Walnut oil (WO) extracted from the "Zha343" variety was most abundant in VOCs. The relative odor activity value (ROAV) analysis showed that aldehydes were the main aroma substances of walnut oil; specifically, hexanal, pentanal, and heptanal were the most abundant. Fingerprints and heat map analysis indicated that WO extracted from the "Xin2", "185", "Xin'guang", and "Zha343" varieties, but not from the "Xinfeng" variety, had characteristic markers. The relative content differences of eight key VOCs in WO from five varieties can be directly compared by Kruskal-Wallis tests, among which the distribution four substances, hexanal (M), hexanal (D), pentanal (M), (E)-2-hexanal (M), presented extremely significant differences (P<0.01). According to the results of the principal component analysis (PCA), WO extracted from the "Zha343" variety was distinct from the other four varieties; in addition, WO extracted from the "Xin2" variety exhibited similarity to WO extracted from the "185" variety, and WO extracted from the "Xinfeng" variety showed similarity to WO extracted from the "Xin'guang" variety. These results reveal that there are certain differences in the VOCs extracted from five different WO varieties, making it feasible to distinguish different varieties of walnut oil or to rapidly detect walnut oil quality based on its volatile substances profile.


Assuntos
Juglans , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Espectrometria de Mobilidade Iônica/métodos , Aldeídos/análise
11.
Molecules ; 28(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175284

RESUMO

To investigate the flavor changes in goat meat upon storage, the volatile components observed in goat meat after different storage periods were determined using gas chromatography-ion mobility spectrometry (GC-IMS). A total of 38 volatile organic compounds (VOCs) were determined from the goat meat samples, including alcohols, ketones, aldehydes, esters, hydrocarbons, ethers, and amine compounds. 1-Hexanol, 3-Hydroxy-2-butanone, and Ethyl Acetate were the main volatile substances in fresh goat meat, and they rapidly decreased with increasing storage time and can be used as biomarkers for identifying fresh meat. When combined with the contents of total volatile basic-nitrogen (TVB-N) and the total numbers of bacterial colonies observed in physical and chemical experiments, the characteristic volatile components of fresh, sub-fresh, and spoiled meat were determined by principal component analysis (PCA). This method will help with the detection of fraudulent production dates in goat meat sales.


Assuntos
Espectrometria de Mobilidade Iônica , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Mobilidade Iônica/métodos , Álcoois/análise , Aldeídos/análise , Carne/análise , Compostos Orgânicos Voláteis/análise
12.
Molecules ; 28(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38005281

RESUMO

Actinidia arguta is a fruit crop with high nutritional and economic value. However, its flavor quality depends on various factors, such as variety, environment, and post-harvest handling. We analyzed the composition of total soluble sugars, titratable acids, organic acids, and flavor substances in the fruits of ten A. arguta varieties. The total soluble sugar content ranged from 4.22 g/L to 12.99 g/L, the titratable acid content ranged from 52.55 g/L to 89.9 g/L, and the sugar-acid ratio ranged from 5.39 to 14.17 at the soft ripe stage. High-performance liquid chromatography (HPLC) showed that citric, quinic, and malic acids were the main organic acids in the A. arguta fruits. Headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) detected 81 volatile compounds in 10 A. arguta varieties, including 24 esters, 17 alcohols, 23 aldehydes, 7 ketones, 5 terpenes, 2 acids, 1 Pyrazine, 1 furan, and 1 benzene. Esters and aldehydes had the highest relative content of total volatile compounds. An orthogonal partial least squares discriminant analysis (OPLS-DA) based on the odor activity value (OAV) revealed that myrcene, benzaldehyde, methyl isobutyrate, α-phellandrene, 3-methyl butanal, valeraldehyde, ethyl butyrate, acetoin, (E)-2-octenal, hexyl propanoate, terpinolene, 1-penten-3-one, and methyl butyrate were the main contributors to the differences in the aroma profiles of the fruits of different A. arguta varieties. Ten A. arguta varieties have different flavors. This study can clarify the differences between varieties and provide a reference for the evaluation of A. arguta fruit flavor, variety improvement and new variety selection.


Assuntos
Actinidia , Compostos Orgânicos Voláteis , Cromatografia Líquida de Alta Pressão , Frutas/química , Actinidia/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Mobilidade Iônica , Compostos Orgânicos Voláteis/análise , Aldeídos/análise , Odorantes/análise , Ésteres/análise , Açúcares/análise
13.
Molecules ; 28(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37241965

RESUMO

Fenebrutinib is an orally available Bruton tyrosine kinase inhibitor. It is currently in multiple phase III clinical trials for the management of B-cell tumors and autoimmune disorders. Elementary in-silico studies were first performed to predict susceptible sites of metabolism and structural alerts for toxicities by StarDrop WhichP450™ module and DEREK software; respectively. Fenebrutinib metabolites and adducts were characterized in-vitro in rat liver microsomes (RLM) using MS3 method in Ion Trap LC-MS/MS. Formation of reactive and unstable intermediates was explored using potassium cyanide (KCN), glutathione (GSH) and methoxylamine as trapping nucleophiles to capture the transient and unstable iminium, 6-iminopyridin-3(6H)-one and aldehyde intermediates, respectively, to generate a stable adducts that can be investigated and analyzed using mass spectrometry. Ten phase I metabolites, four cyanide adducts, five GSH adducts and six methoxylamine adducts of fenebrutinib were identified. The proposed metabolic reactions involved in formation of these metabolites are hydroxylation, oxidation of primary alcohol to aldehyde, n-oxidation, and n-dealkylation. The mechanism of reactive intermediate formation of fenebrutinib can provide a justification of the cause of its adverse effects. Formation of iminium, iminoquinone and aldehyde intermediates of fenebrutinib was characterized. N-dealkylation followed by hydroxylation of the piperazine ring is proposed to cause the bioactivation to iminium intermediates captured by cyanide. Oxidation of the hydroxymethyl group on the pyridine moiety is proposed to cause the generation of reactive aldehyde intermediates captures by methoxylamine. N-dealkylation and hydroxylation of the pyridine ring is proposed to cause formation of iminoquinone reactive intermediates captured by glutathione. FBB and several phase I metabolites are bioactivated to fifteen reactive intermediates which might be the cause of adverse effects. In the future, drug discovery experiments utilizing this information could be performed, permitting the synthesis of new drugs with better safety profile. Overall, in silico software and in vitro metabolic incubation experiments were able to characterize the FBB metabolites and reactive intermediates using the multistep fragmentation capability of ion trap mass spectrometry.


Assuntos
Piperazinas , Espectrometria de Massas em Tandem , Ratos , Animais , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Piperazinas/química , Piridonas/análise , Glutationa/metabolismo , Cianetos/análise , Aldeídos/análise , Microssomos Hepáticos/metabolismo
14.
Molecules ; 28(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37513200

RESUMO

Zangju (Citrus reticulata cv. Manau Gan) is the main citrus cultivar in Derong County, China, with unique aroma and flavour characteristics, but the use of Zangju peel (CRZP) is limited due to a lack of research on its peel. In this study, electronic nose, headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS), and partial least squares-discriminant analysis (PLS-DA) methods were used to rapidly and comprehensively evaluate the volatile compounds of dried CRZP and to analyse the role of dynamic changes at different maturation stages. The results showed that seventy-eight volatile compounds, mainly aldehydes (25.27%) and monoterpenes (55.88%), were found in the samples at four maturity stages. The contents of alcohols and aldehydes that produce unripe fruit aromas are relatively high in the immature stage (October to November), while the contents of monoterpenoids, ketones and esters in ripe fruit aromas are relatively high in the full ripening stage (January to February). The PLS-DA model results showed that the samples collected at different maturity stages could be effectively discriminated. The VIP method identified 12 key volatile compounds that could be used as flavour markers for CRZP samples collected at different maturity stages. Specifically, the relative volatile organic compounds (VOCs) content of CRZP harvested in October is the highest. This study provides a basis for a comprehensive understanding of the flavour characteristics of CRZP in the ripening process, the application of CRZP as a byproduct in industrial production (food, cosmetics, flavour and fragrance), and a reference for similar research on other C. reticulata varieties.


Assuntos
Citrus , Compostos Orgânicos Voláteis , Nariz Eletrônico , Citrus/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Álcoois/análise , Aldeídos/análise , Aromatizantes/análise , Monoterpenos/análise , Compostos Orgânicos Voláteis/análise
15.
J Sci Food Agric ; 103(2): 680-691, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36053837

RESUMO

BACKGROUND: Pumpkin seed and sunflower oil are rich in bioactive compounds, but are prone to oxidation during storage. Their fatty acids, carotenoid and volatile compounds and their Fourier-transform infrared (FTIR) profiles were studied during 8 months storage in order to assess the overall quality, but also to assess the impact of the oleogelation as conditioning process. RESULTS: The fatty acids methyl esters were analyzed by gas chromatography-mass spectrometry (GC-MS). The linoleic acid was the most abundant in the oils (604.6 g kg-1 in pumpkin and 690 g kg-1 in sunflower), but also in oleogels. Through high-performance liquid chromatography (HPLC), lutein and ß-carotene were determined as specific carotenoid compounds of the pumpkin seed oil and oleogel, in a total amount of 0.0072 g kg-1 . The volatile compounds profile revealed the presence of alpha-pinene for the pumpkin seed oil and oleogels and a tentative identification of limonene for the sunflower oil. Hexanal was also detected in the oleogels, indicating a thermal oxidation, which was further analyzed through infrared spectroscopy. CONCLUSIONS: During 8 months storage, the decrease of polyunsaturated fatty acid total amount was 5.72% for the pumpkin seed oil and 3.55% for the oleogel, while in the sunflower oil samples of 2.93% and 3.28% for the oleogel. It was concluded that oleogelation might protect specific carotenoid compounds, since the oleogels displayed higher content of ß-carotene at each storage time. Hexanal and heptanal were detected during storage, regardless of the oil or oleogel type. FTIR analysis depicts the differences in the constituent fatty acids resulting due to thermal oxidation or due to storage. © 2022 Society of Chemical Industry.


Assuntos
Cucurbita , Cucurbita/química , Ácidos Graxos/química , Carotenoides/análise , Óleo de Girassol/análise , beta Caroteno/análise , Sementes/química , Óleos de Plantas/química , Aldeídos/análise
16.
Compr Rev Food Sci Food Saf ; 22(1): 233-259, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36398756

RESUMO

Alcohol-free beers have gained popularity in the last few decades because they provide a healthier alternative to alcoholic beers and can be more widely consumed. Consumers are becoming more aware of the benefits of reducing their alcohol consumption, and this has increased the sales of nonalcoholic alternatives. However, there are still many challenges for the brewing industry to produce an alcohol-free beer that resembles the pleasant fruity flavor and overall sensory experience of regular beers. The aim of this review is to give a comprehensive overview of alcohol-free beer focusing on aroma chemistry. The formation of the most important aroma compounds, such as Strecker aldehydes, higher alcohols, and esters, is reviewed, aiming to outline the gaps in current knowledge. The role of ethanol as a direct and indirect flavor-active compound is examined separately. In parallel, the influence of the most common methods to reduce alcohol content, such as physical (dealcoholization) or biological, on the organoleptic characteristics and consumer perception of the final product, is discussed.


Assuntos
Cerveja , Odorantes , Cerveja/análise , Odorantes/análise , Etanol/análise , Bebidas , Aldeídos/análise
17.
J Environ Sci (China) ; 127: 389-398, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522070

RESUMO

Aldehyde and ketone compounds are ubiquitous in the air and prone to adverse effects on human health. Cooking emission is one of the major indoor sources. Aiming to evaluate health risks associated with inhalation exposure to aldehyde and ketone compounds, 13 carbonyl compounds (CCs) released from heating 5 edible oils, 3 seasonings, and 2 dishes were investigated in a kitchen laboratory. For the scenarios of heating five types of oil, aldehydes accounted for 61.1%-78.0% of the total emission, mainly acetaldehyde, acrolein and hexanal. Comparatively, heating oil with added seasonings released greater concentrations of aldehyde and ketone compounds. The concentration enhancement of larger molecular aldehydes was significantly greater. The emission factors of aldehyde and ketone compounds for cooking the dish of chili fried meat were much greater compared to that of tomato fried eggs. Therefore, food materials also had a great impact on the aldehyde and ketone emissions. Acetone and acetaldehyde were the most abundant CCs in the kitchen. Acrolein concentrations ranged from 235.18 to 498.71 µg/m3, which was about 100 times greater compared to the guidelines provided by Office of Environmental Health Hazard Assessment (OEHHA). The acetaldehyde inhalation for adults was 856.83-1515.55 µg and 56.23-192.79 µg from exposure to chili fried meat and tomato fried eggs, respectively. This exceeds the reference value of 90 µg/day provided by OEHHA. The findings of this study provided scientific evidences for the roles of cooking emissions on indoor air quality and human health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Adulto , Humanos , Poluentes Atmosféricos/análise , Cetonas , Acroleína , Culinária , Poluição do Ar em Ambientes Fechados/análise , Aldeídos/análise , Acetaldeído , Monitoramento Ambiental
18.
Nanotechnology ; 33(20)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35114654

RESUMO

Organic decomposition processes, involving the breakdown of complex molecules such as carbohydrates, proteins and fats, release small chemicals known as volatile organic compounds (VOCs), smelly even at very low concentrations, but not all readily detectable by vertebrates. Many of these compounds are instead detected by insects, mostly by saprophytic species, for which long-range orientation towards organic decomposition matter is crucial. In the present work the detection of aldehydes, as an important measure of lipid oxidation, has been possible exploiting the molecular machinery underlying odour recognition inHermetia illucens(Diptera: Stratiomyidae). This voracious scavenger insect is of interest due to its outstanding capacity in bioconversion of organic waste, colonizing very diverse environments due to the ability of sensing a wide range of chemical compounds that influence the choice of substrates for ovideposition. A variety of soluble odorant binding proteins (OBPs) that may function as carriers of hydrophobic molecules from the air-water interface in the antenna of the insect to the receptors were identified, characterised and expressed. An OBP-based nanobiosensor prototype was realized using selected OBPs as sensing layers for the development of an array of quartz crystal microbalances (QCMs) for vapour phase detection of selected compounds at room temperature. QCMs coated with four recombinantH. illucensOBPs (HillOBPs) were exposed to a wide range of VOCs indicative of organic decomposition, showing a high sensitivity for the detection of three chemical compounds belonging to the class of aldehydes and one short-chain fatty acid. The possibility of using biomolecules capable of binding small ligands as reversible gas sensors has been confirmed, greatly expanding the state-of the-art in gas sensing technology.


Assuntos
Aldeídos/análise , Técnicas Biossensoriais/métodos , Proteínas de Insetos/metabolismo , Receptores Odorantes/metabolismo , Compostos Orgânicos Voláteis/análise , Aldeídos/metabolismo , Animais , Dípteros/metabolismo , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Corantes Fluorescentes/metabolismo , Proteínas de Insetos/genética , Cinética , Limite de Detecção , Odorantes/análise , Técnicas de Microbalança de Cristal de Quartzo , Receptores Odorantes/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Compostos Orgânicos Voláteis/metabolismo
19.
Environ Sci Technol ; 56(22): 15417-15426, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36257779

RESUMO

This study updated carbonyl compound (CC) emission factors (EFs) and composition for residential solid fuel combustion based on real-world measurements of 124 fuel/stove combinations in China and explored the CC formation mechanism using tube-furnace experiments with 19 fuels and low/high temperatures to explain the impact of fuel and stove on CC emission characteristics. The average EFCC values for straw, wood, and coal were 1.94 ± 1.57, 1.50 ± 0.88, and 0.40 ± 0.54 g/kg, respectively. Formaldehyde and acetaldehyde were the most abundant species, accounting for 40-60% of CCs, followed by acetone (∼20%), aromatic aldehydes (∼10%), and unsaturated aldehydes (∼5%). Different from formaldehyde and acetaldehyde, other species showed significant variation among fuel types. All these characteristics could be explained by the difference in the volatile content and chemical structure of fuel, such as aromatic in coal versus lignin in biomass. The improvement in stove technology reduced CC emissions by 30.4-69.7% (mainly formaldehyde and acetaldehyde) among fuels but increased the proportion of aromatic aldehydes by 24.3-89.4%. Various CC species showed different formation mechanisms related to fuel property and burning temperature. The volatile matter derived from thermal pyrolysis of fuel polymers determined CC composition, while higher temperature preferentially degraded formaldehyde and acetaldehyde but promoted the formation of acetone and aromatic aldehydes. This study not only revealed emission characteristic of CCs from RSFC but also contributed to the improvement of clean combustion technology.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Acetona , Carvão Mineral , Aldeídos/análise , Acetaldeído , Formaldeído , China , Material Particulado/análise
20.
Anal Bioanal Chem ; 414(17): 5009-5022, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35641641

RESUMO

In this study, a fluorescent reagent, 4-((aminooxy)methyl)-7-hydroxycoumarin (AOHC), was for the first time applied to label the low-molecular-mass aldehydes (LMMAs) through reductive oxyamination reaction to afford single N,O-substituted oxyamine derivatives at room temperatures with derivatization efficiencies as high as 96.8%. In the following high-performance liquid chromatography with fluorescence detection analysis, 12 LMMAs, including furfurals, aromatic aldehydes, and aliphatic aldehydes, were baseline-separated on an ODS column and detected with low limits of detection (LODs) (0.2-50 nM), and good precisions (intraday relative standard deviations [RSDs] were 2.40-4.68%, and interday RSDs were 4.65-8.91%). This approach was then adopted to analyze six alcoholic beverages and five dairy products, and nine LMMAs with concentrations in the 0.28-798.16 µM range were successfully detected with excellent accuracies (recoveries were 92.2-106.2%). Finally, the results were statistically analyzed and discussed. The proposed method has several advantages, including high sensitivity, room-temperature labeling, and the avoidance of further extraction and/or enrichment procedures, demonstrating its great utility for monitoring LMMAs in various complex matrices.


Assuntos
Aldeídos , Bebidas , Aldeídos/análise , Bebidas/análise , Cromatografia Líquida de Alta Pressão/métodos , Hidroxilamina , Hidroxilaminas/análise , Indicadores e Reagentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA