Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 726
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 600(7887): 105-109, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34732889

RESUMO

Symbiotic N2-fixing microorganisms have a crucial role in the assimilation of nitrogen by eukaryotes in nitrogen-limited environments1-3. Particularly among land plants, N2-fixing symbionts occur in a variety of distantly related plant lineages and often involve an intimate association between host and symbiont2,4. Descriptions of such intimate symbioses are lacking for seagrasses, which evolved around 100 million years ago from terrestrial flowering plants that migrated back to the sea5. Here we describe an N2-fixing symbiont, 'Candidatus Celerinatantimonas neptuna', that lives inside seagrass root tissue, where it provides ammonia and amino acids to its host in exchange for sugars. As such, this symbiosis is reminiscent of terrestrial N2-fixing plant symbioses. The symbiosis between Ca. C. neptuna and its host Posidonia oceanica enables highly productive seagrass meadows to thrive in the nitrogen-limited Mediterranean Sea. Relatives of Ca. C. neptuna occur worldwide in coastal ecosystems, in which they may form similar symbioses with other seagrasses and saltmarsh plants. Just like N2-fixing microorganisms might have aided the colonization of nitrogen-poor soils by early land plants6, the ancestors of Ca. C. neptuna and its relatives probably enabled flowering plants to invade nitrogen-poor marine habitats, where they formed extremely efficient blue carbon ecosystems7.


Assuntos
Alismatales/microbiologia , Organismos Aquáticos/metabolismo , Bactérias/metabolismo , Fixação de Nitrogênio , Nitrogênio/metabolismo , Simbiose , Alismatales/metabolismo , Aminoácidos/metabolismo , Amônia/metabolismo , Organismos Aquáticos/microbiologia , Ecossistema , Endófitos/metabolismo , Mar Mediterrâneo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia
2.
Proc Natl Acad Sci U S A ; 120(23): e2220678120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252966

RESUMO

Global change has converted many structurally complex and ecologically and economically valuable coastlines to bare substrate. In the structural habitats that remain, climate-tolerant and opportunistic species are increasing in response to environmental extremes and variability. The shifting of dominant foundation species identity with climate change poses a unique conservation challenge because species vary in their responses to environmental stressors and to management. Here, we combine 35 y of watershed modeling and biogeochemical water quality data with species comprehensive aerial surveys to describe causes and consequences of turnover in seagrass foundation species across 26,000 ha of habitat in the Chesapeake Bay. Repeated marine heatwaves have caused 54% retraction of the formerly dominant eelgrass (Zostera marina) since 1991, allowing 171% expansion of the temperature-tolerant widgeongrass (Ruppia maritima) that has likewise benefited from large-scale nutrient reductions. However, this phase shift in dominant seagrass identity now presents two significant shifts for management: Widgeongrass meadows are not only responsible for rapid, extensive recoveries but also for the largest crashes over the last four decades; and, while adapted to high temperatures, are much more susceptible than eelgrass to nutrient pulses driven by springtime runoff. Thus, by selecting for rapid post-disturbance recolonization but low resistance to punctuated freshwater flow disturbance, climate change could threaten the Chesapeake Bay seagrass' ability to provide consistent fishery habitat and sustain functioning over time. We demonstrate that understanding the dynamics of the next generation of foundation species is a critical management priority, because shifts from relatively stable habitat to high interannual variability can have far-reaching consequences across marine and terrestrial ecosystems.


Assuntos
Alismatales , Zosteraceae , Alismatales/fisiologia , Ecossistema , Mudança Climática , Baías
3.
Proc Natl Acad Sci U S A ; 120(30): e2220747120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459551

RESUMO

"Protect and restore ecosystems and biodiversity" is the second official aim of the current UN Ocean Decade (2021 to 2030) calling for the identification and protection of critical marine habitats. However, data to inform policy are often lacking altogether or confined to recent times, preventing the establishment of long-term baselines. The unique insights gained from combining bioarchaeology (palaeoproteomics, stable isotope analysis) with contemporary data (from satellite tracking) identified habitats which sea turtles have been using in the Eastern Mediterranean over five millennia. Specifically, our analysis of archaeological green turtle (Chelonia mydas) bones revealed that they likely foraged on the same North African seagrass meadows as their modern-day counterparts. Here, millennia-long foraging habitat fidelity has been directly demonstrated, highlighting the significance (and long-term dividends) of protecting these critical coastal habitats that are especially vulnerable to global warming. We highlight the potential for historical ecology to inform policy in safeguarding critical marine habitats.


Assuntos
Alismatales , Comportamento Animal , Ecossistema , Espécies em Perigo de Extinção , Tartarugas , Animais , Biodiversidade , Ecologia , África do Norte , Mar Mediterrâneo , Região do Mediterrâneo
4.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35165204

RESUMO

Marine coastlines colonized by seagrasses are a net source of methane to the atmosphere. However, methane emissions from these environments are still poorly constrained, and the underlying processes and responsible microorganisms remain largely unknown. Here, we investigated methane turnover in seagrass meadows of Posidonia oceanica in the Mediterranean Sea. The underlying sediments exhibited median net fluxes of methane into the water column of ca. 106 µmol CH4 ⋅ m-2 ⋅ d-1 Our data show that this methane production was sustained by methylated compounds produced by the plant, rather than by fermentation of buried organic carbon. Interestingly, methane production was maintained long after the living plant died off, likely due to the persistence of methylated compounds, such as choline, betaines, and dimethylsulfoniopropionate, in detached plant leaves and rhizomes. We recovered multiple mcrA gene sequences, encoding for methyl-coenzyme M reductase (Mcr), the key methanogenic enzyme, from the seagrass sediments. Most retrieved mcrA gene sequences were affiliated with a clade of divergent Mcr and belonged to the uncultured Candidatus Helarchaeota of the Asgard superphylum, suggesting a possible involvement of these divergent Mcr in methane metabolism. Taken together, our findings identify the mechanisms controlling methane emissions from these important blue carbon ecosystems.


Assuntos
Alismatales/metabolismo , Euryarchaeota/metabolismo , Metano/metabolismo , Aerobiose , Anaerobiose , Euryarchaeota/classificação , Sedimentos Geológicos , Mar Mediterrâneo , Microbiota , Oxirredução , Filogenia , Especificidade da Espécie
5.
Environ Res ; 241: 117629, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967703

RESUMO

Despite the effects of ocean acidification (OA) on seagrasses have been widely investigated, predictions of seagrass performance under future climates need to consider multiple environmental factors. Here, we performed a mesocosm study to assess the effects of OA on shallow and deep Posidonia oceanica plants. The experiment was run in 2021 and repeated in 2022, a year characterized by a prolonged warm water event, to test how the effects of OA on plants are modulated by thermal stress. The response of P. oceanica to experimental conditions was investigated at different levels of biological organization. Under average seawater temperature, there were no effects of OA in both shallow and deep plants, indicating that P. oceanica is not limited by current inorganic carbon concentration, regardless of light availability. In contrast, under thermal stress, exposure of plants to OA increased lipid peroxidation and decreased photosynthetic performance, with deep plants displaying higher levels of heat stress, as indicated by the over-expression of stress-related genes and the activation of antioxidant systems. In addition, warming reduced plant growth, regardless of seawater CO2 and light levels, suggesting that thermal stress may play a fundamental role in the future development of seagrass meadows. Our results suggest that OA may exacerbate the negative effects of future warming on seagrasses.


Assuntos
Alismatales , Água do Mar , Água , Acidificação dos Oceanos , Concentração de Íons de Hidrogênio , Alismatales/fisiologia , Ecossistema
6.
Mar Drugs ; 22(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38535471

RESUMO

The aim of the present study was to investigate the use of Posidonia oceanica for making products beneficial for human health. Firstly, we demonstrated that the antioxidant defense (i.e., SOD and APX activity) of P. oceanica's living leaves (LP) has low efficacy, as they partly neutralize the produced H2O2. However, high H2O2 levels led LP to produce, as a response to oxidative stress, high phenolic content, including chicoric acid, p-coumaric acid, caftaric acid, trans-cinnamic and rutin hydrate, as shown by UHPLC-DAD analysis. In addition, LP extracts inhibited intestinal cancer cell proliferation. Moreover, P. oceanica's beach casts consisting of either Wet 'Necromass' (WNP) or Dry 'Necromass' (DNP) were used for preparing extracts. Both DNP and WNP exhibited antioxidant and antiproliferative activities, although lower as compared to those of LP extracts. Although both P. oceanica's meadows and beach casts are considered priority habitats in the Mediterranean Sea due to their high ecological value, legislation framework for beach casts forbidding their removal is still missing. Our results suggested that both LP and DNP could be utilized for the production of high-added value products promoting human health, provided that a sustainability management strategy would be applied for P. oceanica's meadows and beach casts.


Assuntos
Alismatales , Antioxidantes , Humanos , Peróxido de Hidrogênio , Estresse Oxidativo , Intestinos , Transformação Celular Neoplásica
7.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34373325

RESUMO

Carnivorous plants consume animals for mineral nutrients that enhance growth and reproduction in nutrient-poor environments. Here, we report that Triantha occidentalis (Tofieldiaceae) represents a previously overlooked carnivorous lineage that captures insects on sticky inflorescences. Field experiments, isotopic data, and mixing models demonstrate significant N transfer from prey to Triantha, with an estimated 64% of leaf N obtained from prey capture in previous years, comparable to levels inferred for the cooccurring round-leaved sundew, a recognized carnivore. N obtained via carnivory is exported from the inflorescence and developing fruits and may ultimately be transferred to next year's leaves. Glandular hairs on flowering stems secrete phosphatase, as seen in all carnivorous plants that directly digest prey. Triantha is unique among carnivorous plants in capturing prey solely with sticky traps adjacent to its flowers, contrary to theory. However, its glandular hairs capture only small insects, unlike the large bees and butterflies that act as pollinators, which may minimize the conflict between carnivory and pollination.


Assuntos
Alismatales/fisiologia , Planta Carnívora/fisiologia , Inflorescência/fisiologia , Isótopos de Nitrogênio/metabolismo , Animais , Drosophila/química , Ecossistema , Nitrogênio/metabolismo , Isótopos de Nitrogênio/química
8.
J Environ Manage ; 357: 120744, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38552518

RESUMO

Restoration of coastal ecosystems, particularly those dominated by seagrasses, has become a priority to recover the important ecosystem services they provide. However, assessing restoration outcomes as a success or failure remains still difficult, probably due to the unique features of seagrass species and the wide portfolio of practices used on transplanting actions. Here, several traits (maximum leaf length, number of leaves, leaf growth rate per shoot, and leaf elemental carbon and nitrogen contents) of transplanted seagrass Posidonia oceanica were compared to reference meadows in five sites of Western Mediterranean Sea in which restoration were completed in different times. Results have evidenced the resilience of transplanted P. oceanica shoots within a few years since restoration, as traits between treatments changed depending on the elapsed time since settlement. The highlighted stability of the restoration time effect suggests that the recovery of the plants is expected in four years after transplanting.


Assuntos
Alismatales , Resiliência Psicológica , Ecossistema , Mar Mediterrâneo
9.
J Environ Manage ; 359: 121008, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703654

RESUMO

Despite the high potential of seagrass restoration to reverse the trend of marine ecosystem degradation, there are still many limitations, especially when ecosystems are severely degraded. In particular, it is not known whether restoring polluted ecosystems can lead to potentially harmful effects associated with contaminant remobilisation. Here, we aimed to investigate the role of P. oceanica transplanted from a pristine meadow to a polluted site (Augusta Bay, Italy, Mediterranean Sea) in two seasons of the year, as a sink or source of trace elements to the environment. The main results showed i) higher accumulation of chromium (Cr), copper (Cu) and total mercury (THg) in plants transplanted in summer than in winter, as well as an increase in Cr and THg in plants from sites with higher trace element loads; ii) an increase in leaf phenolics and a decrease in rhizome soluble carbohydrates associated with As and THg accumulation, suggesting the occurrence of defence strategies to cope with pollution stress; iii) a different partitioning of trace elements between below- and above-ground tissues, with arsenic (As) and Cr accumulating in roots, whereas Cu and THg in both roots and leaves. These results suggest that P. oceanica transplanted to polluted sites can act as both a sink and a source, sequestering trace elements in the below-ground tissues thus reducing their bioavailability, but also potentially remobilising them. However, the amount of trace elements potentially exported from P. oceanica to the environment through transfer into food webs via leaves and detritus appeared to be low under the specific conditions of the study site. Although further research into seagrass restoration of polluted sites would improve current knowledge to support effective ecosystem-based coastal management, the benefits of restoring polluted sites through seagrass transplantation appear to outweigh the potential costs of inaction over time.


Assuntos
Alismatales , Ecossistema , Oligoelementos , Oligoelementos/análise , Mar Mediterrâneo , Poluentes Químicos da Água , Itália , Arsênio/análise
10.
Mol Biol Evol ; 39(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35438770

RESUMO

Land plants first evolved from freshwater algae, and flowering plants returned to water as early as the Cretaceous and multiple times subsequently. Alismatales is the largest clade of aquatic angiosperms including all marine angiosperms, as well as terrestrial plants. We used Alismatales to explore plant adaptations to aquatic environments by analyzing a data set that included 95 samples (89 Alismatales species) covering four genomes and 91 transcriptomes (59 generated in this study). To provide a basis for investigating adaptations, we assessed phylogenetic conflict and whole-genome duplication (WGD) events in Alismatales. We recovered a relationship for the three main clades in Alismatales as (Tofieldiaceae, Araceae) + core Alismatids. We also found phylogenetic conflict among the three main clades that was best explained by incomplete lineage sorting and introgression. Overall, we identified 18 putative WGD events across Alismatales. One of them occurred at the most recent common ancestor of core Alismatids, and three occurred at seagrass lineages. We also found that lineage and life-form were both important for different evolutionary patterns for the genes related to freshwater and marine adaptation. For example, several light- or ethylene-related genes were lost in the seagrass Zosteraceae, but are present in other seagrasses and freshwater species. Stomata-related genes were lost in both submersed freshwater species and seagrasses. Nicotianamine synthase genes, which are important in iron intake, expanded in both submersed freshwater species and seagrasses. Our results advance the understanding of the adaptation to aquatic environments and WGDs using phylogenomics.


Assuntos
Alismatales , Magnoliopsida , Adaptação Fisiológica/genética , Alismatales/genética , Evolução Biológica , Magnoliopsida/genética , Filogenia , Plantas
11.
BMC Plant Biol ; 23(1): 104, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36814193

RESUMO

BACKGROUND: Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have evolved to live entirely submerged in marine waters. Thus, these species are ideal for studying plant adaptation to marine environments. Herein, we sequenced the chloroplast (cp) genomes of two seagrass species (Zostera muelleri and Halophila ovalis) and performed a comparative analysis of them with 10 previously published seagrasses, resulting in various novel findings. RESULTS: The cp genomes of the seagrasses ranged in size from 143,877 bp (Zostera marina) to 178,261 bp (Thalassia hemprichii), and also varied in size among different families in the following order: Hydrocharitaceae > Cymodoceaceae > Ruppiaceae > Zosteraceae. The length differences between families were mainly related to the expansion and contraction of the IR region. In addition, we screened out 2,751 simple sequence repeats and 1,757 long repeat sequence types in the cp genome sequences of the 12 seagrass species, ultimately finding seven hot spots in coding regions. Interestingly, we found nine genes with positive selection sites, including two ATP subunit genes (atpA and atpF), three ribosome subunit genes (rps4, rps7, and rpl20), one photosystem subunit gene (psbH), and the ycf2, accD, and rbcL genes. These gene regions may have played critical roles in the adaptation of seagrasses to diverse environments. In addition, phylogenetic analysis strongly supported the division of the 12 seagrass species into four previously recognized major clades. Finally, the divergence time of the seagrasses inferred from the cp genome sequences was generally consistent with previous studies. CONCLUSIONS: In this study, we compared chloroplast genomes from 12 seagrass species, covering the main phylogenetic clades. Our findings will provide valuable genetic data for research into the taxonomy, phylogeny, and species evolution of seagrasses.


Assuntos
Alismatales , Genoma de Cloroplastos , Hydrocharitaceae , Zosteraceae , Filogenia , Alismatales/genética , Zosteraceae/genética , Hydrocharitaceae/genética , Cloroplastos/genética , Genômica , Evolução Molecular
12.
BMC Plant Biol ; 23(1): 125, 2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36869282

RESUMO

BACKGROUND: The rapidly increasing availability of complete plastomes has revealed more structural complexity in this genome under different taxonomic levels than expected, and this complexity provides important evidence for understanding the evolutionary history of angiosperms. To explore the dynamic history of plastome structure across the subclass Alismatidae, we sampled and compared 38 complete plastomes, including 17 newly assembled, representing all 12 recognized families of Alismatidae. RESULT: We found that plastomes size, structure, repeat elements, and gene content were highly variable across the studied species. Phylogenomic relationships among families were reconstructed and six main patterns of variation in plastome structure were revealed. Among these, the inversion from rbcL to trnV-UAC (Type I) characterized a monophyletic lineage of six families, but independently occurred also in Caldesia grandis. Three independent ndh gene loss events were uncovered across the Alismatidae. In addition, we detected a positive correlation between the number of repeat elements and the size of plastomes and IR in Alismatidae. CONCLUSION: In our study, ndh complex loss and repeat elements likely contributed to the size of plastomes in Alismatidae. Also, the ndh loss was more likely related to IR boundary changes than the adaptation of aquatic habits. Based on existing divergence time estimation, the Type I inversion may have occurred during the Cretaceous-Paleogene in response to the extreme paleoclimate changes. Overall, our findings will not only allow exploring the evolutionary history of Alismatidae plastome, but also provide an opportunity to test if similar environmental adaptations result in convergent restructuring in plastomes.


Assuntos
Alismatales , Magnoliopsida , Aclimatação , Evolução Biológica , Filogenia
13.
Proc Biol Sci ; 290(1991): 20222197, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36651048

RESUMO

DNA methylation (DNAm) has been intensively studied in terrestrial plants in response to environmental changes, but its dynamic changes in a temporal scale remain unexplored in marine plants. The seagrass Posidonia oceanica ranks among the slowest-growing and longest-living plants on Earth, and is particularly vulnerable to sea warming and local anthropogenic pressures. Here, we analysed the dynamics of DNAm changes in plants collected from coastal areas differentially impacted by eutrophication (i.e. oligotrophic, Ol; eutrophic, Eu) and exposed to abiotic stressors (nutrients, temperature increase and their combination). Levels of global DNAm (% 5-mC) and the expression of key genes involved in DNAm were assessed after one, two and five weeks of exposure. Results revealed a clear differentiation between plants, depending on environmental stimuli, time of exposure and plants' origin. % 5-mC levels were higher during the initial stress exposure especially in Ol plants, which upregulated almost all genes involved in DNAm. Contrarily, Eu plants showed lower expression levels, which increased under chronic exposure to stressors, particularly to temperature. These findings show that DNAm is dynamic in P. oceanica during stress exposure and underlined that environmental epigenetic variations could be implicated in the regulation of acclimation and phenotypic differences depending on local conditions.


Assuntos
Alismatales , Metilação de DNA , Aclimatação/genética , Temperatura , Nutrientes , Alismatales/genética
14.
New Phytol ; 239(6): 2126-2137, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37366062

RESUMO

The response of Posidonia oceanica meadows to global warming of the Eastern Mediterranean Sea, where the increase in sea surface temperature (SST) is particularly severe, is poorly investigated. Here, we reconstructed the long-term P. oceanica production in 60 meadows along the Greek Seas over two decades (1997-2018), using lepidochronology. We determined the effect of warming on production by reconstructing the annual and maximum (i.e. August) SST, considering the role of other production drivers related to water quality (i.e. Chla, suspended particulate matter, Secchi depth). Grand mean (±SE) production across all sites and the study period was 48 ± 1.1 mg DW per shoot yr-1 . Production over the last two decades followed a trajectory of decrease, which was related to the concurrent increase in annual SST and SSTaug . Annual SST > 20°C and SSTaug > 26.5°C was related to production decline (GAMM, P < 0.05), while the rest of the tested factors did not help explain the production pattern. Our results indicate a persistent and increasing threat for Eastern Mediterranean meadows, drawing attention to management authorities, highlighting the necessity of reducing local impacts to enhance the resilience of seagrass meadows to global change threats.


Assuntos
Alismatales , Aquecimento Global , Mar Mediterrâneo , Temperatura , Ecossistema
15.
New Phytol ; 239(5): 1692-1706, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37357353

RESUMO

Climate change and extreme climatic events, such as marine heatwaves (MHWs), are threatening seagrass ecosystems. Metabolomics can be used to gain insight into early stress responses in seagrasses and help to develop targeted management and conservation measures. We used metabolomics to understand the temporal and mechanistic response of leaf metabolism in seagrasses to climate change. Two species, temperate Posidonia australis and tropical Halodule uninervis, were exposed to a combination of future warming, simulated MHW with subsequent recovery period, and light deprivation in a mesocosm experiment. The leaf metabolome of P. australis was altered under MHW exposure at ambient light while H. uninervis was unaffected. Light deprivation impacted both seagrasses, with combined effects of heat and low light causing greater alterations in leaf metabolism. There was no MHW recovery in P. australis. Conversely, the heat-resistant leaf metabolome of H. uninervis showed recovery of sugars and intermediates of the tricarboxylic acid cycle under combined heat and low light exposure, suggesting adaptive strategies to long-term light deprivation. Overall, this research highlights how metabolomics can be used to study the metabolic pathways of seagrasses, identifies early indicators of environmental stress and analyses the effects of environmental factors on plant metabolism and health.


Assuntos
Alismatales , Água do Mar , Ecossistema , Alismatales/metabolismo , Metabolômica , Oceanos e Mares
16.
Mol Ecol ; 32(15): 4313-4328, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37271924

RESUMO

Adaptation to local conditions is known to occur in seagrasses; however, knowledge of the genetic basis underlying this phenomenon remains scarce. Here, we analysed Posidonia oceanica from six sites within and around the Stagnone di Marsala, a semi-enclosed coastal lagoon where salinity and temperature exceed the generally described tolerance thresholds of the species. Sea surface temperatures (SSTs) were measured and plant samples were collected for the assessment of morphology, flowering rate and for screening genome-wide polymorphisms using double digest restriction-site-associated DNA sequencing. Results demonstrated more extreme SSTs and salinity levels inside the lagoon than the outer lagoon regions. Morphological results showed significantly fewer and shorter leaves and reduced rhizome growth of P. oceanica from the inner lagoon and past flowering events were recorded only for a meadow farthest away from the lagoon. Using an array of 51,329 single nucleotide polymorphisms, we revealed a clear genetic structure among the study sites and confirmed the genetic isolation and high clonality of the innermost site. In all, 14 outlier loci were identified and annotated with several proteins including those relate to plant stress response, protein transport and regulators of plant-specific developmental events. Especially, five outlier loci showed maximum allele frequency at the innermost site, likely reflecting adaptation to the extreme temperature and salinity regimes, possibly due to the selection of more resistant genotypes and the progressive restriction of gene flow. Overall, this study helps us to disentangle the genetic basis of seagrass adaptation to local environmental conditions and may support future works on assisted evolution in seagrasses.


Assuntos
Alismatales , Salinidade , Temperatura , Oceanos e Mares , Alismatales/genética , Seleção Genética , Mar Mediterrâneo
17.
J Exp Bot ; 74(1): 472-488, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36272111

RESUMO

Understanding species-specific trait responses under future global change scenarios is of importance for conservation efforts and to make informed decisions within management projects. The combined and single effects of seawater acidification and warmer average temperature were investigated by means of the trait responses of Cymodocea serrulata, a tropical seagrass, under experimental conditions. After a 35 d exposure period, biochemical, morphological, and photo-physiological trait responses were measured. Overall, biochemical traits mildly responded under the individual exposure to high temperature and increasing pCO2 values. The response of C. serrulata was limited to a decrease in %C and an increase in the sucrose content in the rhizome under the high temperature treatment, 32 °C. This suggests that this temperature was lower than the maximum tolerance limit for this species. Increasing pCO2 levels increased %C in the rhizome, and also showed a significant increase in leaf δ13C values. The effects of all treatments were sublethal; however, small changes in their traits could affect the ecosystem services they provide. In particular, changes in tissue carbon concentrations may affect carbon storage capacity, one key ecosystem service. The simultaneous study of different types of trait responses contributes to establish a holistic framework of seagrass ecosystem health under climate change.


Assuntos
Alismatales , Água do Mar , Água do Mar/química , Ecossistema , Alismatales/fisiologia , Temperatura Alta , Temperatura , Carbono , Dióxido de Carbono , Concentração de Íons de Hidrogênio
18.
Plant Cell ; 32(7): 2158-2177, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32409319

RESUMO

Plant innate immunity relies on nucleotide binding leucine-rich repeat receptors (NLRs) that recognize pathogen-derived molecules and activate downstream signaling pathways. We analyzed the variation in NLR gene copy number and identified plants with a low number of NLR genes relative to sister species. We specifically focused on four plants from two distinct lineages, one monocot lineage (Alismatales) and one eudicot lineage (Lentibulariaceae). In these lineages, the loss of NLR genes coincides with loss of the well-known downstream immune signaling complex ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1)/PHYTOALEXIN DEFICIENT 4 (PAD4). We expanded our analysis across whole proteomes and found that other characterized immune genes were absent only in Lentibulariaceae and Alismatales. Additionally, we identified genes of unknown function that were convergently lost together with EDS1/PAD4 in five plant species. Gene expression analyses in Arabidopsis (Arabidopsis thaliana) and Oryza sativa revealed that several homologs of the candidates are differentially expressed during pathogen infection, drought, and abscisic acid treatment. Our analysis provides evolutionary evidence for the rewiring of plant immunity in some plant lineages, as well as the coevolution of the EDS1/PAD4 pathway and drought responses.


Assuntos
Alismatales/genética , Proteínas NLR/genética , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Alismatales/imunologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Hidrolases de Éster Carboxílico/genética , Proteínas de Ligação a DNA/genética , Resistência à Doença/genética , Resistência à Doença/imunologia , Secas , Evolução Molecular , Dosagem de Genes , Regulação da Expressão Gênica de Plantas , Magnoliopsida/genética , Magnoliopsida/imunologia , Oryza/genética , Filogenia , Transdução de Sinais , Sintenia
19.
Proc Natl Acad Sci U S A ; 117(45): 28160-28166, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106409

RESUMO

The global distribution of primary production and consumption by humans (fisheries) is well-documented, but we have no map linking the central ecological process of consumption within food webs to temperature and other ecological drivers. Using standardized assays that span 105° of latitude on four continents, we show that rates of bait consumption by generalist predators in shallow marine ecosystems are tightly linked to both temperature and the composition of consumer assemblages. Unexpectedly, rates of consumption peaked at midlatitudes (25 to 35°) in both Northern and Southern Hemispheres across both seagrass and unvegetated sediment habitats. This pattern contrasts with terrestrial systems, where biotic interactions reportedly weaken away from the equator, but it parallels an emerging pattern of a subtropical peak in marine biodiversity. The higher consumption at midlatitudes was closely related to the type of consumers present, which explained rates of consumption better than consumer density, biomass, species diversity, or habitat. Indeed, the apparent effect of temperature on consumption was mostly driven by temperature-associated turnover in consumer community composition. Our findings reinforce the key influence of climate warming on altered species composition and highlight its implications for the functioning of Earth's ecosystems.


Assuntos
Biodiversidade , Clima , Pesqueiros , Cadeia Alimentar , Alismatales , Animais , Biomassa , Feminino , Peixes , Geografia , Aquecimento Global , Humanos , Masculino
20.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108463

RESUMO

Posidonia oceanica (L.) Delile is the main seagrass plant in the Mediterranean basin that forms huge underwater meadows. Its leaves, when decomposed, are transported to the coasts, where they create huge banquettes that protect the beaches from sea erosion. Its roots and rhizome fragments, instead, aggregate into fibrous sea balls, called egagropili, that are shaped and accumulated by the waves along the shoreline. Their presence on the beach is generally disliked by tourists, and, thus, local communities commonly treat them as waste to remove and discard. Posidonia oceanica egagropili might represent a vegetable lignocellulose biomass to be valorized as a renewable substrate to produce added value molecules in biotechnological processes, as bio-absorbents in environmental decontamination, to prepare new bioplastics and biocomposites, or as insulating and reinforcement materials for construction and building. In this review, the structural characteristics, and the biological role of Posidonia oceanica egagropili are described, as well as their applications in different fields as reported in scientific papers published in recent years.


Assuntos
Alismatales , Raízes de Plantas , Rizoma , Alismatales/química , Folhas de Planta , Mar Mediterrâneo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA