Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Vet Res ; 55(1): 83, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943190

RESUMO

Migratory birds are important vectors for virus transmission, how migratory birds recognize viruses and viruses are sustained in birds is still enigmatic. As an animal model for waterfowl among migratory birds, studying and dissecting the antiviral immunity and viral evasion in duck cells may pave a path to deciphering these puzzles. Here, we studied the mechanism of antiviral autophagy mediated by duck STING in DEF cells. The results collaborated that duck STING could significantly enhance LC3B-II/I turnover, LC3B-EGFP puncta formation, and mCherry/EGFP ratio, indicating that duck STING could induce autophagy. The autophagy induced by duck STING is not affected by shRNA knockdown of ATG5 expression, deletion of the C-terminal tail of STING, or TBK1 inhibitor BX795 treatment, indicating that duck STING activated non-classical selective autophagy is independent of interaction with TBK1, TBK1 phosphorylation, and interferon (IFN) signaling. The STING R235A mutant and Sar1A/B kinase mutant abolished duck STING induced autophagy, suggesting binding with cGAMP and COPII complex mediated transport are the critical prerequisite. Duck STING interacted with LC3B through LIR motifs to induce autophagy, the LIR 4/7 motif mutants of duck STING abolished the interaction with LC3B, and neither activated autophagy nor IFN expression, indicating that duck STING associates with LC3B directed autophagy and dictated innate immunity activation. Finally, we found that duck STING mediated autophagy significantly inhibited duck plague virus (DPV) infection via ubiquitously degraded viral proteins. Our study may shed light on one scenario about the control and evasion of diseases transmitted by migratory birds.


Assuntos
Autofagia , Patos , Transdução de Sinais , Animais , Mardivirus/fisiologia , Interferons/metabolismo , Alphaherpesvirinae/fisiologia , Imunidade Inata , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Infecções por Poxviridae/veterinária , Infecções por Poxviridae/imunologia , Infecções por Poxviridae/virologia
2.
J Virol ; 96(4): e0151021, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34935440

RESUMO

Recent studies have demonstrated that the signaling activity of the cytosolic pathogen sensor retinoic acid-inducible gene-I (RIG-I) is modulated by a variety of posttranslational modifications (PTMs) to fine-tune the antiviral type I interferon (IFN) response. Whereas K63-linked ubiquitination of the RIG-I caspase activation and recruitment domains (CARDs) catalyzed by TRIM25 or other E3 ligases activates RIG-I, phosphorylation of RIG-I at S8 and T170 represses RIG-I signal transduction by preventing the TRIM25-RIG-I interaction and subsequent RIG-I ubiquitination. While strategies to suppress RIG-I signaling by interfering with its K63-polyubiquitin-dependent activation have been identified for several viruses, evasion mechanisms that directly promote RIG-I phosphorylation to escape antiviral immunity are unknown. Here, we show that the serine/threonine (Ser/Thr) kinase US3 of herpes simplex virus 1 (HSV-1) binds to RIG-I and phosphorylates RIG-I specifically at S8. US3-mediated phosphorylation suppressed TRIM25-mediated RIG-I ubiquitination, RIG-I-MAVS binding, and type I IFN induction. We constructed a mutant HSV-1 encoding a catalytically-inactive US3 protein (K220A) and found that, in contrast to the parental virus, the US3 mutant HSV-1 was unable to phosphorylate RIG-I at S8 and elicited higher levels of type I IFNs, IFN-stimulated genes (ISGs), and proinflammatory cytokines in a RIG-I-dependent manner. Finally, we show that this RIG-I evasion mechanism is conserved among the alphaherpesvirus US3 kinase family. Collectively, our study reveals a novel immune evasion mechanism of herpesviruses in which their US3 kinases phosphorylate the sensor RIG-I to keep it in the signaling-repressed state. IMPORTANCE Herpes simplex virus 1 (HSV-1) establishes lifelong latency in the majority of the human population worldwide. HSV-1 occasionally reactivates to produce infectious virus and to facilitate dissemination. While often remaining subclinical, both primary infection and reactivation occasionally cause debilitating eye diseases, which can lead to blindness, as well as life-threatening encephalitis and newborn infections. To identify new therapeutic targets for HSV-1-induced diseases, it is important to understand the HSV-1-host interactions that may influence infection outcome and disease. Our work uncovered direct phosphorylation of the pathogen sensor RIG-I by alphaherpesvirus-encoded kinases as a novel viral immune escape strategy and also underscores the importance of RNA sensors in surveilling DNA virus infection.


Assuntos
Proteína DEAD-box 58/metabolismo , Herpesvirus Humano 1/imunologia , Evasão da Resposta Imune , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Imunológicos/metabolismo , Proteínas Virais/metabolismo , Alphaherpesvirinae/genética , Alphaherpesvirinae/metabolismo , Alphaherpesvirinae/fisiologia , Sequência de Aminoácidos , Proteína DEAD-box 58/química , Células HEK293 , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Humanos , Imunidade Inata , Interferon Tipo I/metabolismo , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Receptores Imunológicos/química , Proteínas Virais/genética
3.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33361431

RESUMO

Latent and recurrent productive infection of long-living cells, such as neurons, enables alphaherpesviruses to persist in their host populations. Still, the viral factors involved in these events remain largely obscure. Using a complementation assay in compartmented primary peripheral nervous system (PNS) neuronal cultures, we previously reported that productive replication of axonally delivered genomes is facilitated by pseudorabies virus (PRV) tegument proteins. Here, we sought to unravel the role of tegument protein UL13 in this escape from silencing. We first constructed four new PRV mutants in the virulent Becker strain using CRISPR/Cas9-mediated gene replacement: (i) PRV Becker defective for UL13 expression (PRV ΔUL13), (ii) PRV where UL13 is fused to eGFP (PRV UL13-eGFP), and two control viruses (iii and iv) PRV where VP16 is fused with mTurquoise at either the N terminus (PRV mTurq-VP16) or the C terminus (PRV VP16-mTurq). Live-cell imaging of PRV capsids showed efficient retrograde transport after axonal infection with PRV UL13-eGFP, although we did not detect dual-color particles. However, immunofluorescence staining of particles in mid-axons indicated that UL13 might be cotransported with PRV capsids in PNS axons. Superinfecting nerve cell bodies with UV-inactivated PRV ΔUL13 failed to efficiently promote escape from genome silencing compared to UV-PRV wild type and UV-PRV UL13-eGFP superinfection. However, UL13 does not act directly in the escape from genome silencing, as adeno-associated virus (AAV)-mediated UL13 expression in neuronal cell bodies was not sufficient to provoke escape from genome silencing. Based on this, we suggest that UL13 may contribute to initiation of productive infection through phosphorylation of other tegument proteins.IMPORTANCE Alphaherpesviruses have mastered various strategies to persist in an immunocompetent host, including the induction of latency and reactivation in peripheral nervous system (PNS) ganglia. We recently discovered that the molecular mechanism underlying escape from latency by the alphaherpesvirus pseudorabies virus (PRV) relies on a structural viral tegument protein. This study aimed at unravelling the role of tegument protein UL13 in PRV escape from latency. First, we confirmed the use of CRISPR/Cas9-mediated gene replacement as a versatile tool to modify the PRV genome. Next, we used our new set of viral mutants and AAV vectors to conclude the indirect role of UL13 in PRV escape from latency in primary neurons, along with its spatial localization during retrograde capsid transport in axons. Based on these findings, we speculate that UL13 phosphorylates one or more tegument proteins, thereby priming these putative proteins to induce escape from genome silencing.


Assuntos
Inativação Gênica , Genoma Viral/genética , Herpesvirus Suídeo 1/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Virais/metabolismo , Alphaherpesvirinae/fisiologia , Animais , Transporte Axonal , Sistemas CRISPR-Cas , Capsídeo/metabolismo , Células Cultivadas , Mutação , Neurônios/metabolismo , Neurônios/virologia , Proteínas Serina-Treonina Quinases/genética , Suínos , Proteínas Virais/genética , Latência Viral
4.
Curr Issues Mol Biol ; 42: 551-604, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33622984

RESUMO

Alphaherpesvirus tegument assembly, secondary envelopment, and exocytosis processes are understood in broad strokes, but many of the individual steps in this pathway, and their molecular and cell biological details, remain unclear. Viral tegument and membrane proteins form an extensive and robust protein interaction network, such that essentially any structural protein can be deleted, yet particles are still assembled, enveloped, and released from infected cells. We conceptually divide the tegument proteins into three groups: conserved inner and outer teguments that participate in nucleocapsid and membrane contacts, respectively; and 'middle' tegument proteins, consisting of some of the most abundant tegument proteins that serve as central hubs in the protein interaction network, yet which are unique to the alphaherpesviruses. We then discuss secondary envelopment, reviewing the tegument-membrane contacts and cellular factors that drive this process. We place this viral process in the context of cell biological processes, including the endocytic pathway, ESCRT machinery, autophagy, secretory pathway, intracellular transport, and exocytosis mechanisms. Finally, we speculate about potential relationships between cellular defenses against oligomerizing or aggregating membrane proteins and the envelopment and egress of viruses.


Assuntos
Exocitose , Interações Hospedeiro-Patógeno , Montagem de Vírus , Fenômenos Fisiológicos Virais , Liberação de Vírus , Alphaherpesvirinae/fisiologia , Autofagia , Transporte Biológico , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Humanos
5.
J Virol ; 94(4)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31748393

RESUMO

Viruses may hijack glycolysis, glutaminolysis, or fatty acid ß-oxidation of host cells to provide the energy and macromolecules required for efficient viral replication. Marek's disease virus (MDV) causes a deadly lymphoproliferative disease in chickens and modulates metabolism of host cells. Metabolic analysis of MDV-infected chicken embryonic fibroblasts (CEFs) identified elevated levels of metabolites involved in glutamine catabolism, such as glutamic acid, alanine, glycine, pyrimidine, and creatine. In addition, our results demonstrate that glutamine uptake is elevated by MDV-infected cells in vitro Although glutamine, but not glucose, deprivation significantly reduced cell viability in MDV-infected cells, both glutamine and glucose were required for virus replication and spread. In the presence of minimum glutamine requirements based on optimal cell viability, virus replication was partially rescued by the addition of the tricarboxylic acid (TCA) cycle intermediate, α-ketoglutarate, suggesting that exogenous glutamine is an essential carbon source for the TCA cycle to generate energy and macromolecules required for virus replication. Surprisingly, the inhibition of carnitine palmitoyltransferase 1a (CPT1a), which is elevated in MDV-infected cells, by chemical (etomoxir) or physiological (malonyl-CoA) inhibitors, did not reduce MDV replication, indicating that MDV replication does not require fatty acid ß-oxidation. Taken together, our results demonstrate that MDV infection activates anaplerotic substrate from glucose to glutamine to provide energy and macromolecules required for MDV replication, and optimal MDV replication occurs when the cells do not depend on mitochondrial ß-oxidation.IMPORTANCE Viruses can manipulate host cellular metabolism to provide energy and essential biosynthetic requirements for efficient replication. Marek's disease virus (MDV), an avian alphaherpesvirus, causes a deadly lymphoma in chickens and hijacks host cell metabolism. This study provides evidence for the importance of glycolysis and glutaminolysis, but not fatty acid ß-oxidation, as an essential energy source for the replication and spread of MDV. Moreover, it suggests that in MDV infection, as in many tumor cells, glutamine is used for generation of energetic and biosynthetic requirements of the MDV infection, while glucose is used biosynthetically.


Assuntos
Glucose/metabolismo , Glutamina/metabolismo , Mardivirus/fisiologia , Alphaherpesvirinae/metabolismo , Alphaherpesvirinae/fisiologia , Animais , Embrião de Galinha , Galinhas/virologia , Glucose/fisiologia , Glutamina/fisiologia , Glicólise/fisiologia , Herpesvirus Galináceo 2/metabolismo , Herpesvirus Galináceo 2/fisiologia , Mardivirus/metabolismo , Doença de Marek/metabolismo , Doença de Marek/virologia , Proteínas Virais/metabolismo , Replicação Viral/fisiologia
6.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31996426

RESUMO

ß-Defensins protect the respiratory tract against the myriad of microbial pathogens entering the airways with each breath. However, this potentially hostile environment is known to serve as a portal of entry for herpesviruses. The lack of suitable respiratory model systems has precluded understanding of how herpesvirus virions overcome the abundant mucosal ß-defensins during host invasion. We demonstrate how a central alphaherpesvirus, equine herpesvirus type 1 (EHV1), actually exploits ß-defensins to invade its host and initiate viral spread. The equine ß-defensins (eBDs) eBD1, -2, and -3 were produced and secreted along the upper respiratory tract. Despite the marked antimicrobial action of eBD2 and -3 against many bacterial and viral pathogens, EHV1 virions were resistant to eBDs through the action of the viral glycoprotein M envelope protein. Pretreatment of EHV1 virions with eBD2 and -3 increased the subsequent infection of rabbit kidney (RK13) cells, which was dependent on viral N-linked glycans. eBD2 and -3 also caused the aggregation of EHV1 virions on the cell surface of RK13 cells. Pretreatment of primary equine respiratory epithelial cells (EREC) with eBD1, -2, and -3 resulted in increased EHV1 virion binding to and infection of these cells. EHV1-infected EREC, in turn, showed an increased production of eBD2 and -3 compared to that seen in mock- and influenza virus-infected EREC. In addition, these eBDs attracted leukocytes, which are essential for EHV1 dissemination and which serve as latent infection reservoirs. These novel mechanisms provide new insights into herpesvirus respiratory tract infection and pathogenesis.IMPORTANCE How herpesviruses circumvent mucosal defenses to promote infection of new hosts through the respiratory tract remains unknown due to a lack of host-specific model systems. We used the alphaherpesvirus equine herpesvirus type 1 (EHV1) and equine respiratory tissues to decipher this key event in general alphaherpesvirus pathogenesis. In contrast to several respiratory viruses and bacteria, EHV1 resisted potent antimicrobial equine ß-defensins (eBDs) eBD2 and eBD3 by the action of glycoprotein M. Instead, eBD2 and -3 facilitated EHV1 particle aggregation and infection of rabbit kidney (RK13) cells. In addition, virion binding to and subsequent infection of respiratory epithelial cells were increased upon preincubation of these cells with eBD1, -2, and -3. Infected cells synthesized eBD2 and -3, promoting further host cell invasion by EHV1. Finally, eBD1, -2, and -3 recruited leukocytes, which are well-known EHV1 dissemination and latency vessels. The exploitation of host innate defenses by herpesviruses during the early phase of host colonization indicates that highly specialized strategies have developed during host-pathogen coevolution.


Assuntos
Alphaherpesvirinae/fisiologia , Anti-Infecciosos/farmacologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , beta-Defensinas/farmacologia , Animais , Anti-Infecciosos/efeitos adversos , Linhagem Celular , Células Epiteliais/virologia , Infecções por Herpesviridae/virologia , Herpesvirus Equídeo 1 , Doenças dos Cavalos/virologia , Cavalos , Interações Hospedeiro-Patógeno/fisiologia , Evasão da Resposta Imune , Coelhos , Infecções Respiratórias/tratamento farmacológico , Proteínas do Envelope Viral , beta-Defensinas/efeitos adversos
7.
J Neurovirol ; 26(2): 297-309, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31502208

RESUMO

Meeting Report on the 9th Annual Symposium of the Colorado Alphaherpesvirus Latency Society (CALS) held on May 8-11, 2019, in Vail, CO.


Assuntos
Alphaherpesvirinae/fisiologia , Infecções por Herpesviridae/virologia , Latência Viral , Colorado , Humanos , Sociedades Médicas
8.
J Neurovirol ; 24(6): 797-812, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30414047

RESUMO

Meeting Report on the 8th Annual Symposium of the Colorado Alphaherpesvirus Latency Society (CALS), held on May 16-19, 2018, in Vail, Colorado.


Assuntos
Alphaherpesvirinae/fisiologia , Infecções por Herpesviridae/virologia , Latência Viral/fisiologia , Colorado , Humanos
9.
Adv Exp Med Biol ; 1045: 85-102, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896664

RESUMO

Herpes simplex virus (HSV) encephalitis is the most common cause of sporadic fatal encephalitis worldwide, and central nervous system (CNS) involvement is observed in approximately one-third of neonatal HSV infections . In recent years, single-gene inborn errors of innate immunity have been shown to be associated with susceptibility to HSV encephalitis . Temporal lobe abnormalities revealed by magnetic resonance imaging-the most sensitive imaging method for HSV encephalitis-are considered strong evidence for the disease. Detection of HSV DNA in the cerebrospinal fluid by polymerase chain reaction (PCR) is the gold standard for the diagnosis of HSV encephalitis and neonatal meningoencephalitis. Intravenous acyclovir for 14-21 days is the standard treatment in HSV encephalitis. Neurological outcomes in neonates are improved by intravenous high-dose acyclovir for 21 days followed by oral acyclovir suppressive therapy for 6 months. Varicella-zoster virus (VZV) causes a wide range of CNS manifestations. VZV encephalitis typically occurs after primary infection, and reactivation of VZV may cause encephalitis. On the other hand, VZV infection of cerebral arteries produces vasculopathy, which can manifest as ischemic stroke. Vasculopathy can occur after primary infection or reactivation of VZV. PCR detection of VZV DNA in the cerebrospinal fluid can be used for the diagnosis of encephalitis or vasculopathy. Although there are no controlled treatment trials to assess VZV treatments of encephalitis or vasculopathy, intravenous acyclovir is a common treatment.


Assuntos
Alphaherpesvirinae/fisiologia , Infecções por Herpesviridae/virologia , Doenças do Sistema Nervoso/virologia , Alphaherpesvirinae/efeitos dos fármacos , Alphaherpesvirinae/genética , Animais , Antivirais/uso terapêutico , Infecções por Herpesviridae/diagnóstico por imagem , Infecções por Herpesviridae/tratamento farmacológico , Humanos , Doenças do Sistema Nervoso/diagnóstico por imagem , Doenças do Sistema Nervoso/tratamento farmacológico
10.
Adv Anat Embryol Cell Biol ; 223: 171-193, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28528444

RESUMO

All viruses produce infectious particles that possess some degree of stability in the extracellular environment yet disassemble upon cell contact and entry. For the alphaherpesviruses, which include many neuroinvasive viruses of mammals, these metastable virions consist of an icosahedral capsid surrounded by a protein matrix (referred to as the tegument) and a lipid envelope studded with glycoproteins. Whereas the capsid of these viruses is a rigid structure encasing the DNA genome, the tegument and envelope are dynamic assemblies that orchestrate a sequential series of events that ends with the delivery of the genome into the nucleus. These particles are adapted to infect two different polarized cell types in their hosts: epithelial cells and neurons of the peripheral nervous system. This review considers how the virion is assembled into a primed state and is targeted to infect these cell types such that the incoming particles can subsequently negotiate the diverse environments they encounter on their way from plasma membrane to nucleus and thereby achieve their remarkably robust neuroinvasive infectious cycle.


Assuntos
Alphaherpesvirinae/fisiologia , Montagem de Vírus/fisiologia , Animais , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Humanos , Vírion/metabolismo
11.
Proteomics ; 15(12): 1943-56, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25764121

RESUMO

Viruses are intracellular parasites that can only replicate and spread in cells of susceptible hosts. Alpha herpesviruses (α-HVs) contain double-stranded DNA genomes of at least 120 kb, encoding for 70 or more genes. The viral genome is contained in an icosahedral capsid that is surrounded by a proteinaceous tegument layer and a lipid envelope. Infection starts in epithelial cells and spreads to the peripheral nervous system. In the natural host, α-HVs establish a chronic latent infection that can be reactivated and rarely spread to the CNS. In the nonnatural host, viral infection will in most cases spread to the CNS with often fatal outcome. The host response plays a crucial role in the outcome of viral infection. α-HVs do not encode all the genes required for viral replication and spread. They need a variety of host gene products including RNA polymerase, ribosomes, dynein, and kinesin. As a result, the infected cell is dramatically different from the uninfected cell revealing a complex and dynamic interplay of viral and host components required to complete the virus life cycle. In this review, we describe the pivotal contribution of MS-based proteomics studies over the past 15 years to understand the complicated life cycle and pathogenesis of four α-HV species from the alphaherpesvirinae subfamily: Herpes simplex virus-1, varicella zoster virus, pseudorabies virus and bovine herpes virus-1. We describe the viral proteome dynamics during host infection and the host proteomic response to counteract such pathogens.


Assuntos
Alphaherpesvirinae/fisiologia , Infecções por Herpesviridae/metabolismo , Interações Hospedeiro-Patógeno , Espectrometria de Massas/métodos , Proteoma/análise , Proteômica/métodos , Proteínas Virais/metabolismo , Animais , Bovinos , Infecções por Herpesviridae/virologia , Replicação Viral
12.
J Virol ; 87(17): 9431-40, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23804637

RESUMO

Alphaherpesviruses, including pseudorabies virus (PRV), spread directionally within the nervous systems of their mammalian hosts. Three viral membrane proteins are required for efficient anterograde-directed spread of infection in neurons, including Us9 and a heterodimer composed of the glycoproteins gE and gI. We previously demonstrated that the kinesin-3 motor KIF1A mediates anterograde-directed transport of viral particles in axons of cultured peripheral nervous system (PNS) neurons. The PRV Us9 protein copurifies with KIF1A, recruiting the motor to transport vesicles, but at least one unidentified additional viral protein is necessary for this interaction. Here we show that gE/gI are required for efficient anterograde transport of viral particles in axons by mediating the interaction between Us9 and KIF1A. In the absence of gE/gI, viral particles containing green fluorescent protein (GFP)-tagged Us9 are assembled in the cell body but are not sorted efficiently into axons. Importantly, we found that gE/gI are necessary for efficient copurification of KIF1A with Us9, especially at early times after infection. We also constructed a PRV recombinant that expresses a functional gE-GFP fusion protein and used affinity purification coupled with mass spectrometry to identify gE-interacting proteins. Several viral and host proteins were found to associate with gE-GFP. Importantly, both gI and Us9, but not KIF1A, copurified with gE-GFP. We propose that gE/gI are required for efficient KIF1A-mediated anterograde transport of viral particles because they indirectly facilitate or stabilize the interaction between Us9 and KIF1A.


Assuntos
Alphaherpesvirinae/fisiologia , Herpesvirus Suídeo 1/fisiologia , Cinesinas/fisiologia , Lipoproteínas/fisiologia , Neurônios/fisiologia , Neurônios/virologia , Fosfoproteínas/fisiologia , Proteínas do Envelope Viral/fisiologia , Proteínas Virais/fisiologia , Alphaherpesvirinae/genética , Alphaherpesvirinae/patogenicidade , Animais , Transporte Axonal/fisiologia , Linhagem Celular , Células Cultivadas , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/patogenicidade , Interações Hospedeiro-Patógeno , Peptídeos e Proteínas de Sinalização Intracelular , Lipoproteínas/genética , Células PC12 , Fosfoproteínas/genética , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/fisiologia , Suínos , Proteínas do Envelope Viral/genética , Proteínas Virais/genética , Vírion/fisiologia
13.
Virology ; 597: 110159, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38943781

RESUMO

Therapies targeting virus-host interactions are seen as promising strategies for treating gallid alphaherpesvirus 1 (ILTV) infection. Our study revealed a biphasic activation of two MAPK cascade pathways, MEK/ERK and p38 MAPK, as a notably activated host molecular event in response to ILTV infection. It exhibits antiviral functions at different stages of infection. Initially, the MEK/ERK pathway is activated upon viral invasion, leading to a broad suppression of metabolic pathways crucial for ILTV replication, thereby inhibiting viral replication from the early stage of ILTV infection. As the viral replication progresses, the p38 MAPK pathway activates its downstream transcription factor, STAT1, further hindering viral replication. Interestingly, ILTV overcomes this biphasic antiviral barrier by hijacking host p38-AKT axis, which protects infected cells from the apoptosis induced by infection and establishes an intracellular equilibrium conducive to extensive ILTV replication. These insights could provide potential therapeutic targets for ILTV infection.


Assuntos
Infecções por Herpesviridae , Sistema de Sinalização das MAP Quinases , Replicação Viral , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/metabolismo , Alphaherpesvirinae/fisiologia , Alphaherpesvirinae/genética , Alphaherpesvirinae/metabolismo , Interações Hospedeiro-Patógeno , Linhagem Celular , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética
14.
Rev Med Virol ; 22(6): 378-91, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22807192

RESUMO

Alphaherpesvirus virions infect neurons and are transported in axons for long distance spread within the host nervous system. The assembly state of newly made herpesvirus particles during anterograde transport in axons is an essential question in alphaherpesvirus biology. The structure of the particle has remained both elusive and controversial for the past two decades, with conflicting evidence from EM, immunofluorescence, and live cell imaging studies. Two opposing models have been proposed-the Married and Separate Models. Under the Married Model, infectious virions are assembled in the neuronal cell body before sorting into axons and then traffic inside a transport vesicle. Conversely, the Separate Model postulates that vesicles containing viral membrane proteins are sorted into axons independent of capsids, with final assembly of mature virions occurring at a distant egress site. Recently, a complementary series of studies employing high-resolution EM and live cell fluorescence microscopy have provided evidence consistent with the Married Model, whereas other studies offer evidence supporting the Separate Model. In this review, we compare and discuss the published data and attempt to reconcile divergent findings and interpretations as they relate to these models.


Assuntos
Alphaherpesvirinae/fisiologia , Transporte Axonal/fisiologia , Capsídeo/metabolismo , Neurônios/virologia , Vírion/fisiologia , Alphaherpesvirinae/ultraestrutura , Animais , Proteínas do Capsídeo/metabolismo , Humanos , Modelos Biológicos , Neurônios/metabolismo , Neurônios/ultraestrutura , Proteínas Virais/metabolismo , Vírion/ultraestrutura
15.
BMC Vet Res ; 9: 185, 2013 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-24053192

RESUMO

BACKGROUND: Herpes simplex virus 1 (HSV-1) and varicella zoster virus (VZV) cause extensive intra-ocular and neural infections in humans and are closely related to Felid herpes virus 1 (FeHV-1). We report the extent of intra-ocular replication and the extent and morphological aspects of neural replication during the acute and latent phases of FeHV-1 infection. Juvenile, SPF cats were inoculated with FeHV-1. Additional cats were used as negative controls. Cats were euthanized on days 6, 10, and 30 post-inoculation. RESULTS: FeHV-1 was isolated from the conjunctiva, cornea, uveal tract, retina, optic nerve, ciliary ganglion (CG), pterygopalatine ganglion (PTPG), trigeminal ganglion (TG), brainstem, visual cortex, cerebellum, and olfactory bulb of infected cats during the acute phase, but not the cranial cervical ganglion (CCG) and optic chiasm. Viral DNA was detected in all tissues during acute infection by a real-time quantitative PCR assay. On day 30, viral DNA was detected in all TG, all CCG, and 2 PTPG. Histologically mild inflammation and ganglion cell loss were noted within the TG during acute, but not latent infection. Using linear regression, a strong correlation existed between clinical score and day 30 viral DNA copy number within the TG. CONCLUSIONS: The correlation between clinical score and day 30 viral DNA copy number suggests the severity of the acute clinical infection is related to the quantity of latent viral DNA. The histologic response was similar to that seen during HSV-1 or VZV infection. To the author's knowledge this is the first report of FeHV-1 infection involving intraocular structures and autonomic ganglia.


Assuntos
Alphaherpesvirinae/classificação , Doenças do Gato/virologia , Olho/virologia , Infecções por Herpesviridae/veterinária , Sistema Nervoso/virologia , Latência Viral/fisiologia , Alphaherpesvirinae/fisiologia , Animais , Gatos , DNA Viral/genética , Feminino , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Organismos Livres de Patógenos Específicos
17.
Autophagy ; 18(8): 1801-1821, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34822318

RESUMO

Alphaherpesvirus infection results in severe health consequences in a wide range of hosts. USPs are the largest subfamily of deubiquitinating enzymes that play critical roles in immunity and other cellular functions. To investigate the role of USPs in alphaherpesvirus replication, we assessed 13 USP inhibitors for PRV replication. Our data showed that all the tested compounds inhibited PRV replication, with the USP14 inhibitor b-AP15 exhibiting the most dramatic effect. Ablation of USP14 also influenced PRV replication, whereas replenishment of USP14 in USP14 null cells restored viral replication. Although inhibition of USP14 induced the K63-linked ubiquitination of PRV VP16 protein, its degradation was not dependent on the proteasome. USP14 directly bound to ubiquitin chains on VP16 through its UBL domain during the early stage of viral infection. Moreover, USP14 inactivation stimulated EIF2AK3/PERK- and ERN1/IRE1-mediated signaling pathways, which were responsible for VP16 degradation through SQSTM1/p62-mediated selective macroautophagy/autophagy. Ectopic expression of non-ubiquitinated VP16 fully rescued PRV replication. Challenge of mice with b-AP15 activated ER stress and autophagy and inhibited PRV infection in vivo. Our results suggested that USP14 was a potential therapeutic target to treat alphaherpesvirus-induced infectious diseases.Abbreviations ATF4: activating transcription factor 4; ATF6: activating transcription factor 6; ATG5: autophagy related 5; ATG12: autophagy related 12; CCK-8: cell counting kit-8; Co-IP: co-immunoprecipitation; CRISPR: clustered regulatory interspaced short palindromic repeat; Cas9: CRISPR associated system 9; DDIT3/CHOP: DNA-damage inducible transcript 3; DNAJB9/ERdj4: DnaJ heat shock protein family (Hsp40) member B9; DUBs: deubiquitinases; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EP0: ubiquitin E3 ligase ICP0; ER: endoplasmic reticulum; ERN1/IRE1: endoplasmic reticulum (ER) to nucleus signaling 1; FOXO1: forkhead box O1; FRET: Förster resonance energy transfer; HSPA5/BiP: heat shock protein 5; HSV: herpes simplex virus; IE180: transcriptional regulator ICP4; MAP1LC3/LC3: microtube-associated protein 1 light chain 3; MOI: multiplicity of infection; MTOR: mechanistic target of rapamycin kinase; PPP1R15A/GADD34: protein phosphatase 1, regulatory subunit 15A; PRV: pseudorabies virus; PRV gB: PRV glycoprotein B; PRV gE: PRV glycoprotein E; qRT-PCR: quantitative real-time polymerase chain reaction; sgRNA: single guide RNA; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TCID50: tissue culture infective dose; UB: ubiquitin; UBA: ubiquitin-associated domain; UBL: ubiquitin-like domain; UL9: DNA replication origin-binding helicase; UPR: unfolded protein response; USPs: ubiquitin-specific proteases; VHS: virion host shutoff; VP16: viral protein 16; XBP1: X-box binding protein 1; XBP1s: small XBP1; XBP1(t): XBP1-total.


Assuntos
Alphaherpesvirinae , Autofagia , Estresse do Retículo Endoplasmático , Proteína Vmw65 do Vírus do Herpes Simples , Ubiquitina Tiolesterase , Alphaherpesvirinae/patogenicidade , Alphaherpesvirinae/fisiologia , Animais , Proliferação de Células , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Macroautofagia , Camundongos , Proteína Sequestossoma-1 , Ubiquitina Tiolesterase/metabolismo
18.
Biochim Biophys Acta ; 1799(3-4): 257-65, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19682612

RESUMO

The immediate early genes of the alpha-herpesviruses HSV and VZV are transcriptionally regulated by viral and cellular factors in a complex combinatorial manner. Despite this complexity and the apparent redundancy of activators, the expression of the viral IE genes is critically dependent upon the cellular transcriptional coactivator HCF-1. Although the role of HCF-1 had remained elusive, recent studies have demonstrated that the protein is a component of multiple chromatin modification complexes including the Set1/MLL1 histone H3K4 methyltransferases. Studies using model viral promoter-reporter systems as well as analyses of components recruited to the viral genome during the initiation of infection have elucidated the significance of HCF-1 chromatin modification complexes in contributing to the final state of modified histones assembled on the viral IE promoters. Strikingly, the absence of HCF-1 results in the accumulation of nucleosomes bearing repressive marks on the viral IE promoters and silencing of viral gene expression.


Assuntos
Alphaherpesvirinae/fisiologia , Cromatina/metabolismo , Regulação Viral da Expressão Gênica/fisiologia , Genes Precoces/genética , Fator C1 de Célula Hospedeira/metabolismo , Metilação de DNA , Histonas/metabolismo , Fator C1 de Célula Hospedeira/genética , Humanos , Transcrição Gênica
19.
J Gen Virol ; 92(Pt 1): 18-30, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20943887

RESUMO

The US3 protein kinase is conserved over the alphaherpesvirus subfamily. Increasing evidence shows that, although the kinase is generally not required for virus replication in cell culture, it plays a pivotal and in some cases an essential role in virus virulence in vivo. The US3 protein is a multifunctional serine/threonine kinase that is involved in viral gene expression, virion morphogenesis, remodelling the actin cytoskeleton and the evasion of several antiviral host responses. In the current review, both the well conserved and virus-specific functions of alphaherpesvirus US3 protein kinase orthologues will be discussed.


Assuntos
Alphaherpesvirinae/enzimologia , Alphaherpesvirinae/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Alphaherpesvirinae/genética , Alphaherpesvirinae/patogenicidade , Animais , Sequência Conservada , Citoesqueleto/metabolismo , Humanos , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Montagem de Vírus , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA