Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 432
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 79(3): 153, 2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35217915

RESUMO

Insight into human tooth epithelial stem cells and their biology is sparse. Tissue-derived organoid models typically replicate the tissue's epithelial stem cell compartment. Here, we developed a first-in-time epithelial organoid model starting from human tooth. Dental follicle (DF) tissue, isolated from unerupted wisdom teeth, efficiently generated epithelial organoids that were long-term expandable. The organoids displayed a tooth epithelial stemness phenotype similar to the DF's epithelial cell rests of Malassez (ERM), a compartment containing dental epithelial stem cells. Single-cell transcriptomics reinforced this organoid-ERM congruence, and uncovered novel, mouse-mirroring stem cell features. Exposure of the organoids to epidermal growth factor induced transient proliferation and eventual epithelial-mesenchymal transition, highly mimicking events taking place in the ERM in vivo. Moreover, the ERM stemness organoids were able to unfold an ameloblast differentiation process, further enhanced by transforming growth factor-ß (TGFß) and abrogated by TGFß receptor inhibition, thereby reproducing TGFß's known key position in amelogenesis. Interestingly, by creating a mesenchymal-epithelial composite organoid (assembloid) model, we demonstrated that the presence of dental mesenchymal cells (i.e. pulp stem cells) triggered ameloblast differentiation in the epithelial stem cells, thus replicating the known importance of mesenchyme-epithelium interaction in tooth development and amelogenesis. Also here, differentiation was abrogated by TGFß receptor inhibition. Together, we developed novel organoid models empowering the exploration of human tooth epithelial stem cell biology and function as well as their interplay with dental mesenchyme, all at present only poorly defined in humans. Moreover, the new models may pave the way to future tooth-regenerative perspectives.


Assuntos
Saco Dentário/metabolismo , Organoides/metabolismo , Ameloblastos/citologia , Ameloblastos/metabolismo , Diferenciação Celular , Células Cultivadas , Saco Dentário/citologia , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Organoides/citologia , Organoides/patologia , Fenótipo , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Análise de Célula Única , Células-Tronco/citologia , Células-Tronco/metabolismo , Transcriptoma , Fator de Crescimento Transformador beta/metabolismo
2.
J Cell Physiol ; 237(3): 1964-1979, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34957547

RESUMO

Cell- and tissue-specific extracellular matrix (ECM) composition plays an important role in organ development, including teeth, by regulating cell behaviors, such as cell proliferation and differentiation. Here, we demonstrate for the first time that von Willebrand factor D and epidermal growth factor (EGF) domains (Vwde), a previously uncharacterized ECM protein, is specifically expressed in teeth and regulates cell proliferation and differentiation in inner enamel epithelial cells (IEEs) and enamel formation. We identified the Vwde as a novel ECM protein through bioinformatics using the NCBI expressed sequence tag database for mice. Vwde complementary DNA encodes 1773 amino acids containing a signal peptide, a von Willebrand factor type D domain, and tandem calcium-binding EGF-like domains. Real-time polymerase chain reaction demonstrated that Vwde is highly expressed in tooth tissue but not in other tissues including the brain, lung, heart, liver, kidney, and bone. In situ hybridization revealed that the IEEs expressed Vwde messenger RNA in developing teeth. Immunostaining showed that VWDE was localized at the proximal and the distal ends of the pericellular regions of the IEEs. Vwde was induced during the differentiation of mouse dental epithelium-derived M3H1 cells. Vwde-transfected M3H1 cells secreted VWDE protein into the culture medium and inhibited cell proliferation, whereas ameloblastic differentiation was promoted. Furthermore, Vwde increased the phosphorylation of extracellular signal-regulated kinase 1/2 and protein kinase B and strongly induced the expression of the intercellular junction protein, N-cadherin (Ncad). Interestingly, the suppression of endogenous Vwde inhibited the expression of Ncad. Finally, we created Vwde-knockout mice using the CRISPR-Cas9 system. Vwde-null mice showed low mineral density, rough surface, and cracks in the enamel, indicating the enamel hypoplasia phenotype. Our findings suggest that Vwde assembling the matrix underneath the IEEs is essential for Ncad expression and enamel formation.


Assuntos
Ameloblastos , Diferenciação Celular , Esmalte Dentário , Proteínas da Matriz Extracelular , Ameloblastos/citologia , Animais , Caderinas/genética , Caderinas/metabolismo , Esmalte Dentário/crescimento & desenvolvimento , Proteínas da Matriz Extracelular/metabolismo , Camundongos , Camundongos Knockout
3.
J Struct Biol ; 213(4): 107809, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34748943

RESUMO

During enamel formation, the organic enamel protein matrix interacts with calcium phosphate minerals to form elongated, parallel, and bundled enamel apatite crystals of extraordinary hardness and biomechanical resilience. The enamel protein matrix consists of unique enamel proteins such as amelogenin, ameloblastin, and enamelin, which are secreted by highly specialized cells called ameloblasts. The ameloblasts also facilitate calcium and phosphate ion transport toward the enamel layer. Within ameloblasts, enamel proteins are transported as a polygonal matrix with 5 nm subunits in secretory vesicles. Upon expulsion from the ameloblasts, the enamel protein matrix is re-organized into 20 nm subunit compartments. Enamel matrix subunit compartment assembly and expansion coincide with C-terminal cleavage by the MMP20 enamel protease and N-terminal amelogenin self-assembly. Upon enamel crystal precipitation, the enamel protein phase is reconfigured to surround the elongating enamel crystals and facilitate their elongation in C-axis direction. At this stage of development, and upon further amelogenin cleavage, central and polyproline-rich fragments of the amelogenin molecule associate with the growing mineral crystals through a process termed "shedding", while hexagonal apatite crystals fuse in longitudinal direction. Enamel protein sheath-coated enamel "dahlite" crystals continue to elongate until a dense bundle of parallel apatite crystals is formed, while the enamel matrix is continuously degraded by proteolytic enzymes. Together, these insights portrait enamel mineral nucleation and growth as a complex and dynamic set of interactions between enamel proteins and mineral ions that facilitate regularly seeded apatite growth and parallel enamel crystal elongation.


Assuntos
Ameloblastos/metabolismo , Amelogênese/fisiologia , Proteínas do Esmalte Dentário/metabolismo , Esmalte Dentário/metabolismo , Minerais/metabolismo , Ameloblastos/citologia , Ameloblastos/ultraestrutura , Amelogenina/metabolismo , Animais , Apatitas/química , Apatitas/metabolismo , Cálcio/metabolismo , Fosfatos de Cálcio/metabolismo , Cristalização , Esmalte Dentário/citologia , Esmalte Dentário/ultraestrutura , Humanos , Microscopia Eletrônica
4.
J Struct Biol ; 213(4): 107805, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34715329

RESUMO

The revolution in genetics has rapidly increased our knowledge of human and mouse genes that are critical for the formation of dental enamel and helps us understand how enamel evolved. In this graphical review we focus on the roles of 41 genes that are essential for the secretory stage of amelogenesis when characteristic enamel mineral ribbons initiate on dentin and elongate to expand the enamel layer to the future surface of the tooth. Based upon ultrastructural analyses of genetically modified mice, we propose a molecular model explaining how a cell attachment apparatus including collagen 17, α6ß4 and αvß6 integrins, laminin 332, and secreted enamel proteins could attach to individual enamel mineral ribbons and mold their cross-sectional dimensions as they simultaneously elongate and orient them in the direction of the retrograde movement of the ameloblast membrane.


Assuntos
Ameloblastos/metabolismo , Amelogênese/genética , Proteínas do Esmalte Dentário/genética , Esmalte Dentário/metabolismo , Modelos Genéticos , Ameloblastos/citologia , Ameloblastos/ultraestrutura , Animais , Colágeno/genética , Colágeno/metabolismo , Esmalte Dentário/citologia , Proteínas do Esmalte Dentário/metabolismo , Humanos , Integrinas/genética , Integrinas/metabolismo , Laminina/genética , Laminina/metabolismo , Camundongos , Microscopia Eletrônica de Varredura/métodos
5.
Biochem Biophys Res Commun ; 581: 89-95, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34662808

RESUMO

Tooth development involves the coordinated transcriptional regulation of extracellular matrix proteins produced by ameloblasts and odontoblasts. In this study, whole-genome ChIP-seq analysis was applied to identify the transcriptional regulatory gene targets of Sp6 in mesenchymal cells of the developing tooth. Bioinformatic analysis of a pool of Sp6 target peaks identified the consensus nine nucleotide binding DNA motif CTg/aTAATTA. Consistent with these findings, a number of enamel and dentin matrix genes including amelogenin (Amelx), ameloblastin (Ambn), enamelin (Enam) and dental sialophosphoprotein (Dspp), were identified to contain Sp6 target sequences. Sp6 peaks were also found in other important tooth genes including transcription factors (Dlx2, Dlx3, Dlx4, Dlx5, Sp6, Sp7, Pitx2, and Msx2) and extracellular matrix-related proteins (Col1a2, Col11a2, Halpn1). Unsupervised UMAP clustering of tooth single cell RNA-seq data confirmed the presence of Sp6 transcripts co-expressed with many of the identified target genes within ameloblasts and odontoblasts. Lastly, transcriptional reporter assays using promoter fragments from the Hapln1 and Sp6 gene itself revealed that Sp6 co-expression enhanced gene transcriptional activity. Taken together these results highlight that Sp6 is a major regulator of multiple extracellular matrix genes in the developing tooth.


Assuntos
Ameloblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Fatores de Transcrição Kruppel-Like/genética , Dente Molar/metabolismo , Odontoblastos/metabolismo , Odontogênese/genética , Ameloblastos/citologia , Amelogenina/genética , Amelogenina/metabolismo , Animais , Animais Recém-Nascidos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Proteínas do Esmalte Dentário/genética , Proteínas do Esmalte Dentário/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dente Molar/citologia , Dente Molar/crescimento & desenvolvimento , Odontoblastos/citologia , Regiões Promotoras Genéticas , Proteoglicanas/genética , Proteoglicanas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Fator de Transcrição Sp7/genética , Fator de Transcrição Sp7/metabolismo
6.
Development ; 145(1)2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29180573

RESUMO

In mice, the incisors grow throughout the animal's life, and this continuous renewal is driven by dental epithelial and mesenchymal stem cells. Sox2 is a principal marker of the epithelial stem cells that reside in the mouse incisor stem cell niche, called the labial cervical loop, but relatively little is known about the role of the Sox2+ stem cell population. In this study, we show that conditional deletion of Sox2 in the embryonic incisor epithelium leads to growth defects and impairment of ameloblast lineage commitment. Deletion of Sox2 specifically in Sox2+ cells during incisor renewal revealed cellular plasticity that leads to the relatively rapid restoration of a Sox2-expressing cell population. Furthermore, we show that Lgr5-expressing cells are a subpopulation of dental Sox2+ cells that also arise from Sox2+ cells during tooth formation. Finally, we show that the embryonic and adult Sox2+ populations are regulated by distinct signalling pathways, which is reflected in their distinct transcriptomic signatures. Together, our findings demonstrate that a Sox2+ stem cell population can be regenerated from Sox2- cells, reinforcing its importance for incisor homeostasis.


Assuntos
Ameloblastos/metabolismo , Antígenos de Diferenciação/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Incisivo/embriologia , Fatores de Transcrição SOXB1/biossíntese , Células-Tronco/metabolismo , Ameloblastos/citologia , Animais , Antígenos de Diferenciação/genética , Incisivo/citologia , Camundongos , Camundongos Transgênicos , Fatores de Transcrição SOXB1/genética , Células-Tronco/citologia
7.
Int J Mol Sci ; 22(13)2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34281250

RESUMO

Amelogenin comprises ~90% of enamel proteins; however, the involvement of Amelx transcriptional activation in regulating ameloblast differentiation from induced pluripotent stem cells (iPSCs) remains unknown. In this study, we generated doxycycline-inducible Amelx-expressing mouse iPSCs (Amelx-iPSCs). We then established a three-stage ameloblast induction strategy from Amelx-iPSCs, including induction of surface ectoderm (stage 1), dental epithelial cells (DECs; stage 2), and ameloblast lineage (stage 3) in sequence, by manipulating several signaling molecules. We found that adjunctive use of lithium chloride (LiCl) in addition to bone morphogenetic protein 4 and retinoic acid promoted concentration-dependent differentiation of DECs. The resulting cells had a cobblestone appearance and keratin14 positivity. Attenuation of LiCl at stage 3 together with transforming growth factor ß1 and epidermal growth factor resulted in an ameloblast lineage with elongated cell morphology, positivity for ameloblast markers, and calcium deposition. Although stage-specific activation of Amelx did not produce noticeable phenotypic changes in ameloblast differentiation, Amelx activation at stage 3 significantly enhanced cell adhesion as well as decreased proliferation and migration. These results suggest that the combination of inducible Amelx transcription and stage-specific ameloblast induction for iPSCs represents a powerful tool to highlight underlying mechanisms in ameloblast differentiation and function in association with Amelx expression.


Assuntos
Ameloblastos/citologia , Ameloblastos/metabolismo , Amelogenina/metabolismo , Ameloblastos/fisiologia , Amelogenina/genética , Animais , Adesão Celular/fisiologia , Diferenciação Celular/fisiologia , Doxiciclina/farmacologia , Células Epiteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Transdução de Sinais , Ativação Transcricional/fisiologia
8.
Int J Mol Sci ; 22(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924361

RESUMO

TRPM7 plays an important role in cellular Ca2+, Zn2+ and Mg2+ homeostasis. TRPM7 channels are abundantly expressed in ameloblasts and, in the absence of TRPM7, dental enamel is hypomineralized. The potential role of TRPM7 channels in Ca2+ transport during amelogenesis was investigated in the HAT-7 rat ameloblast cell line. The cells showed strong TRPM7 mRNA and protein expression. Characteristic TRPM7 transmembrane currents were observed, which increased in the absence of intracellular Mg2+ ([Mg2+]i), were reduced by elevated [Mg2+]i, and were inhibited by the TRPM7 inhibitors NS8593 and FTY720. Mibefradil evoked similar currents, which were suppressed by elevated [Mg2+]i, reducing extracellular pH stimulated transmembrane currents, which were inhibited by FTY720. Naltriben and mibefradil both evoked Ca2+ influx, which was further enhanced by the acidic intracellular conditions. The SOCE inhibitor BTP2 blocked Ca2+ entry induced by naltriben but not by mibefradil. Thus, in HAT-7 cells, TRPM7 may serves both as a potential modulator of Orai-dependent Ca2+ uptake and as an independent Ca2+ entry pathway sensitive to pH. Therefore, TRPM7 may contribute directly to transepithelial Ca2+ transport in amelogenesis.


Assuntos
Ameloblastos/metabolismo , Cálcio/metabolismo , Canais de Cátion TRPM/metabolismo , Ameloblastos/citologia , Ameloblastos/efeitos dos fármacos , Anilidas/farmacologia , Animais , Linhagem Celular , Humanos , Concentração de Íons de Hidrogênio , Incisivo/citologia , Ativação do Canal Iônico/efeitos dos fármacos , Transporte de Íons/efeitos dos fármacos , Mibefradil/farmacologia , Camundongos , Modelos Biológicos , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Ratos , Tiadiazóis/farmacologia
9.
Biochem Biophys Res Commun ; 532(2): 321-328, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32873389

RESUMO

MicroRNAs (miRNAs) exhibit strong potential clinical application owing to their extensive regulation and flexible delivery properties. MicroRNA-31 (miR-31) is an evolutionarily conserved miRNA expressed during tooth development, and it is highly expressed in mouse incisor epithelium. The specific role of miR-31 in odontogenesis has not been elucidated comprehensively, and the aim of the present study was to investigate its activity. Our results showed that miR-31 suppressed LS8 cell proliferation by inhibiting the cell cycle at the G1/S transition. Mutation of Special AT-rich sequence-binding protein 2 (SATB2) gene is responsible for human SATB2-associated syndrome (SAS), which is often accompanied by dental abnormities. Here, it was identified as a direct target of miR-31 in LS8 cells and a promoter of cell proliferation. The expression and distribution of SATB2 in mouse molars and incisors were explored using immunofluorescence, which showed strong signals in the nuclei of incisor epithelial cells and weak signals in the cytoplasm of molar epithelial cells. Moreover, rescue experiments demonstrated that Satb2 could mitigate the inhibitory effect of miR-31 on cell proliferation by promoting the expression of CDK4. Collectively, our results suggested that miR-31 regulates dental epithelial cell proliferation by targeting Satb2, highlighting the biological importance of miR-31 in odontogenesis.


Assuntos
Ameloblastos/citologia , Incisivo/crescimento & desenvolvimento , Proteínas de Ligação à Região de Interação com a Matriz/genética , MicroRNAs/genética , Dente Molar/crescimento & desenvolvimento , Fatores de Transcrição/genética , Ameloblastos/fisiologia , Animais , Linhagem Celular , Proliferação de Células , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Incisivo/embriologia , Incisivo/fisiologia , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Camundongos , Dente Molar/embriologia , Dente Molar/fisiologia , Gravidez , Fatores de Transcrição/metabolismo
10.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255698

RESUMO

Dental enamel is hardest tissue in the body and is produced by dental epithelial cells residing in the tooth. Their cell fates are tightly controlled by transcriptional programs that are facilitated by fate determining transcription factors and chromatin regulators. Understanding the transcriptional program controlling dental cell fate is critical for our efforts to build and repair teeth. In this review, we describe the current understanding of these regulators essential for regeneration of dental epithelial stem cells and progeny, which are identified through transgenic mouse models. We first describe the development and morphogenesis of mouse dental epithelium in which different subpopulations of epithelia such as ameloblasts contribute to enamel formation. Then, we describe the function of critical factors in stem cells or progeny to drive enamel lineages. We also show that gene mutations of these factors are associated with dental anomalies in craniofacial diseases in humans. We also describe the function of the master regulators to govern dental lineages, in which the genetic removal of each factor switches dental cell fate to that generating hair. The distinct and related mechanisms responsible for the lineage plasticity are discussed. This knowledge will lead us to develop a potential tool for bioengineering new teeth.


Assuntos
Diferenciação Celular/genética , Células Epiteliais/metabolismo , Odontogênese/genética , Transcrição Gênica , Ameloblastos/citologia , Ameloblastos/metabolismo , Animais , Células Epiteliais/citologia , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Transgênicos , Dente/crescimento & desenvolvimento
11.
Connect Tissue Res ; 60(5): 419-430, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30734591

RESUMO

Introduction: Preameloblast-conditioned medium (PA-CM), as a mixture of dental epithelium-derived factors, has been reported to regenerate dentin and periodontal tissues in vitro and in vivo. The aim of this study was to investigate the biological effect of Cpne7 on the proliferation, migration, and cementoblast differentiation of periodontal cells in vitro, and on the regeneration of periodontal tissue using periodontal defect model with canine in vivo. Materials and methods: The effect of Cpne7 on cell proliferation, migration, and cementoblast differentiation of periodontal cells were evaluated in vitro. A periodontal defect canine model was designed and the defects were divided into five groups: Group 1: No treatment (negative control), Group 2: Collagen carrier only, Group 3: PA-CM with collagen carrier (positive control), Group 4: PA-CM + CPNE7 Antibody (Ab) with collagen carrier, and Group 5: recombinant CPNE7 (rCPNE7) protein with collagen carrier. Results: Cpne7 was expressed in HERS cells and periodontal ligament (PDL) fibers. By real-time PCR, Cpne7 increased expression of Cap compared to the control. In the periodontal defect canine model, rCPNE7 or PA-CM regenerated periodontal complex, and the arrangement of the newly formed PDL-like fibers were perpendicular to the newly formed cementum and alveolar bone like Sharpey's fibers in natural teeth, while PA-CM + CPNE7 Ab showed irregular arrangement of the newly formed PDL-like fibers compared to the rCPNE7 or PA-CM group. Conclusion: These findings suggest that Cpne7 may have a functional role in periodontal regeneration by supporting periodontal cell attachment to cementum and facilitating physiological arrangement of PDL fibers.


Assuntos
Proteínas de Membrana/metabolismo , Periodonto/fisiologia , Regeneração , Adolescente , Ameloblastos/citologia , Ameloblastos/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cementogênese/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Cães , Humanos , Camundongos , Periodonto/citologia , Proteínas Recombinantes/farmacologia , Regeneração/efeitos dos fármacos , Dente/crescimento & desenvolvimento , Dente/metabolismo , Adulto Jovem
12.
Exp Cell Res ; 362(2): 444-449, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29233684

RESUMO

RUNX2 is a key regulator of osteogenic differentiation and odontoblastic differentiation. RUNX2 mutations could cause Cleidocranial dysplasia (CCD; OMIM119600), which is featured by abnormal development of bone and teeth. By using microRNA array, we identified a large number of microRNAs that showed different expression between wild-type Runx2 group and mutant groups. The aim of this study is to find out the effect of mmu-miR-1963, which was downregulated in all mutant Runx2 groups, on the ameloblast differentiation of LS8 cells. qPCR and Western Blot results showed the suppressive effect of mmu-miR-1963 on ameloblast differentiation of LS8 cell line. We further confirmed Smoc2 as one direct target of mmu-miR-1963. For the first time, we showed that mmu-miR-1963 could regulate the ameloblast differentiation of LS8 by targeting Smoc2. This study suggests the suppressive role of mmu-miR-1963 on ameloblast differentiation of LS8 via directly targeting the 3'UTR of Smoc2. We also demonstrated that Smoc2 itself could promote the ameloblast differentiation of LS8 for the first time. Our results indicate a novel explanation to the enamel hypoplasia phenotype in part of CCD patients.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , MicroRNAs/genética , Osteogênese/genética , Regiões 3' não Traduzidas/genética , Ameloblastos/citologia , Ameloblastos/metabolismo , Animais , Diferenciação Celular/genética , Camundongos , Osteoblastos/metabolismo
13.
Biochem Biophys Res Commun ; 495(2): 1655-1660, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29223396

RESUMO

Undifferentiated odontogenic epithelium and dental papilla cells differentiate into ameloblasts and odontoblasts, respectively, both of which are essential for tooth development. These differentiation processes involve dramatic functional and morphological changes of the cells. For these changes to occur, activation of mitochondrial functions, including ATP production, is extremely important. In addition, these changes are closely related to mitochondrial fission and fusion, known as mitochondrial dynamics. However, few studies have focused on the role of mitochondrial dynamics in tooth development. The purpose of this study was to clarify this role. We used mouse tooth germ organ cultures and a mouse dental papilla cell line with the ability to differentiate into odontoblasts, in combination with knockdown of the mitochondrial fission factor, dynamin related protein (DRP)1. In organ cultures of the mouse first molar, tooth germ developed to the early bell stage. The amount of dentin formed under DRP1 inhibition was significantly larger than that of the control. In experiments using a mouse dental papilla cell line, differentiation into odontoblasts was enhanced by inhibiting DRP1. This was associated with increased mitochondrial elongation and ATP production compared to the control. These results suggest that DRP1 inhibition accelerates dentin formation through mitochondrial elongation and activation. This raises the possibility that DRP1 might be a therapeutic target for developmental disorders of teeth.


Assuntos
Dentinogênese/fisiologia , Dinaminas/antagonistas & inibidores , Trifosfato de Adenosina/biossíntese , Ameloblastos/citologia , Ameloblastos/fisiologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Dinaminas/genética , Dinaminas/fisiologia , Proteínas da Matriz Extracelular/biossíntese , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Dinâmica Mitocondrial/fisiologia , Odontoblastos/citologia , Odontoblastos/fisiologia , Técnicas de Cultura de Órgãos , Fosfoproteínas/biossíntese , Gravidez , RNA Interferente Pequeno/genética , Sialoglicoproteínas/biossíntese , Germe de Dente/citologia , Germe de Dente/embriologia
14.
Cell Tissue Res ; 374(3): 531-540, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30091046

RESUMO

Enamel makes up the outermost layer of the crown and its hardness protects other dental tissues from various stimuli. Enamel cannot be regenerated once damaged because ameloblasts are lost during the tooth eruption. Since the ameloblast differentiation mechanism is still unknown, further research is essential for developing treatments for defective or damaged enamel. Previously, we have reported that osteoblast differentiation and bone formation were regulated through the runt-related transcription factor 2 (Runx2)-nuclear factor 1-C (Nfic)-osterix (Osx) pathway where Nfic directly controls Osx expression. This pathway regulates odontoblast differentiation and dentin formation as well. The aim of this study was to investigate if the same pathway is applicable for ameloblast differentiation. Structural enamel defects with disorganized ameloblasts and decreased proliferation activity of the cervical loop were observed in Nfic-/- mice incisors. Expression of the ameloblast differentiation markers was also downregulated significantly in Nfic-/- mice. Real-time PCR analyses suggested that Runx2, Nfic, and Osx regulate the expression of ameloblast differentiation markers, where Runx2 is upstream of Nfic, and Nfic controls Osx expression. Therefore, we suggest the Runx2-Nfic-Osx pathway as one of the key factors that regulate ameloblast differentiation.


Assuntos
Ameloblastos/citologia , Ameloblastos/metabolismo , Diferenciação Celular , Esmalte Dentário/metabolismo , Fatores de Transcrição NFI/metabolismo , Transdução de Sinais , Fator de Transcrição Sp7/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular , Linhagem da Célula , Proliferação de Células , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Esmalte Dentário/ultraestrutura , Camundongos , Fatores de Transcrição NFI/deficiência , Dente/metabolismo , Dente/ultraestrutura , Microtomografia por Raio-X
15.
Connect Tissue Res ; 59(sup1): 30-34, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29745813

RESUMO

DLX3 is essential for tooth enamel development and is so far the only transcription factor known to be mutated in a syndromic form of amelogenesis imperfecta. Through conditional deletion of Dlx3 in the dental epithelium in mouse, we have previously established the involvement of DLX3 in enamel pH regulation, as well as in controlling the expression of sets of keratins that contribute to enamel rod sheath formation. Here, we show that the decussation pattern of enamel rods was lost in conditional knockout animals, suggesting that DLX3 controls the coordinated migration of ameloblasts during enamel secretion. We further demonstrate that DLX3 regulates the expression of some components of myosin II complexes potentially involved in driving the movement of ameloblasts that leads to enamel rod decussation.


Assuntos
Ameloblastos/metabolismo , Esmalte Dentário/metabolismo , Proteínas de Homeodomínio/metabolismo , Queratinas/biossíntese , Fatores de Transcrição/metabolismo , Ameloblastos/citologia , Animais , Movimento Celular , Proteínas de Homeodomínio/genética , Concentração de Íons de Hidrogênio , Queratinas/genética , Camundongos , Camundongos Transgênicos , Fatores de Transcrição/genética
16.
Folia Biol (Praha) ; 63(1): 31-34, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28374673

RESUMO

Fluoride has toxic potential particularly for teeth, bones, and kidney. This study was aimed to investigate the NaF exposure effects on the growth of ameloblasts and kidney proximal tubular cells. Adult male healthy rats were used as experiment models, divided into control and NaF-induced groups. The expression of amelogenin, Bcl-2, and caspase-3 were significantly different in the control and NaF-induced group (P < 0.05). There was no correlation among these proteins in the control group but significant correlation in the NaF-induced group (r = 0.694). There was a significant correlation in proximal tubular cells, as seen from the increase of caspase-3 in the NaF-induced group (r = 0.715).


Assuntos
Ameloblastos/citologia , Túbulos Renais Proximais/citologia , Fluoreto de Sódio/farmacologia , Ameloblastos/efeitos dos fármacos , Ameloblastos/metabolismo , Animais , Caspase 3/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/metabolismo , Imuno-Histoquímica , Masculino , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos
17.
J Biol Chem ; 290(1): 284-95, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25406311

RESUMO

An improved understanding of the molecular pathways that drive tooth morphogenesis and enamel secretion is needed to generate teeth from organ cultures for therapeutic implantation or to determine the pathogenesis of primary disorders of dentition (Abdollah, S., Macias-Silva, M., Tsukazaki, T., Hayashi, H., Attisano, L., and Wrana, J. L. (1997) J. Biol. Chem. 272, 27678-27685). Here we present a novel ectodermal dysplasia phenotype associated with conditional deletion of p38α MAPK in ectodermal appendages using K14-cre mice (p38α(K14) mice). These mice display impaired patterning of dental cusps and a profound defect in the production and biomechanical strength of dental enamel because of defects in ameloblast differentiation and activity. In the absence of p38α, expression of amelogenin and ß4-integrin in ameloblasts and p21 in the enamel knot was significantly reduced. Mice lacking the MAP2K MKK6, but not mice lacking MAP2K MKK3, also show the enamel defects, implying that MKK6 functions as an upstream kinase of p38α in ectodermal appendages. Lastly, stimulation with BMP2/7 in both explant culture and an ameloblast cell line confirm that p38α functions downstream of BMPs in this context. Thus, BMP-induced activation of the p38α MAPK pathway is critical for the morphogenesis of tooth cusps and the secretion of dental enamel.


Assuntos
Ameloblastos/metabolismo , Esmalte Dentário/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Incisivo/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Odontogênese/genética , Ameloblastos/citologia , Amelogenina/genética , Amelogenina/metabolismo , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Diferenciação Celular , Proliferação de Células , Esmalte Dentário/citologia , Esmalte Dentário/crescimento & desenvolvimento , Incisivo/citologia , Incisivo/crescimento & desenvolvimento , Integrina beta4/genética , Integrina beta4/metabolismo , MAP Quinase Quinase 3/genética , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase 6/genética , MAP Quinase Quinase 6/metabolismo , Camundongos , Camundongos Transgênicos , Proteína Quinase 14 Ativada por Mitógeno/genética , Transdução de Sinais , Técnicas de Cultura de Tecidos , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
18.
J Biol Chem ; 290(34): 20661-20673, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26070558

RESUMO

Enamel is a bioceramic tissue composed of thousands of hydroxyapatite crystallites aligned in parallel within boundaries fabricated by a single ameloblast cell. Enamel is the hardest tissue in the vertebrate body; however, it starts development as a self-organizing assembly of matrix proteins that control crystallite habit. Here, we examine ameloblastin, a protein that is initially distributed uniformly across the cell boundary but redistributes to the lateral margins of the extracellular matrix following secretion thus producing cell-defined boundaries within the matrix and the mineral phase. The yeast two-hybrid assay identified that proteasome subunit α type 3 (Psma3) interacts with ameloblastin. Confocal microscopy confirmed Psma3 co-distribution with ameloblastin at the ameloblast secretory end piece. Co-immunoprecipitation assay of mouse ameloblast cell lysates with either ameloblastin or Psma3 antibody identified each reciprocal protein partner. Protein engineering demonstrated that only the ameloblastin C terminus interacts with Psma3. We show that 20S proteasome digestion of ameloblastin in vitro generates an N-terminal cleavage fragment consistent with the in vivo pattern of ameloblastin distribution. These findings suggest a novel pathway participating in control of protein distribution within the extracellular space that serves to regulate the protein-mineral interactions essential to biomineralization.


Assuntos
Ameloblastos/metabolismo , Proteínas do Esmalte Dentário/metabolismo , Esmalte Dentário/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Incisivo/metabolismo , Glicoproteínas de Membrana/metabolismo , Odontogênese/genética , Ameloblastos/citologia , Animais , Citoplasma/química , Citoplasma/metabolismo , Esmalte Dentário/citologia , Esmalte Dentário/crescimento & desenvolvimento , Proteínas do Esmalte Dentário/genética , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Biblioteca Gênica , Glutamato Carboxipeptidase II/genética , Humanos , Incisivo/citologia , Incisivo/crescimento & desenvolvimento , Glicoproteínas de Membrana/genética , Camundongos , Mutação , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
19.
J Biol Chem ; 289(41): 28225-36, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25138274

RESUMO

Odontoblasts are a type of terminally differentiated matrix-secreting cells. A number of molecular mechanisms are involved in the differentiation of odontoblasts. Several studies demonstrated that Krüppel-like factor 4 (KLF4) promotes odontoblast differentiation via control of dentin sialophosphoprotein (DSPP). Because nuclear factor I-C (NFIC) is also known to control DSPP, we investigated the relationship between NFIC and KLF4 during odontoblast differentiation. Klf4 mRNA expression was significantly decreased in Nfic(-/-) pulp cells compared with wild type cells. In immunohistochemistry assays, dentin matrix protein 1 (Dmp1), and DSP protein expression was barely observed in Nfic(-/-) odontoblasts and dentin matrix. Nfic bound directly to the Klf4 promoter and stimulated Klf4 transcriptional activity, thereby regulating Dmp1 and DSPP expression during odontoblast differentiation. Nfic or Klf4 overexpression promoted mineralized nodule formation in MDPC-23 cells. In addition, Nfic overexpression also decreased Slug luciferase activity but augmented E-cadherin promoter activity via up-regulation of Klf4 in odontoblasts. Our study reveals important signaling pathways during dentinogenesis: the Nfic-Klf4-Dmp1-Dspp and the Nfic-Klf4-E-cadherin pathways in odontoblasts. Our results indicate the important role of NFIC in regulating KLF4 during dentinogenesis.


Assuntos
Caderinas/genética , Dentinogênese/genética , Proteínas da Matriz Extracelular/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição NFI/genética , Fosfoproteínas/genética , Sialoglicoproteínas/genética , Ameloblastos/citologia , Ameloblastos/metabolismo , Animais , Caderinas/metabolismo , Diferenciação Celular , Dentina/citologia , Dentina/crescimento & desenvolvimento , Dentina/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Células HEK293 , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Luciferases/genética , Luciferases/metabolismo , Camundongos , Camundongos Knockout , Fatores de Transcrição NFI/metabolismo , Odontoblastos/citologia , Odontoblastos/metabolismo , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Ratos , Sialoglicoproteínas/metabolismo , Transdução de Sinais , Transcrição Gênica
20.
Biochim Biophys Acta ; 1842(2): 245-55, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24296261

RESUMO

Sirtuin1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylase functioning in the regulation of metabolism, cell survival and organismal lifespan. Active SIRT1 regulates autophagy during cell stress, including calorie restriction, endoplasmic reticulum (ER) stress and oxidative stress. Previously, we reported that fluoride induces ER-stress in ameloblasts responsible for enamel formation, suggesting that ER-stress plays a role in dental fluorosis. However, the molecular mechanism of how cells respond to fluoride-induced cell stress is unclear. Here, we demonstrate that fluoride activates SIRT1 and initiates autophagy to protect cells from fluoride exposure. Fluoride treatment of ameloblast-derived cells (LS8) significantly increased Sirt1 expression and induced SIRT1 phosphorylation resulting in the augmentation of SIRT1 deacetylase activity. To demonstrate that fluoride exposure initiates autophagy, we characterized the expression of autophagy related genes (Atg); Atg5, Atg7 and Atg8/LC3 and showed that both their transcript and protein levels were significantly increased following fluoride treatment. To confirm that SIRT1 plays a protective role in fluoride toxicity, we used resveratrol (RES) to augment SIRT1 activity in fluoride treated LS8 cells. RES increased autophagy, inhibited apoptosis, and decreased fluoride cytotoxicity. Rats treated with fluoride (0, 50, 100 and 125ppm) in drinking water for 6weeks had significantly elevated expression levels of Sirt1, Atg5, Atg7 and Atg8/LC3 in their maturation stage enamel organs. Increased protein levels of p-SIRT1, ATG5 and ATG8/LC3 were present in fluoride-treated rat maturation stage ameloblasts. Therefore, the SIRT1/autophagy pathway may play a critical role as a protective response to help prevent dental fluorosis.


Assuntos
Ameloblastos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Fluoretos/farmacologia , Sirtuína 1/metabolismo , Ameloblastos/citologia , Ameloblastos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/genética , Proteína 5 Relacionada à Autofagia , Proteína 7 Relacionada à Autofagia , Western Blotting , Cariostáticos/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Esmalte Dentário/efeitos dos fármacos , Esmalte Dentário/crescimento & desenvolvimento , Esmalte Dentário/metabolismo , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Resveratrol , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirtuína 1/genética , Fluoreto de Sódio/farmacologia , Estilbenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA