Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 431
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 19(12): 755-773, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30237470

RESUMO

The aggregation of proteins into amyloid fibrils and their deposition into plaques and intracellular inclusions is the hallmark of amyloid disease. The accumulation and deposition of amyloid fibrils, collectively known as amyloidosis, is associated with many pathological conditions that can be associated with ageing, such as Alzheimer disease, Parkinson disease, type II diabetes and dialysis-related amyloidosis. However, elucidation of the atomic structure of amyloid fibrils formed from their intact protein precursors and how fibril formation relates to disease has remained elusive. Recent advances in structural biology techniques, including cryo-electron microscopy and solid-state NMR spectroscopy, have finally broken this impasse. The first near-atomic-resolution structures of amyloid fibrils formed in vitro, seeded from plaque material and analysed directly ex vivo are now available. The results reveal cross-ß structures that are far more intricate than anticipated. Here, we describe these structures, highlighting their similarities and differences, and the basis for their toxicity. We discuss how amyloid structure may affect the ability of fibrils to spread to different sites in the cell and between organisms in a prion-like manner, along with their roles in disease. These molecular insights will aid in understanding the development and spread of amyloid diseases and are inspiring new strategies for therapeutic intervention.


Assuntos
Amiloide/metabolismo , Amiloide/fisiologia , Amiloide/ultraestrutura , Doença de Alzheimer/fisiopatologia , Amiloidose/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Humanos , Doença de Parkinson/fisiopatologia , Placa Amiloide/metabolismo , Placa Amiloide/fisiopatologia
2.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338796

RESUMO

Diabetes mellitus is a devastating chronic metabolic disease. Since the majority of type 2 diabetes mellitus patients are overweight or obese, a novel term-diabesity-has emerged. The gut-brain axis plays a critical function in maintaining glucose and energy homeostasis and involves a variety of peptides. Amylin is a neuroendocrine anorexigenic polypeptide hormone, which is co-secreted with insulin from ß-cells of the pancreas in response to food consumption. Aside from its effect on glucose homeostasis, amylin inhibits homeostatic and hedonic feeding, induces satiety, and decreases body weight. In this narrative review, we summarized the current evidence and ongoing studies on the mechanism of action, clinical pharmacology, and applications of amylin and its analogs, pramlintide and cagrilintide, in the field of diabetology, endocrinology, and metabolism disorders, such as obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/uso terapêutico , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hipoglicemiantes/farmacologia , Insulina/uso terapêutico , Obesidade/tratamento farmacológico , Glucose/uso terapêutico , Amiloide/fisiologia
3.
Proc Natl Acad Sci U S A ; 117(22): 12050-12061, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32414928

RESUMO

Amyloidoses (misfolded polypeptide accumulation) are among the most debilitating diseases our aging societies face. Amyloidogenesis can be catalyzed by hydrophobic-hydrophilic interfaces (e.g., air-water interface in vitro [AWI]). We recently demonstrated hydrogelation of the amyloidogenic type II diabetes-associated islet amyloid polypeptide (IAPP), a hydrophobic-hydrophilic interface-dependent process with complex kinetics. We demonstrate that human IAPP undergoes AWI-catalyzed liquid-liquid phase separation (LLPS), which initiates hydrogelation and aggregation. Insulin modulates these processes but does not prevent them. Using nonamyloidogenic rat IAPP, we show that, whereas LLPS does not require the amyloidogenic sequence, hydrogelation and aggregation do. Interestingly, both insulin and rat sequence delayed IAPP LLPS, which may reflect physiology. By developing an experimental setup and analysis tools, we show that, within the whole system (beyond the droplet stage), macroscopic interconnected aggregate clusters form, grow, fuse, and evolve via internal rearrangement, leading to overall hydrogelation. As the AWI-adsorbed gelled layer matures, its microviscosity increases. LLPS-driven aggregation may be a common amyloid feature and integral to pathology.


Assuntos
Amiloidose/patologia , Diabetes Mellitus Tipo 2/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Amiloide/fisiologia , Proteínas Amiloidogênicas/metabolismo , Animais , Hidrogéis , Interações Hidrofóbicas e Hidrofílicas , Insulina/metabolismo , Agregados Proteicos/fisiologia , Ratos
4.
PLoS Comput Biol ; 16(5): e1007767, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32365068

RESUMO

Many proteins have the potential to aggregate into amyloid fibrils, protein polymers associated with a wide range of human disorders such as Alzheimer's and Parkinson's disease. The thermodynamic stability of amyloid fibrils, in contrast to that of folded proteins, is not well understood: the balance between entropic and enthalpic terms, including the chain entropy and the hydrophobic effect, are poorly characterised. Using a combination of theory, in vitro experiments, simulations of a coarse-grained protein model and meta-data analysis, we delineate the enthalpic and entropic contributions that dominate amyloid fibril elongation. Our prediction of a characteristic temperature-dependent enthalpic signature is confirmed by the performed calorimetric experiments and a meta-analysis over published data. From these results we are able to define the necessary conditions to observe cold denaturation of amyloid fibrils. Overall, we show that amyloid fibril elongation is associated with a negative heat capacity, the magnitude of which correlates closely with the hydrophobic surface area that is buried upon fibril formation, highlighting the importance of hydrophobicity for fibril stability.


Assuntos
Amiloide/química , Amiloide/fisiologia , Amiloide/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/fisiologia , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/fisiologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Teóricos , Simulação de Dinâmica Molecular , Desnaturação Proteica , Dobramento de Proteína , Temperatura , Termodinâmica
5.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768745

RESUMO

Insoluble protein aggregates with fibrillar morphology called amyloids and ß-barrel proteins both share a ß-sheet-rich structure. Correctly folded ß-barrel proteins can not only function in monomeric (dimeric) form, but also tend to interact with one another-followed, in several cases, by formation of higher order oligomers or even aggregates. In recent years, findings proving that ß-barrel proteins can adopt cross-ß amyloid folds have emerged. Different ß-barrel proteins were shown to form amyloid fibrils in vitro. The formation of functional amyloids in vivo by ß-barrel proteins for which the amyloid state is native was also discovered. In particular, several prokaryotic and eukaryotic proteins with ß-barrel domains were demonstrated to form amyloids in vivo, where they participate in interspecies interactions and nutrient storage, respectively. According to recent observations, despite the variety of primary structures of amyloid-forming proteins, most of them can adopt a conformational state with the ß-barrel topology. This state can be intermediate on the pathway of fibrillogenesis ("on-pathway state"), or can be formed as a result of an alternative assembly of partially unfolded monomers ("off-pathway state"). The ß-barrel oligomers formed by amyloid proteins possess toxicity, and are likely to be involved in the development of amyloidoses, thus representing promising targets for potential therapy of these incurable diseases. Considering rapidly growing discoveries of the amyloid-forming ß-barrels, we may suggest that their real number and diversity of functions are significantly higher than identified to date, and represent only "the tip of the iceberg". Here, we summarize the data on the amyloid-forming ß-barrel proteins, their physicochemical properties, and their biological functions, and discuss probable means and consequences of the amyloidogenesis of these proteins, along with structural relationships between these two widespread types of ß-folds.


Assuntos
Amiloide/fisiologia , Agregados Proteicos/fisiologia , Conformação Proteica em Folha beta/fisiologia , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/metabolismo , Amiloidose/metabolismo , Humanos , Simulação de Dinâmica Molecular , Agregados Proteicos/genética
6.
Molecules ; 26(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34684701

RESUMO

14-3-3 proteins are abundant, intramolecular proteins that play a pivotal role in cellular signal transduction by interacting with phosphorylated ligands. In addition, they are molecular chaperones that prevent protein unfolding and aggregation under cellular stress conditions in a similar manner to the unrelated small heat-shock proteins. In vivo, amyloid ß (Aß) and α-synuclein (α-syn) form amyloid fibrils in Alzheimer's and Parkinson's diseases, respectively, a process that is intimately linked to the diseases' progression. The 14-3-3ζ isoform potently inhibited in vitro fibril formation of the 40-amino acid form of Aß (Aß40) but had little effect on α-syn aggregation. Solution-phase NMR spectroscopy of 15N-labeled Aß40 and A53T α-syn determined that unlabeled 14-3-3ζ interacted preferentially with hydrophobic regions of Aß40 (L11-H21 and G29-V40) and α-syn (V3-K10 and V40-K60). In both proteins, these regions adopt ß-strands within the core of the amyloid fibrils prepared in vitro as well as those isolated from the inclusions of diseased individuals. The interaction with 14-3-3ζ is transient and occurs at the early stages of the fibrillar aggregation pathway to maintain the native, monomeric, and unfolded structure of Aß40 and α-syn. The N-terminal regions of α-syn interacting with 14-3-3ζ correspond with those that interact with other molecular chaperones as monitored by in-cell NMR spectroscopy.


Assuntos
Proteínas 14-3-3/metabolismo , Peptídeos beta-Amiloides/metabolismo , alfa-Sinucleína/metabolismo , Proteínas 14-3-3/fisiologia , Amiloide/metabolismo , Amiloide/fisiologia , Peptídeos beta-Amiloides/fisiologia , Humanos , Chaperonas Moleculares/fisiologia , Agregados Proteicos , Ligação Proteica/fisiologia , Conformação Proteica , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas/fisiologia , Desdobramento de Proteína , alfa-Sinucleína/fisiologia
7.
J Cell Sci ; 131(8)2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29654159

RESUMO

Amyloid fibrils are protein homopolymers that adopt diverse cross-ß conformations. Some amyloid fibrils are associated with the pathogenesis of devastating neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. Conversely, functional amyloids play beneficial roles in melanosome biogenesis, long-term memory formation and release of peptide hormones. Here, we showcase advances in our understanding of amyloid assembly and structure, and how distinct amyloid strains formed by the same protein can cause distinct neurodegenerative diseases. We discuss how mutant steric zippers promote deleterious amyloidogenesis and aberrant liquid-to-gel phase transitions. We also highlight effective strategies to combat amyloidogenesis and related toxicity, including: (1) small-molecule drugs (e.g. tafamidis) to inhibit amyloid formation or (2) stimulate amyloid degradation by the proteasome and autophagy, and (3) protein disaggregases that disassemble toxic amyloid and soluble oligomers. We anticipate that these advances will inspire therapeutics for several fatal neurodegenerative diseases.


Assuntos
Amiloide/fisiologia , Humanos
8.
Curr Genet ; 66(5): 849-866, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32356034

RESUMO

Amyloids cause incurable diseases in humans and animals and regulate vital processes in bacteria and eukaryotes. Amyloid fibrils have unique properties, such as amazing resistance to a variety of agents, mechanical strength, and elasticity, and it is not surprising that in the course of evolution eukaryotes have learned to employ amyloid structures to regulate various vital processes. Proteins exhibiting amyloid properties have been detected in lower eukaryotes and in diverse cell lines of arthropods and vertebrates. A growing number of studies of eukaryotic proteins that demonstrate certain amyloid-like properties require clear criteria to systematize modern knowledge about the functional amyloids. In this review, we propose to separate eukaryotic proteins, whose amyloid properties are clearly proven, and proteins, which show some amyloid characteristics in vivo or in vitro. In order to assert that a protein is a functional amyloid, it is necessary to prove that it has a cross-ß structure in vivo. Here, we consider the advantages and disadvantages of various methods for the analysis of the amyloid properties of a protein. Analysis of the current data shows that amyloids play an important role in the regulation of vital processes in eukaryotes, and new functional amyloids should be searched primarily among structural, protective, and storage proteins. A systematic search for functional amyloids in eukaryotes is only beginning, and the use of novel proteomic methods opens up great prospects for identification of amyloids in any organs and tissues of various organisms.


Assuntos
Amiloide/química , Amiloide/fisiologia , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/fisiologia , Eucariotos/química , Eucariotos/fisiologia , Animais , Fenômenos Fisiológicos Celulares , Humanos , Conformação Proteica em Folha beta
9.
Am J Pathol ; 189(5): 989-998, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30735627

RESUMO

Light chain-associated amyloidosis is characterized by the extracellular deposition of amyloid fibrils in abdominothoracic organs, skin, soft tissue, and peripheral nerves. Phagocytic cells of the innate immune system appear to be ineffective at clearing the material; however, human light chain amyloid extract, injected subcutaneously into mice, is rapidly cleared in a process that requires neutrophil activity. To better elucidate the phagocytosis of light chain fibrils, a potential method of cell-mediated dissolution, amyloid-like fibrils were labeled with the pH-sensitive dye pHrodo red and a near infrared fluorophore. After injecting this material subcutaneously in mice, optical imaging was used to quantitatively monitor phagocytosis and dissolution of fibrils concurrently. Histologic evaluation of the residual fibril masses revealed the presence of CD68+, F4/80+, ionized calcium binding adaptor molecule 1- macrophages containing Congo red-stained fibrils as well as neutrophil-associated proteins with no evidence of intact neutrophils. These data suggest an early infiltration of neutrophils, followed by extensive phagocytosis of the light chain fibrils by macrophages, leading to dissolution of the mass. Optical imaging of this novel murine model, coupled with histologic evaluation, can be used to study the cellular mechanisms underlying dissolution of synthetic amyloid-like fibrils and human amyloid extracts. In addition, it may serve as a test bed to evaluate investigational opsonizing agents that might serve as therapeutic agents for light chain-associated amyloidosis.


Assuntos
Amiloide/fisiologia , Amiloidose/patologia , Macrófagos/fisiologia , Imagem Óptica/métodos , Fagocitose , Animais , Feminino , Macrófagos/citologia , Camundongos
10.
Mol Biol Rep ; 47(4): 2811-2820, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32240467

RESUMO

Many metabolic and neurodegenerative diseases are associated with protein misfolding and aggregation. Insulin a key hormone, under certain conditions aggregates and forms pathological amyloid fibrils. Several polyphenols have been studied extensively to elucidate their inhibitory effect on amyloid formation. In the present study, we used insulin as an amyloid model to test the mechanism and efficacy of rutin as an anti-amyloidogenic molecule. By using electron microscopy, dynamic light scattering and circular dichroism spectroscopy, we show that rutin inhibits the insulin aggregate and fibril formation. Further, rutin interacts with insulin directly and inhibits fibril formation in a dose-dependent manner as demonstrated by micro scale thermophoresis experiments. The molecular docking study predicted the potential binding pocket of rutin at the interface of chain A and chain B of insulin thereby preventing it from forming the aggregates. Since, rutin is a natural anti-oxidant, we studied its role in diminishing amyloid fibril induced cytotoxicity and apoptosis. Rutin, decreases the insulin amyloid fibrils-induced Neuro-2a cytotoxicity by reducing reactive oxygen species (ROS) levels which in turn downregulates Bax and upregulates Bcl-2 and pBad proteins. These findings suggest the potential action of rutin in preventing protein misfolding, cell death, and serves as a lead structure to design novel anti-amyloidosis compounds.


Assuntos
Amiloide/metabolismo , Insulina/metabolismo , Rutina/metabolismo , Amiloide/química , Amiloide/fisiologia , Amiloidose/metabolismo , Animais , Apoptose/fisiologia , Morte Celular , Humanos , Insulina/fisiologia , Camundongos , Simulação de Acoplamento Molecular , Rutina/fisiologia
11.
Curr HIV/AIDS Rep ; 16(1): 66-75, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30778853

RESUMO

PURPOSE OF REVIEW: The purpose of this review is to summarize recent developments in PET imaging of neuropathologies underlying HIV-associated neurocognitive dysfunction (HAND). We concentrate on the recent post antiretroviral era (ART), highlighting clinical and preclinical brain PET imaging studies. RECENT FINDINGS: In the post ART era, PET imaging has been used to better understand perturbations of glucose metabolism, neuroinflammation, the function of neurotransmitter systems, and amyloid/tau protein deposition in the brains of HIV-infected patients and HIV animal models. Preclinical and translational findings from those studies shed a new light on the complex pathophysiology underlying HAND. The molecular imaging capabilities of PET in neuro-HIV are great complements for structural imaging modalities. Recent and future PET imaging studies can improve our understanding of neuro-HIV and provide biomarkers of disease progress that could be used as surrogate endpoints in the evaluation of the effectiveness of potential neuroprotective therapies.


Assuntos
Complexo AIDS Demência/diagnóstico por imagem , Complexo AIDS Demência/fisiopatologia , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Tomografia por Emissão de Pósitrons/métodos , Amiloide/fisiologia , Animais , Antirretrovirais/uso terapêutico , Biomarcadores , Glucose/metabolismo , Infecções por HIV/tratamento farmacológico , Humanos , Proteínas tau/fisiologia
12.
J Biol Chem ; 292(52): 21219-21230, 2017 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-29101231

RESUMO

Heparin, a biopolymer possessing high negative charge density, is known to accelerate amyloid fibrillation by various proteins. Using hen egg white lysozyme, we studied the effects of heparin on protein aggregation at low pH, raised temperature, and applied ultrasonic irradiation, conditions under which amyloid fibrillation was promoted. Heparin exhibited complex bimodal concentration-dependent effects, either accelerating or inhibiting fibrillation at pH 2.0 and 60 °C. At concentrations lower than 20 µg/ml, heparin accelerated fibrillation through transient formation of hetero-oligomeric aggregates. Between 0.1 and 10 mg/ml, heparin rapidly induced amorphous heteroaggregation with little to no accompanying fibril formation. Above 10 mg/ml, heparin again induced fibrillation after a long lag time preceded by oligomeric aggregate formation. Compared with studies performed using monovalent and divalent anions, the results suggest two distinct mechanisms of heparin-induced fibrillation. At low heparin concentrations, initial hen egg white lysozyme cluster formation and subsequent fibrillation is promoted by counter ion binding and screening of repulsive charges. At high heparin concentrations, fibrillation is caused by a combination of salting out and macromolecular crowding effects probably independent of protein net charge. Both fibrillation mechanisms compete against amorphous aggregation, producing a complex heparin concentration-dependent phase diagram. Moreover, the results suggest an active role for amorphous oligomeric aggregates in triggering fibrillation, whereby breakdown of supersaturation takes place through heterogeneous nucleation of amyloid on amorphous aggregates.


Assuntos
Heparina/farmacologia , Muramidase/química , Agregados Proteicos/fisiologia , Amiloide/química , Amiloide/fisiologia , Proteínas Amiloidogênicas , Amiloidose , Animais , Clara de Ovo , Concentração de Íons de Hidrogênio , Muramidase/fisiologia
13.
Adv Exp Med Biol ; 1112: 79-97, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30637692

RESUMO

Amyloids are highly ordered peptide/protein aggregates traditionally associated with multiple human diseases including neurodegenerative disorders. However, recent studies suggest that amyloids can also perform several biological functions in organisms varying from bacteria to mammals. In many lower organisms, amyloid fibrils function as adhesives due to their unique surface topography. Recently, amyloid fibrils have been shown to support attachment and spreading of mammalian cells by interacting with the cell membrane and by cell adhesion machinery activation. Moreover, similar to cellular responses on natural extracellular matrices (ECMs), mammalian cells on amyloid surfaces also use integrin machinery for spreading, migration, and differentiation. This has led to the development of biocompatible and implantable amyloid-based hydrogels that could induce lineage-specific differentiation of stem cells. In this chapter, based on adhesion of both lower organisms and mammalian cells on amyloid nanofibrils, we posit that amyloids could have functioned as a primitive extracellular matrix in primordial earth.


Assuntos
Amiloide/fisiologia , Adesão Celular , Animais , Diferenciação Celular , Matriz Extracelular , Humanos , Integrinas
14.
Biochim Biophys Acta ; 1859(3): 455-61, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26455956

RESUMO

Linker histones H1 are ubiquitous chromatin proteins that play important roles in chromatin compaction, transcription regulation, nucleosome spacing and chromosome spacing. H1 function in DNA and chromatin structure stabilization is well studied and established. The current paradigm of linker histone mode of function considers all other cellular roles of linker histones to be a consequence from H1 chromatin compaction and repression. Here we review the multiple processes regulated by linker histones and the emerging importance of protein interactions in H1 functioning. We propose a new paradigm which explains the multi functionality of linker histones through linker histones protein interactions as a way to directly regulate recruitment of proteins to chromatin.


Assuntos
Histonas/química , Amiloide/fisiologia , Animais , Histonas/fisiologia , Humanos , Fosforilação , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
16.
Brain Behav Immun ; 63: 160-175, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28027926

RESUMO

Exposure to stress during the sensitive period of early-life increases the risk to develop cognitive impairments and psychopathology later in life. In addition, early-life stress (ES) exposure, next to genetic causes, has been proposed to modulate the development and progression of Alzheimer's disease (AD), however evidence for this hypothesis is currently lacking. We here tested whether ES modulates progression of AD-related neuropathology and assessed the possible contribution of neuroinflammatory factors in this. We subjected wild-type (WT) and transgenic APP/PS1 mice, as a model for amyloid neuropathology, to chronic ES from postnatal day (P)2 to P9. We next studied how ES exposure affected; 1) amyloid ß (Aß) pathology at an early (4month old) and at a more advanced pathological (10month old) stage, 2) neuroinflammatory mediators immediately after ES exposure as well as in adult WT mice, and 3) the neuroinflammatory response in relation to Aß neuropathology. ES exposure resulted in a reduction of cell-associated amyloid in 4month old APP/PS1 mice, but in an exacerbation of Aß plaque load at 10months of age, demonstrating that ES affects Aß load in the hippocampus in an age-dependent manner. Interestingly, ES modulated various neuroinflammatory mediators in the hippocampus of WT mice as well as in response to Aß neuropathology. In WT mice, immediately following ES exposure (P9), Iba1-immunopositive microglia exhibited reduced complexity and hippocampal interleukin (IL)-1ß expression was increased. In contrast, microglial Iba1 and CD68 were increased and hippocampal IL-6 expression was decreased at 4months, while these changes resolved by 10months of age. Finally, Aß neuropathology triggered a neuroinflammatory response in APP/PS1 mice that was altered after ES exposure. APP/PS1 mice exhibited increased CD68 expression at 4months, which was further enhanced by ES, whereas the microglial response to Aß neuropathology, as measured by Iba1 and CD11b, was less prominent after ES at 10months of age. Finally, the hippocampus appears to be more vulnerable for these ES-induced effects, since ES did not affect Aß neuropathology and neuroinflammation in the entorhinal cortex of adult ES exposed mice. Overall, our results demonstrate that ES exposure has both immediate and lasting effects on the neuroinflammatory response. In the context of AD, such alterations in neuroinflammation might contribute to aggravated neuropathology in ES exposed mice, hence altering disease progression. This indicates that, at least in a genetic context, ES could aggravate AD pathology.


Assuntos
Doença de Alzheimer/patologia , Amiloide/fisiologia , Estresse Psicológico/imunologia , Doença de Alzheimer/metabolismo , Amiloide/imunologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Amiloidose/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Hipocampo/metabolismo , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Neuroimunomodulação/imunologia , Placa Amiloide , Estresse Psicológico/genética
17.
Proc Natl Acad Sci U S A ; 111(50): 17869-74, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25453085

RESUMO

Protein oligomers have been implicated as toxic agents in a wide range of amyloid-related diseases. However, it has remained unsolved whether the oligomers are a necessary step in the formation of amyloid fibrils or just a dangerous byproduct. Analogously, it has not been resolved if the amyloid nucleation process is a classical one-step nucleation process or a two-step process involving prenucleation clusters. We use coarse-grained computer simulations to study the effect of nonspecific attractions between peptides on the primary nucleation process underlying amyloid fibrillization. We find that, for peptides that do not attract, the classical one-step nucleation mechanism is possible but only at nonphysiologically high peptide concentrations. At low peptide concentrations, which mimic the physiologically relevant regime, attractive interpeptide interactions are essential for fibril formation. Nucleation then inevitably takes place through a two-step mechanism involving prefibrillar oligomers. We show that oligomers not only help peptides meet each other but also, create an environment that facilitates the conversion of monomers into the ß-sheet-rich form characteristic of fibrils. Nucleation typically does not proceed through the most prevalent oligomers but through an oligomer size that is only observed in rare fluctuations, which is why such aggregates might be hard to capture experimentally. Finally, we find that the nucleation of amyloid fibrils cannot be described by classical nucleation theory: in the two-step mechanism, the critical nucleus size increases with increases in both concentration and interpeptide interactions, which is in direct contrast with predictions from classical nucleation theory.


Assuntos
Amiloide/biossíntese , Amiloide/metabolismo , Modelos Moleculares , Agregados Proteicos/fisiologia , Amiloide/fisiologia , Simulação de Dinâmica Molecular , Conformação Proteica
18.
J Biol Chem ; 290(33): 20590-600, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26109065

RESUMO

Archaea are renowned for their ability to thrive in extreme environments, although they can be found in virtually all habitats. Their adaptive success is linked to their unique cell envelopes that are extremely resistant to chemical and thermal denaturation and that resist proteolysis by common proteases. Here we employ amyloid-specific conformation antibodies and biophysical techniques to show that the extracellular cell wall sheaths encasing the methanogenic archaea Methanosaeta thermophila PT are functional amyloids. Depolymerization of sheaths and subsequent MS/MS analyses revealed that the sheaths are composed of a single major sheath protein (MspA). The amyloidogenic nature of MspA was confirmed by in vitro amyloid formation of recombinant MspA under a wide range of environmental conditions. This is the first report of a functional amyloid from the archaeal domain of life. The amyloid nature explains the extreme resistance of the sheath, the elastic properties that allow diffusible substrates to penetrate through expandable hoop boundaries, and how the sheaths are able to split and elongate outside the cell. The archaeal sheath amyloids do not share homology with any of the currently known functional amyloids and clearly represent a new function of the amyloid protein fold.


Assuntos
Amiloide/fisiologia , Methanosarcinales/fisiologia , Amiloide/biossíntese , Methanosarcinales/metabolismo , Microscopia Eletrônica de Transmissão , Espectrometria de Massas em Tandem
19.
J Intern Med ; 280(2): 153-63, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27002185

RESUMO

There are around 30 human diseases associated with protein misfolding and amyloid formation, each one caused by a certain protein or peptide. Many of these diseases are lethal and together they pose an enormous burden to society. The prion protein has attracted particular interest as being shown to be the pathogenic agent in transmissible diseases such as kuru, Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. Whether similar transmission could occur also in other amyloidoses such as Alzheimer's disease, Parkinson's disease and serum amyloid A amyloidosis is a matter of intense research and debate. Furthermore, it has been suggested that novel biomaterials such as artificial spider silk are potentially amyloidogenic. Here, we provide a brief introduction to amyloid, prions and other proteins involved in amyloid disease and review recent evidence for their potential transmission. We discuss the similarities and differences between amyloid and silk, as well as the potential hazards associated with protein-based biomaterials.


Assuntos
Amiloide/química , Amiloide/fisiologia , Deficiências na Proteostase/metabolismo , Animais , Humanos , Dobramento de Proteína , Deficiências na Proteostase/patologia , Seda/biossíntese , Seda/fisiologia
20.
J Intern Med ; 280(2): 177-202, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27165517

RESUMO

There are more than 30 human proteins whose aggregation appears to cause degenerative maladies referred to as amyloid diseases or amyloidoses. These disorders are named after the characteristic cross-ß-sheet amyloid fibrils that accumulate systemically or are localized to specific organs. In most cases, current treatment is limited to symptomatic approaches and thus disease-modifying therapies are needed. Alzheimer's disease is a neurodegenerative disorder with extracellular amyloid ß-peptide (Aß) fibrils and intracellular tau neurofibrillary tangles as pathological hallmarks. Numerous clinical trials have been conducted with passive and active immunotherapy, and small molecules to inhibit Aß formation and aggregation or to enhance Aß clearance; so far such clinical trials have been unsuccessful. Novel strategies are therefore required and here we will discuss the possibility of utilizing the chaperone BRICHOS to prevent Aß aggregation and toxicity. Type 2 diabetes mellitus is symptomatically treated with insulin. However, the underlying pathology is linked to the aggregation and progressive accumulation of islet amyloid polypeptide as fibrils and oligomers, which are cytotoxic. Several compounds have been shown to inhibit islet amyloid aggregation and cytotoxicity in vitro. Future animal studies and clinical trials have to be conducted to determine their efficacy in vivo. The transthyretin (TTR) amyloidoses are a group of systemic degenerative diseases compromising multiple organ systems, caused by TTR aggregation. Liver transplantation decreases the generation of misfolded TTR and improves the quality of life for a subgroup of this patient population. Compounds that stabilize the natively folded, nonamyloidogenic, tetrameric conformation of TTR have been developed and the drug tafamidis is available as a promising treatment.


Assuntos
Amiloidose/terapia , Doença de Alzheimer/terapia , Amiloide/fisiologia , Amiloidose/fisiopatologia , Animais , Diabetes Mellitus Tipo 2/terapia , Humanos , Transplante de Fígado , Pré-Albumina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA