Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 629(8010): 98-104, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693411

RESUMO

Photobiocatalysis-where light is used to expand the reactivity of an enzyme-has recently emerged as a powerful strategy to develop chemistries that are new to nature. These systems have shown potential in asymmetric radical reactions that have long eluded small-molecule catalysts1. So far, unnatural photobiocatalytic reactions are limited to overall reductive and redox-neutral processes2-9. Here we report photobiocatalytic asymmetric sp3-sp3 oxidative cross-coupling between organoboron reagents and amino acids. This reaction requires the cooperative use of engineered pyridoxal biocatalysts, photoredox catalysts and an oxidizing agent. We repurpose a family of pyridoxal-5'-phosphate-dependent enzymes, threonine aldolases10-12, for the α-C-H functionalization of glycine and α-branched amino acid substrates by a radical mechanism, giving rise to a range of α-tri- and tetrasubstituted non-canonical amino acids 13-15 possessing up to two contiguous stereocentres. Directed evolution of pyridoxal radical enzymes allowed primary and secondary radical precursors, including benzyl, allyl and alkylboron reagents, to be coupled in an enantio- and diastereocontrolled fashion. Cooperative photoredox-pyridoxal biocatalysis provides a platform for sp3-sp3 oxidative coupling16, permitting the stereoselective, intermolecular free-radical transformations that are unknown to chemistry or biology.


Assuntos
Aminoácidos , Biocatálise , Acoplamento Oxidativo , Processos Fotoquímicos , Aminoácidos/biossíntese , Aminoácidos/química , Aminoácidos/metabolismo , Biocatálise/efeitos da radiação , Evolução Molecular Direcionada , Radicais Livres/química , Radicais Livres/metabolismo , Glicina/química , Glicina/metabolismo , Glicina Hidroximetiltransferase/metabolismo , Glicina Hidroximetiltransferase/química , Indicadores e Reagentes , Luz , Acoplamento Oxidativo/efeitos da radiação , Fosfato de Piridoxal/metabolismo , Estereoisomerismo , Aminoácidos de Cadeia Ramificada/química , Aminoácidos de Cadeia Ramificada/metabolismo
2.
Nature ; 600(7888): 302-307, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34759313

RESUMO

Small molecules derived from symbiotic microbiota critically contribute to intestinal immune maturation and regulation1. However, little is known about the molecular mechanisms that control immune development in the host-microbiota environment. Here, using a targeted lipidomic analysis and synthetic approach, we carried out a multifaceted investigation of immunomodulatory α-galactosylceramides from the human symbiont Bacteroides fragilis (BfaGCs). The characteristic terminal branching of BfaGCs is the result of incorporation of branched-chain amino acids taken up in the host gut by B. fragilis. A B. fragilis knockout strain that cannot metabolize branched-chain amino acids showed reduced branching in BfaGCs, and mice monocolonized with this mutant strain had impaired colonic natural killer T (NKT) cell regulation, implying structure-specific immunomodulatory activity. The sphinganine chain branching of BfaGCs is a critical determinant of NKT cell activation, which induces specific immunomodulatory gene expression signatures and effector functions. Co-crystal structure and affinity analyses of CD1d-BfaGC-NKT cell receptor complexes confirmed the interaction of BfaGCs as CD1d-restricted ligands. We present a structural and molecular-level paradigm of immunomodulatory control by interactions of endobiotic metabolites with diet, microbiota and the immune system.


Assuntos
Aminoácidos de Cadeia Ramificada/imunologia , Aminoácidos de Cadeia Ramificada/metabolismo , Bacteroides fragilis/metabolismo , Galactosilceramidas/imunologia , Galactosilceramidas/metabolismo , Microbioma Gastrointestinal/imunologia , Simbiose/imunologia , Aminoácidos de Cadeia Ramificada/química , Animais , Antígenos CD1d/imunologia , Bacteroides fragilis/genética , Humanos , Camundongos , Modelos Animais , Modelos Moleculares , Células T Matadoras Naturais/citologia , Células T Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/imunologia
3.
Electrophoresis ; 45(11-12): 1041-1053, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477690

RESUMO

In this paper, the development and application of a multiple heart-cutting achiral-chiral LC-LC method (mLC-LC) for the analysis of dansylated (Dns) branched-chain amino acids in commercial tablets are described. In the first dimension, a Waters Xbridge RP C18 achiral column was used under gradient conditions with buffered aqueous solution and acetonitrile. The elution order Dns-valine (Dns-Val) < Dns-isoleucine (Dns-Ile) < Dns-leucine (Dns-Leu) turned out with full resolution between adjacent peaks: 7.25 and 1.50 for the Val/Ile and the Ile/Leu pairs, respectively. A "research" validation study was performed, revealing high accuracy (Recovery%) and precision (RSD%) using two external set solutions, respectively, in the range 93.7%-104.1% and 0.4%-3.2%. The C18 column was connected via a two-position six-port switching valve to the quinidine-based Chiralpak quinidine-anion-exchange chiral column. A water/acetonitrile, 30/70 (v/v) with 50 mM ammonium acetate (apparent pH of 5.5) eluent allowed getting the three enantiomers' pairs resolved: RS equal to 4.3 for Dns-Val and Dns-Ile, and 1.7 for Dns-Leu. The application of the mLC-LC method confirmed that the content of Val, Ile, and Leu in the tablets was compliant with that labeled by the producer. Only l-enantiomers were found in the food supplement, as confirmed by LC-MS/MS analysis.


Assuntos
Aminoácidos de Cadeia Ramificada , Comprimidos , Comprimidos/química , Aminoácidos de Cadeia Ramificada/análise , Aminoácidos de Cadeia Ramificada/química , Estereoisomerismo , Cromatografia Líquida/métodos , Reprodutibilidade dos Testes , Compostos de Dansil/química , Espectrometria de Massas em Tandem/métodos , Modelos Lineares
4.
J Phys Chem A ; 128(38): 8088-8095, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39264349

RESUMO

Four branched-chain aliphatic α-amino acids─α-alanine, valine, leucine, and isoleucine (1-4)─were investigated by quantum-chemical calculations in water as a solvent by two methods. The B3LYP variant of DFT calculations was used to obtain the electronic structure and molecular descriptors of these species in their canonical amino acid form as well as the related zwitterionic form in three oxidation states (cation, neutral molecule, and anion). A total of 24 species were subjected to full geometry optimization and complete vibration analysis. Quantities related to ionization or affinity processes were evaluated under adiabatic conditions. The calculated standard reaction Gibbs energy facilitates evaluation of the absolute oxidation and reduction potential. The absolute reduction potential correlates with the electrophilicity index, and the absolute oxidation potential correlates with the adiabatic ionization energy. This finding makes it possible to skip the tedious vibrational analysis and use electronic properties to estimate the redox potentials. The molecular descriptors were compared with the calculated properties of four linear amino acids (glycine, ß-alanine, GABA, and DAVA). Parallel calculations using the DLPNO-CCSD(T) method gave analogous results for 24 species. The absolute oxidation potential was related to the antioxidant activity index, which showed only a moderate antioxidant activity of 1-4.


Assuntos
Teoria da Densidade Funcional , Água , Água/química , Oxirredução , Aminoácidos de Cadeia Ramificada/química , Estrutura Molecular , Aminoácidos/química , Termodinâmica
5.
J Biol Chem ; 294(35): 13158-13170, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31315931

RESUMO

Iron-sulfur clusters are protein cofactors with an ancient evolutionary origin. These clusters are best known for their roles in redox proteins such as ferredoxins, but some iron-sulfur clusters have nonredox roles in the active sites of enzymes. Such clusters are often prone to oxidative degradation, making the enzymes difficult to characterize. Here we report a structural and functional characterization of dihydroxyacid dehydratase (DHAD) from Mycobacterium tuberculosis (Mtb), an essential enzyme in the biosynthesis of branched-chain amino acids. Conducting this analysis under fully anaerobic conditions, we solved the DHAD crystal structure, at 1.88 Å resolution, revealing a 2Fe-2S cluster in which one iron ligand is a potentially exchangeable water molecule or hydroxide. UV and EPR spectroscopy both suggested that the substrate binds directly to the cluster or very close to it. Kinetic analysis implicated two ionizable groups in the catalytic mechanism, which we postulate to be Ser-491 and the iron-bound water/hydroxide. Site-directed mutagenesis showed that Ser-491 is essential for activity, and substrate docking indicated that this residue is perfectly placed for proton abstraction. We found that a bound Mg2+ ion 6.5 Å from the 2Fe-2S cluster plays a key role in substrate binding. We also identified a putative entry channel that enables access to the cluster and show that Mtb-DHAD is inhibited by a recently discovered herbicide, aspterric acid, that, given the essentiality of DHAD for Mtb survival, is a potential lead compound for the design of novel anti-TB drugs.


Assuntos
Aminoácidos de Cadeia Ramificada/biossíntese , Hidroliases/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Mycobacterium tuberculosis/química , Aminoácidos de Cadeia Ramificada/química , Sítios de Ligação , Hidroliases/química , Proteínas Ferro-Enxofre/química , Modelos Moleculares , Conformação Molecular , Mycobacterium tuberculosis/metabolismo
6.
Proteins ; 88(10): 1303-1318, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32432825

RESUMO

The N-terminal cleavage of fusion tags to restore the native N-terminus of recombinant proteins is a challenging task and up to today, protocols need to be optimized for different proteins individually. Within this work, we present a novel protease that was designed in-silico to yield enhanced promiscuity toward different N-terminal amino acids. Two mutations in the active-site amino acids of human Caspase-2 were determined to increase the recognition of branched amino-acids, which show only poor binding capabilities in the unmutated protease. These mutations were determined by sequential and structural comparisons of Caspase-2 and Caspase-3 and their effect was additionally predicted using free-energy calculations. The two mutants proposed in the in-silico studies were expressed and in-vitro experiments confirmed the simulation results. Both mutants showed not only enhanced activities toward branched amino acids, but also smaller, unbranched amino acids. We believe that the created mutants constitute an important step toward generalized procedures to restore original N-termini of recombinant fusion proteins.


Assuntos
Aminoácidos de Cadeia Ramificada/química , Caspase 2/química , Caspase 3/química , Cisteína Endopeptidases/química , Mutação , Proteínas Recombinantes de Fusão/química , Sequência de Aminoácidos , Aminoácidos de Cadeia Ramificada/metabolismo , Caspase 2/genética , Caspase 2/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Domínio Catalítico , Clonagem Molecular , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Engenharia de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas , Proteólise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Termodinâmica
7.
Bioorg Med Chem ; 26(5): 1006-1015, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29428526

RESUMO

A branched amino acid was synthesized from methyl glucopyranoside; this amino acid presents three amino groups protected by Fmoc and one acid group and can be used in classic peptide synthesis. In parallel, similar azido terminated blocks were synthesized. Successive coupling reaction and deprotection afforded dendrimers with up to 27 azido functional groups. As an example of application, d-mannose and l-fucose residues were linked through CuAAC coupling and resulting glycodendrimers were evaluated in their interaction with DC-SIGN using SPR competition assay.


Assuntos
Aminoácidos de Cadeia Ramificada/química , Moléculas de Adesão Celular/metabolismo , Dendrímeros/química , Lectinas Tipo C/metabolismo , Receptores de Superfície Celular/metabolismo , Alcinos/química , Amidas/química , Aminoácidos de Cadeia Ramificada/metabolismo , Catálise , Moléculas de Adesão Celular/química , Cobre/química , Reação de Cicloadição , Dendrímeros/síntese química , Dendrímeros/metabolismo , Fucose/química , Humanos , Concentração Inibidora 50 , Lectinas Tipo C/química , Ligantes , Manose/química , Receptores de Superfície Celular/química , Ressonância de Plasmônio de Superfície
8.
Proc Natl Acad Sci U S A ; 112(33): 10255-61, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26039986

RESUMO

The role of symbiosis in bacterial symbiont genome evolution is well understood, yet the ways that symbiosis shapes host genomes or more particularly, host/symbiont genome coevolution in the holobiont is only now being revealed. Here, we identify three coevolutionary signatures that characterize holobiont genomes. The first signature, host/symbiont collaboration, arises when completion of essential pathways requires host/endosymbiont genome complementarity. Metabolic collaboration has evolved numerous times in the pathways of amino acid and vitamin biosynthesis. Here, we highlight collaboration in branched-chain amino acid and pantothenate (vitamin B5) biosynthesis. The second coevolutionary signature is acquisition, referring to the observation that holobiont genomes acquire novel genetic material through various means, including gene duplication, lateral gene transfer from bacteria that are not their current obligate symbionts, and full or partial endosymbiont replacement. The third signature, constraint, introduces the idea that holobiont genome evolution is constrained by the processes governing symbiont genome evolution. In addition, we propose that collaboration is constrained by the expression profile of the cell lineage from which endosymbiont-containing host cells, called bacteriocytes, are derived. In particular, we propose that such differences in bacteriocyte cell lineage may explain differences in patterns of host/endosymbiont metabolic collaboration between the sap-feeding suborders Sternorrhyncha and Auchenorrhynca. Finally, we review recent studies at the frontier of symbiosis research that are applying functional genomic approaches to characterization of the developmental and cellular mechanisms of host/endosymbiont integration, work that heralds a new era in symbiosis research.


Assuntos
Evolução Molecular , Hemípteros/genética , Hemípteros/microbiologia , Simbiose , Aminoácidos/química , Aminoácidos de Cadeia Ramificada/química , Animais , Bactérias/genética , Buchnera/genética , Linhagem da Célula , Citoplasma/metabolismo , Perfilação da Expressão Gênica , Transferência Genética Horizontal , Genoma , Genoma Bacteriano , Ácido Pantotênico/química
9.
J Biomol NMR ; 68(1): 19-32, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28434103

RESUMO

Pseudocontact shifts (PCS) encode long-range information on 3D structures of protein backbones and side-chains. The level of structural detail that can be obtained increases with the number of different sites tagged with a paramagnetic metal ion to generate PCSs. Here we show that PCSs from two different sites can suffice to determine the structure of polypeptide chains and their location and orientation relative to the magnetic susceptibility tensor χ, provided that PCSs are available for 1H as well as heteronuclear spins. In addition, PCSs from two different sites are shown to provide detailed structural information on the conformation of methyl group-bearing amino-acid side-chains. A previously published ensemble structure of ubiquitin is shown to explain the magnetic susceptibility and alignment tensors slightly better than structures that try to explain the experimental data by a single conformation, illustrating the potential of PCSs as a tool to investigate small conformational changes.


Assuntos
Elementos da Série dos Lantanídeos/química , Ressonância Magnética Nuclear Biomolecular/métodos , Ubiquitina/química , Aminoácidos de Cadeia Ramificada/química , Conformação Proteica , Proteínas/química
10.
Proc Natl Acad Sci U S A ; 111(24): E2501-9, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24889636

RESUMO

The antiglycemic drug metformin, widely prescribed as first-line treatment of type II diabetes mellitus, has lifespan-extending properties. Precisely how this is achieved remains unclear. Via a quantitative proteomics approach using the model organism Caenorhabditis elegans, we gained molecular understanding of the physiological changes elicited by metformin exposure, including changes in branched-chain amino acid catabolism and cuticle maintenance. We show that metformin extends lifespan through the process of mitohormesis and propose a signaling cascade in which metformin-induced production of reactive oxygen species increases overall life expectancy. We further address an important issue in aging research, wherein so far, the key molecular link that translates the reactive oxygen species signal into a prolongevity cue remained elusive. We show that this beneficial signal of the mitohormetic pathway is propagated by the peroxiredoxin PRDX-2. Because of its evolutionary conservation, peroxiredoxin signaling might underlie a general principle of prolongevity signaling.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/efeitos dos fármacos , Hormese/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Longevidade/efeitos dos fármacos , Metformina/farmacologia , Peroxirredoxinas/fisiologia , Acil-CoA Desidrogenase/metabolismo , Aminoácidos de Cadeia Ramificada/química , Animais , Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/química , Temperatura Alta , Peróxido de Hidrogênio/química , Mitocôndrias/enzimologia , Modelos Animais , Estresse Oxidativo , Consumo de Oxigênio , Desdobramento de Proteína , Proteômica , Espécies Reativas de Oxigênio , Rotenona/química , Transdução de Sinais , Fatores de Tempo
11.
Anal Chem ; 88(16): 8115-22, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27398773

RESUMO

We have developed a high-throughput microdialysis-capillary electrophoresis (MD-CE) assay for monitoring branched chain amino acid (BCAA) uptake/release dynamics in 3T3-L1 cells. BCAAs (i.e., isoleucine, leucine, and valine) and their downstream metabolites (i.e., alanine, glutamine, and glutamate) are important indicators of adipocyte lipogenesis. To perform an analysis, amino acids were sampled using microdialysis, fluorescently labeled in an online reaction, separated using CE, and detected using laser-induced fluorescence (LIF) in a sheath flow cuvette. Separation conditions were optimized for the resolution of the BCAAs isoleucine, leucine, and valine, as well as 13 other amino acids, including ornithine, alanine, glutamine, and glutamate. CE separations were performed in <30 s, and the temporal resolution of the online MD-CE assay was <60 s. Limits of detection (LOD) were 400, 200, and 100 nM for isoleucine, leucine, and valine, respectively. MD-CE dramatically improved throughput in comparison to traditional offline CE methods, allowing 8 replicates of 15 samples (i.e., 120 analyses) to be assayed in <120 min. The MD-CE assay was used to assess the metabolism dynamics of 3T3-L1 cells over time, confirming the utility of the assay.


Assuntos
Aminoácidos de Cadeia Ramificada/análise , Eletroforese Capilar/métodos , Células 3T3-L1 , Aminoácidos de Cadeia Ramificada/química , Animais , Eletroforese Capilar/instrumentação , Corantes Fluorescentes/química , Ácido Glutâmico/análise , Ácido Glutâmico/química , Isoleucina/análise , Isoleucina/química , Leucina/análise , Leucina/química , Limite de Detecção , Camundongos , Microdiálise
12.
Biochem Biophys Res Commun ; 480(1): 106-113, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27697526

RESUMO

Diabetic mellitus (DM) portends poor prognosis concerning pressure overloaded heart disease. Branched-chain amino acids (BCAAs), elements of essential amino acids, have been found altered in its catabolism in diabetes decades ago. However, the relationship between BCAAs and DM induced deterioration of pressure overloaded heart disease remains controversial. This study is aimed to investigate the particular effect of BCKA, a metabolite of BCAA, on myocardial injury induced by pressure overloaded. Primary cardiomyocytes were incubated with or without BCKA and followed by treatment with isoproterenol (ISO); then cell viability was detected by CCK8 and apoptosis was examined by TUNNEL stain and caspase-3 activity analysis. Compared to non-BCKA incubated group, BCKA incubation decreased cell survival and increased apoptosis concentration dependently. Furthermore, Western blot assay showed that mTORC2-Akt pathway was significantly inactivated by BCKA incubation. Moreover, overexpression of rictor, a vital component of mTORC2, significantly abolished the adverse effects of BCKA on apoptosis susceptibility of cardiomyocytes. These results indicate that BCKA contribute to vulnerability of cardiomyocytes in stimulated stress via inactivation of mTORC2-Akt pathway.


Assuntos
Aminoácidos de Cadeia Ramificada/farmacologia , Apoptose/efeitos dos fármacos , Complexos Multiproteicos/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Aminoácidos de Cadeia Ramificada/química , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Isoproterenol/farmacologia , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Proteína Companheira de mTOR Insensível à Rapamicina , Transdução de Sinais/efeitos dos fármacos
13.
Arch Biochem Biophys ; 607: 27-36, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27523731

RESUMO

PLP-Dependent fold-type IV branched-chain amino acid aminotransferases (BCATs) from archaea have so far been poorly characterized. A new BCAT from the hyperthermophilic archaeon Thermoproteus uzoniensis (TUZN1299) has been studied. TUZN1299 was found to be highly active toward branched-chain amino acids (BCAAs), positively charged amino acids, l-methionine, l-threonine, l-homoserine, l-glutamine, as well as toward 2-oxobutyrate and keto analogs of BCAAs, whereas l-glutamate and α-ketoglutarate were not converted in the overall reaction. According to stopped-flow experiments, the enzyme showed the highest specificity to BCAAs and their keto analogs. In order to explain the molecular mechanism of the unusual specificity of TUZN1299, bioinformatic analysis was implemented to identify the subfamily-specific positions in the aminotransferase class IV superfamily of enzymes. The role of the selected residues in binding of various ligands in the active site was further studied using molecular modeling. The results indicate that Glu188 forms a novel binding site for positively charged and polar side-chains of amino acids. Lack of accommodation for α-ketoglutarate and l-glutamate is due to the unique orientation and chemical properties of residues 102-106 in the loop forming the A-pocket. The likely functional roles of TUZN1299 in cellular metabolism - in the synthesis and degradation of BCAAs - are discussed.


Assuntos
Aminoácidos de Cadeia Ramificada/química , Biologia Computacional/métodos , Thermoproteus/enzimologia , Transaminases/química , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Glutamina/química , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
14.
Extremophiles ; 20(2): 215-25, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26872794

RESUMO

The gene TUZN1299 from the genome of the hyperthermophilic archaeon Thermoproteus uzoniensis encoding a new 32.8 kDa branched-chain amino acid aminotransferase (BCAT) was expressed in Escherichia coli. The recombinant protein TUZN1299 was purified to homogeneity in the PLP-bound form. TUZN1299 was active towards branched-chain amino acids (L-Val, L-Leu, L-Ile) and showed low but detectable activity toward (R)-alpha-methylbenzylamine. The enzyme exhibits high-temperature optimum, thermal stability, and tolerance to organic solvents. The structure of an archaeal BCAT called TUZN1299 was solved for the first time (at 2.0 Å resolution). TUZN1299 has a typical BCAT type IV fold, and the organization of its active site is similar to that of bacterial BCATs. However, there are some differences in the amino acid composition of the active site.


Assuntos
Proteínas Arqueais/química , Thermoproteus/enzimologia , Transaminases/química , Aminas/química , Aminas/metabolismo , Aminoácidos de Cadeia Ramificada/química , Aminoácidos de Cadeia Ramificada/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Estabilidade Enzimática , Especificidade por Substrato , Transaminases/genética , Transaminases/metabolismo
15.
J Eukaryot Microbiol ; 63(3): 299-308, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26496801

RESUMO

Trypanosoma cruzi is the etiological agent of Chagas disease. During its life cycle, it alternates among vertebrate and invertebrate hosts. Metabolic flexibility is a main biochemical characteristic of this parasite, which is able to obtain energy by oxidizing a variety of nutrients that can be transported from the extracellular medium. Moreover, several of these metabolites, more specifically amino acids, have a variety of functions beyond being sources of energy. Branched chain amino acids (BCAA), beyond their role in ATP production, are involved in sterol biosynthesis; for example, leucine is involved as a negative regulator of the parasite differentiation process occurring in the insect midgut. BCAA are essential metabolites in most nonphotosynthetic eukaryotes, including trypanosomes. In view of this, the metabolism of BCAA in T. cruzi depends mainly on their transport into the cell. In this work, we kinetically characterized the BCAA transport in T. cruzi epimastigotes. Our data point to BCAA as being transported by a single saturable transport system able to recognize leucine, isoleucine and valine. In view of this, we used leucine to further characterize this system. The transport increased linearly with temperature from 10 to 45 °C, allowing the calculation of an activation energy of 51.30 kJ/mol. Leucine uptake was an active process depending on ATP production and a H(+) gradient, but not on a Na(+) or K(+) gradient at the cytoplasmic membrane level.


Assuntos
Aminoácidos de Cadeia Ramificada/química , Aminoácidos de Cadeia Ramificada/metabolismo , Membrana Celular/metabolismo , Trypanosoma cruzi/metabolismo , Trifosfato de Adenosina/metabolismo , Sistemas de Transporte de Aminoácidos , Animais , Doença de Chagas/parasitologia , Isoleucina/metabolismo , Isoleucina/farmacologia , Cinética , Leucina/metabolismo , Leucina/farmacologia , Temperatura , Trypanosoma cruzi/efeitos dos fármacos , Valina/metabolismo , Valina/farmacologia
16.
J Biol Chem ; 289(46): 32081-32093, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25294875

RESUMO

Age-related damage accumulates and a variety of biological activities and functions deteriorate in senescent cells. However, little is known about when cellular aging behaviors begin and what cellular aging processes change. Previous research demonstrated age-related mRNA changes in budding yeast by the 18th to 20th generation, which is the average replicative lifespan of yeast (i.e. about half of the population is dead by this time point). Here, we performed transcriptional and metabolic profiling for yeast at early stages of senescence (4th, 7th, and 11th generation), that is, for populations in which most cells are still alive. Transcriptional profiles showed up- and down-regulation for ∼20% of the genes profiled after the first four generations, few further changes by the 7th generation, and an additional 12% of the genes were up- and down-regulated after 11 generations. Pathway analysis revealed that these 11th generation cells had accumulated transcripts coding for enzymes involved in sugar metabolism, the TCA cycle, and amino acid degradation and showed decreased levels of mRNAs coding for enzymes involved in amino acid biosynthetic pathways. These observations were consistent with the metabolomic profiles of aging cells: an accumulation of pyruvic acid and TCA cycle intermediates and depletion of most amino acids, especially branched-chain amino acids. Stationary phase-induced genes were highly expressed after 11 generations even though the growth medium contained adequate levels of nutrients, indicating deterioration of the nutrient sensing and/or signaling pathways by the 11th generation. These changes are presumably early indications of replicative senescence.


Assuntos
Senescência Celular , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transcrição Gênica , Aminoácidos/química , Aminoácidos de Cadeia Ramificada/química , Ciclo do Ácido Cítrico , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Metabolômica , Análise de Sequência com Séries de Oligonucleotídeos , Ácido Pirúvico/química , Saccharomyces cerevisiae/metabolismo , Saccharomycetales , Transcriptoma
17.
Biochim Biophys Acta ; 1844(4): 850-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24590113

RESUMO

Halophilic proteins are stable and function at high salt concentration. Understanding how these molecules maintain their fold stable and avoid aggregation under harsh conditions is of great interest for biotechnological applications. This mini-review describes what is known about the molecular determinants of protein halotolerance. Comparisons between the sequences of halophilic/non-halophilic homologous protein pairs indicated that Asp and Glu are significantly more frequent, while Lys, Ile and Leu are less frequent in halophilic proteins. Homologous halophilic and non-halophilic proteins have similar overall structure, secondary structure content, and number of residues involved in the formation of H-bonds. On the other hand, on the halophilic protein surface, a decrease of nonpolar residues and an increase of charged residues are observed. Particularly, halophilic adaptation correlates with an increase of Asp and Glu, compensated by a decrease of basic residues, mainly Lys, on protein surface. A thermodynamic model, that provides a reliable explanation of the salt effect on the conformational stability of globular proteins, is presented.


Assuntos
Aminoácidos Acídicos/química , Aminoácidos Básicos/química , Aminoácidos de Cadeia Ramificada/química , Evolução Molecular , Proteínas/química , Salinidade , Adaptação Fisiológica , Aminoácidos Acídicos/metabolismo , Aminoácidos Básicos/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas/metabolismo , Eletricidade Estática , Relação Estrutura-Atividade , Termodinâmica
18.
J Biomol NMR ; 62(3): 281-90, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25953312

RESUMO

Methyl groups have become key probes for structural and functional studies by nuclear magnetic resonance. However, their NMR signals cluster in a small spectral region and assigning their resonances can be a tedious process. Here, we present a method that facilitates assignment of methyl resonances from assigned amide groups. Calculating the covariance between sensitive methyl and amide 3D spectra, each providing correlations to C(α) and C(ß) separately, produces 4D correlation maps directly correlating methyl groups to amide groups. Optimal correlation maps are obtained by extracting residue-specific regions, applying derivative to the dimensions subject to covariance, and multiplying 4D maps stemming from different 3D spectra. The latter procedure rescues weak signals that may be missed in traditional assignment procedures. Using these covariance correlation maps, nearly all assigned isoleucine, leucine, and valine amide resonances of a 52 kDa nonribosomal peptide synthetase cyclization domain were paired with their corresponding methyl groups.


Assuntos
Aminoácidos de Cadeia Ramificada/química , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química
19.
Protein Expr Purif ; 115: 1-10, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26256059

RESUMO

Routes to carbon-13 enrichment of bacterially expressed proteins include achieving uniform or positionally selective (e.g. ILV-Me, or (13)C', etc.) enrichment. We consider the potential for biosynthetically directed fractional enrichment (e.g. carbon-13 incorporation in the protein less than 100%) for performing routine n-(D)dimensional NMR spectroscopy of proteins. First, we demonstrate an approach to fractional isotope addition where the initial growth media containing natural abundance glucose is replenished at induction with a small amount (e.g. 10%(w/w)u-(13)C-glucose) of enriched nutrient. The approach considered here is to add 10% (e.g. 200mg for a 2g/L culture) u-(13)C-glucose at the induction time (OD600=0.8), resulting in a protein with enhanced (13)C incorporation that gives almost the same NMR signal levels as an exact 20% (13)C sample. Second, whereas fractional enrichment is used for obtaining stereospecific methyl assignments, we find that (13)C incorporation levels no greater than 20%(w/w) yield (13)C and (13)C-(13)C spin pair incorporation sufficient to conduct typical 3D-bioNMR backbone experiments on moderate instrumentation (600 MHz, RT probe). Typical 3D-bioNMR experiments of a fractionally enriched protein yield expected backbone connectivities, and did not show amino acid biases in this work, with one exception. When adding 10% u-(13)C glucose to expression media at induction, there is poor preservation of (13)Cα-(13)Cß spin pairs in the amino acids ILV, leading to the absence of Cß signals in HNCACB spectra for ILV, a potentially useful editing effect. Enhanced fractional carbon-13 enrichment provides lower-cost routes to high throughput protein NMR studies, and makes modern protein NMR more cost-accessible.


Assuntos
Isótopos de Carbono/química , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/análise , Proteínas/química , Aminoácidos de Cadeia Ramificada/química , Aminoácidos de Cadeia Ramificada/metabolismo , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Proteínas Fúngicas , Proteínas/metabolismo , Ubiquitina
20.
Pediatr Res ; 77(1-1): 36-47, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25268144

RESUMO

BACKGROUND: Acylcarnitines are biomarkers of fatty acid metabolism, and examining their patterns in preterm newborn may reveal metabolic changes associated with particular conditions related to prematurity. Isomeric acylcarnitines in dried blood spots (DBS) and plasma have never been assessed in preterm infants. METHODS: We studied 157 newborn divided into four groups by weeks of gestational age (GA), as follows: 22-27 wk in group 1; 28-31 wk in group 2; 32-36 wk in group 3; and 37-42 wk in group 4. Samples were collected on the third day of life. Acylcarnitines were separated and quantified using ultra-performance liquid chromatography tandem mass spectrometry. RESULTS: Acylcarnitine concentrations correlated significantly with GA and birth weight in both DBS and plasma samples. Concentrations were lower in preterm newborn, except for acylcarnitines derived from branched-chain amino acids, which were higher and correlated with enteral feeding. On day 3 of life, no correlations emerged with gender, respiratory distress syndrome, bronchopulmonary dysplasia, surfactant administration, or mechanical ventilation. CONCLUSION: We established GA-based reference ranges for isomeric acylcarnitine concentrations in preterm newborn, which could be used to assess nutritional status and the putative neuroprotective role of acylcarnitines.


Assuntos
Carnitina/análogos & derivados , Teste em Amostras de Sangue Seco/métodos , Aminoácidos de Cadeia Ramificada/química , Peso ao Nascer , Displasia Broncopulmonar/sangue , Carnitina/sangue , Carnitina/química , Ácidos Graxos/química , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Surfactantes Pulmonares/administração & dosagem , Valores de Referência , Respiração Artificial , Síndrome do Desconforto Respiratório do Recém-Nascido/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA