Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(7): 4438-4452, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38323712

RESUMO

BACKGROUND: The gut microbiota is intricate and susceptible to multiple factors, with diet being a major contributor. The present study aimed to investigate the impact of four commonly used laboratory animal control diets, namely Keao Xieli's maintenance diet (KX), HFK's 1025 (HF), Research Diets' D12450B (RD), and Lab Diet's 5CC4 (LD), on the gut microbiota of mice. RESULTS: A total of 40 mice were randomly assigned to four groups, and each group was fed one of the four diets for a duration of 8 weeks. The assessment of gut microbiota was conducted using 16S rRNA sequencing both at the beginning of the study (week 0) and the end (week 8), which served as the baseline and endpoint samples, respectively. Following the 8-week feeding period, no significant differences were observed in physiological parameters, including body weight, visceral weight, and blood biochemical indices, across the four groups. Nonetheless, relative to the baseline, discernible alterations in the gut microbiota were observed in all groups, encompassing shifts in beta-diversity, hierarchical clustering, and key genera. Among the four diets, HF diet exhibited a significant influence on alpha-diversity, RD diet brought about notable changes in microbial composition at the phylum level, and LD diet demonstrated an interconnected co-occurrence network. Mantel analysis indicated no significant correlation between physiological parameters and gut microbiota in the four groups. CONCLUSION: Overall, our study demonstrated that the four control diets had a minimal impact on physiological parameters, while exerting a distinct influence on the gut microbiota after 8 weeks. © 2024 Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , Camundongos , Animais , RNA Ribossômico 16S/genética , Dieta/veterinária , Animais de Laboratório/genética
2.
Biol Reprod ; 108(3): 465-478, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36477198

RESUMO

In mammals, testis and epididymis are critical components of the male reproductive system for androgen production, spermatogenesis, sperm transportation, as well as sperm maturation. Here, we report single-molecule real-time sequencing data from the testis and epididymis of the Banna mini-pig inbred line (BMI), a promising laboratory animal for medical research. We obtained high-quality full-length transcriptomes and identified 9879 isoforms and 8761 isoforms in the BMI testis and epididymis, respectively. Most of the isoforms we identified have novel exon structures that will greatly improve the annotation of testis- and epididymis-expressed genes in pigs. We also found that 3055 genes (over 50%) were shared between BMI testis and epididymis, indicating widespread expression profiles of genes related to reproduction. We characterized extensive alternative splicing events in BMI testis and epididymis and showed that 96 testis-expressed genes and 79 epididymis-expressed genes have more than six isoforms, revealing the complexity of alternative splicing. We accurately defined the transcribed isoforms in BMI testis and epididymis by combining Pacific Biotechnology Isoform-sequencing (PacBio Iso-Seq) and Illumina RNA Sequencing (RNA-seq) techniques. The refined annotation of some key genes governing male reproduction will facilitate further understanding of the molecular mechanisms underlying BMI male sterility. In addition, the high-confident identification of 548 and 669 long noncoding RNAs (lncRNAs) in these two tissues has established a candidate gene set for future functional investigations. Overall, our study provides new insights into the role of the testis and epididymis during BMI reproduction, paving the path for further studies on BMI male infertility.


Assuntos
Epididimo , Testículo , Masculino , Animais , Suínos/genética , Testículo/metabolismo , Epididimo/metabolismo , Porco Miniatura/genética , Porco Miniatura/metabolismo , Transcriptoma , Sêmen/metabolismo , Isoformas de Proteínas/metabolismo , Animais de Laboratório/genética , Animais de Laboratório/metabolismo
3.
Trends Genet ; 35(7): 501-514, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31133439

RESUMO

Contemporary mouse genetic reference populations are a powerful platform to discover complex disease mechanisms. Advanced high-diversity mouse populations include the Collaborative Cross (CC) strains, Diversity Outbred (DO) stock, and their isogenic founder strains. When used in systems genetics and integrative genomics analyses, these populations efficiently harnesses known genetic variation for precise and contextualized identification of complex disease mechanisms. Extensive genetic, genomic, and phenotypic data are already available for these high-diversity mouse populations and a growing suite of data analysis tools have been developed to support research on diverse mice. This integrated resource can be used to discover and evaluate disease mechanisms relevant across species.


Assuntos
Animais de Laboratório/genética , Variação Genética , Camundongos/genética , Herança Multifatorial , Animais , Cruzamentos Genéticos , Modelos Animais de Doenças , Locos de Características Quantitativas
8.
Genome Res ; 25(8): 1125-34, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26129709

RESUMO

The germline mutation rate is an important parameter that affects the amount of genetic variation and the rate of evolution. However, neither the rate of germline mutations in laboratory mice nor the biological significance of the mutation rate in mammalian populations is clear. Here we studied genome-wide mutation rates and the long-term effects of mutation accumulation on phenotype in more than 20 generations of wild-type C57BL/6 mice and mutator mice, which have high DNA replication error rates. We estimated the base-substitution mutation rate to be 5.4 × 10(-9) (95% confidence interval = 4.6 × 10(-9)-6.5 × 10(-9)) per nucleotide per generation in C57BL/6 laboratory mice, about half the rate reported in humans. The mutation rate in mutator mice was 17 times that in wild-type mice. Abnormal phenotypes were 4.1-fold more frequent in the mutator lines than in the wild-type lines. After several generations, the mutator mice reproduced at substantially lower rates than the controls, exhibiting low pregnancy rates, lower survival rates, and smaller litter sizes, and many of the breeding lines died out. These results provide fundamental information about mouse genetics and reveal the impact of germline mutation rates on phenotypes in a mammalian population.


Assuntos
Animais de Laboratório/genética , Mutação em Linhagem Germinativa , Camundongos/genética , Animais , Animais de Laboratório/fisiologia , Evolução Molecular , Feminino , Genoma , Tamanho da Ninhada de Vivíparos , Camundongos/classificação , Camundongos/fisiologia , Taxa de Mutação , Fenótipo , Gravidez , Taxa de Gravidez , Seleção Genética
9.
J Med Primatol ; 47(6): 412-415, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29956824

RESUMO

BACKGROUND: The taxonomic classification of squirrel monkeys is often controversial issue offering many different information. The classification of captive animals is difficult due to the phenotypic similarities between the presented species, which is observed mainly in coat coloration. METHODS: The objective of this study was to analyze the chromosome pattern of one squirrel monkey with off standard physical characteristics, which is kept in the Laboratory Animals Breeding Center in Rio de Janeiro State, Brazil, and try to establish some correlations. Chromosomes were obtained using lymphocyte culture technique. RESULTS AND CONCLUSIONS: Evaluation of G bands showed a terminal deletion in one chromosome of pair 13. The association of the results found with the different phenotypic characteristics led us to classify it as a Saimiri sciureus specimen with a structural chromosomal change, possibly allowing the expression of hemizygous alleles.


Assuntos
Deleção Cromossômica , Cromossomos de Mamíferos/genética , Saimiri/genética , Animais , Animais de Laboratório/genética , Brasil , Masculino , Fenótipo
10.
J Med Primatol ; 47(2): 139-141, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29388214

RESUMO

Pedigree metrics are essential for investigating colony genetic structure. The genetic structure of a closed Callicebus cupreus colony was examined using multigenerational pedigrees. Inbreeding was low, but genetic drift caused the loss of founder genome representation. Pedigrees can be used to detect founder representation and prevent bottlenecks and allele loss.


Assuntos
Variação Genética , Linhagem , Pitheciidae/genética , Animais , Animais de Laboratório/genética , Feminino , Masculino
11.
J Med Primatol ; 47(6): 379-387, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29971797

RESUMO

BACKGROUND: Knowledge of major histocompatibility complex (MHC) composition and distribution in rhesus macaque colonies is critical for management strategies that maximize the utility of this model for biomedical research. METHODS: Variation within the Mamu-A and Mamu-B (class I) and DRB, DQA/B, and DPA/B (class II) regions of 379 animals from the Caribbean Primate Research Center's (CPRC) specific pathogen free (SPF) colony was examined using massively parallel sequencing. RESULTS: Analyses of the 7 MHC loci revealed a background of Indian origin with high levels of variation despite past genetic bottlenecks. All loci exhibited mutual linkage disequilibria while conforming to Hardy-Weinberg expectations suggesting the achievement of mutation-selection balance. CONCLUSION: The CPRC's SPF colony is a significant resource for research on AIDS and other infectious agents. Characterizing colony-wide MHC variability facilitates the breeding and selection of animals bearing desired haplotypes and increases the investigator's ability to understand the immune responses mounted by these animals.


Assuntos
Frequência do Gene , Genes MHC da Classe II , Genes MHC Classe I , Macaca mulatta/genética , Alelos , Animais , Animais de Laboratório/genética , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Porto Rico , Organismos Livres de Patógenos Específicos
14.
Toxicol Pathol ; 45(1): 119-126, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27932582

RESUMO

The emerging field of translational safety genetics is providing new opportunities to enhance drug discovery and development. Genetic variation in therapeutic drug targets, off-target interactors and relevant drug metabolism/disposition pathways can contribute to diverse drug pharmacologic and toxicologic responses between different animal species, strains and geographic origins. Recent advances in the sequencing of rodent, canine, nonhuman primate, and minipig genomes have dramatically improved the ability to select the most appropriate animal species for preclinical drug toxicity studies based on genotypic characterization of drug targets/pathways and drug metabolism and/or disposition, thus avoiding inconclusive or misleading animal studies, consistent with the principles of the 3Rs (replacement, reduction and refinement). The genetic background of individual animals should also be taken into consideration when interpreting phenotypic outcomes from toxicity studies and susceptibilities to spontaneous safety-relevant background findings.


Assuntos
Animais de Laboratório/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Testes de Toxicidade/métodos , Pesquisa Translacional Biomédica/métodos , Animais , Variação Genética , Guias como Assunto , Projetos de Pesquisa , Especificidade da Espécie
15.
Toxicol Pathol ; 45(1): 94-106, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27753639

RESUMO

It has been long established that not only the species but also the strain and supplier of rodents used in preclinical safety studies can have a significant impact on the outcome of studies due to variability in their genetic background and thus spontaneous pathologic findings. In addition, local husbandry, housing, and other environmental conditions may have effects on the development and expression of comorbidities, particularly in longer-term or chronic studies. More recently, similar effects related to the source, including genetic and environmental variability, have been recognized in cynomolgus macaques ( Macaca fascicularis). The increased use of cynomolgus macaques from various sources of captive-bred animals (including nonnative, U.S./European Union-based breeding facilities or colonies) can affect study design and study results and outcome. It is important to acknowledge and understand the impact of this variability on the results and interpretation of research studies. This review includes recent examples where variability of preclinical animal models (rats and monkeys) affected the postmortem observations highlighting its relevance to study design or interpretation in safety studies.


Assuntos
Animais de Laboratório/genética , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/normas , Projetos de Pesquisa/normas , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/genética , Predisposição Genética para Doença , Macaca fascicularis , Ratos , Especificidade da Espécie
16.
Nature ; 477(7364): 289-94, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21921910

RESUMO

We report genome sequences of 17 inbred strains of laboratory mice and identify almost ten times more variants than previously known. We use these genomes to explore the phylogenetic history of the laboratory mouse and to examine the functional consequences of allele-specific variation on transcript abundance, revealing that at least 12% of transcripts show a significant tissue-specific expression bias. By identifying candidate functional variants at 718 quantitative trait loci we show that the molecular nature of functional variants and their position relative to genes vary according to the effect size of the locus. These sequences provide a starting point for a new era in the functional analysis of a key model organism.


Assuntos
Regulação da Expressão Gênica/genética , Variação Genética/genética , Genoma/genética , Camundongos Endogâmicos/genética , Camundongos/genética , Fenótipo , Alelos , Animais , Animais de Laboratório/genética , Genômica , Camundongos/classificação , Camundongos Endogâmicos C57BL/genética , Filogenia , Locos de Características Quantitativas/genética
20.
BMC Evol Biol ; 16: 6, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26728183

RESUMO

BACKGROUND: Domesticated animals quickly evolve docile and submissive behaviors after isolation from their wild conspecifics. Model organisms reared for prolonged periods in the laboratory also exhibit similar shifts towards these domesticated behaviors. Yet whether this divergence is due to inadvertent selection in the lab or the fixation of deleterious mutations remains unknown. RESULTS: Here, we compare the genomes of lab-reared and wild-caught Drosophila melanogaster to understand the genetic basis of these recently endowed behaviors common to laboratory models. From reassembled genomes of common lab strains, we identify unique, derived variants not present in global populations (lab-specific SNPs). Decreased selective constraints across low frequency SNPs (unique to one or two lab strains) are different from patterns found in the wild and more similar to neutral expectations, suggesting an overall accumulation of deleterious mutations. However, high-frequency lab SNPs found in most or all lab strains reveal an enrichment of X-linked loci and neuro-sensory genes across large extended haplotypes. Among shared polymorphisms, we also find highly differentiated SNPs, in which the derived allele is higher in frequency in the wild (Fst*wild>lab), enriched for similar neurogenetic ontologies, indicative of relaxed selection on more active wild alleles in the lab. CONCLUSIONS: Among random mutations that continuously accumulate in the laboratory, we detect common adaptive signatures in domesticated lab strains of fruit flies. Our results demonstrate that lab animals can quickly evolve domesticated behaviors via unconscious selection by humans early on a broad pool of disproportionately large neurogenetic targets followed by the fixation of accumulated deleterious mutations on functionally similar targets.


Assuntos
Evolução Biológica , Drosophila melanogaster/genética , Alelos , Animais , Animais Domésticos/genética , Animais de Laboratório/genética , Animais Selvagens/genética , Genoma , Haplótipos , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA