Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.636
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(3): 643-654.e13, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33482082

RESUMO

Epstein-Barr virus (EBV) is an oncogenic human herpesvirus that persists as a multicopy episome in proliferating host cells. Episome maintenance is strictly dependent on EBNA1, a sequence-specific DNA-binding protein with no known enzymatic activities. Here, we show that EBNA1 forms a cell cycle-dependent DNA crosslink with the EBV origin of plasmid replication oriP. EBNA1 tyrosine 518 (Y518) is essential for crosslinking to oriP and functionally required for episome maintenance and generation of EBV-transformed lymphoblastoid cell lines (LCLs). Mechanistically, Y518 is required for replication fork termination at oriP in vivo and for formation of SDS-resistant complexes in vitro. EBNA1-DNA crosslinking corresponds to single-strand endonuclease activity specific to DNA structures enriched at replication-termination sites, such as 4-way junctions. These findings reveal that EBNA1 forms tyrosine-dependent DNA-protein crosslinks and single-strand cleavage at oriP required for replication termination and viral episome maintenance.


Assuntos
Ciclo Celular , Reagentes de Ligações Cruzadas/química , DNA Viral/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Plasmídeos/metabolismo , Origem de Replicação , Replicação Viral/fisiologia , Sequência de Aminoácidos , Linfócitos B/metabolismo , Linhagem Celular , Adutos de DNA/metabolismo , Replicação do DNA , Endonucleases/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/química , Antígenos Nucleares do Vírus Epstein-Barr/genética , Humanos , Mutação/genética , Ligação Proteica , Recombinação Genética/genética , Tirosina/metabolismo
2.
Immunity ; 55(1): 174-184.e5, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021055

RESUMO

Human immune responses to viral infections are highly variable, but the genetic factors that contribute to this variability are not well characterized. We used VirScan, a high-throughput epitope scanning technology, to analyze pan-viral antibody reactivity profiles of twins and SNP-genotyped individuals. Using these data, we determined the heritability and genomic loci associated with antibody epitope selection, response breadth, and control of Epstein-Barr virus (EBV) viral load. 107 EBV peptide reactivities were heritable and at least two Epstein-Barr nuclear antigen 2 (EBNA-2) reactivities were associated with variants in the MHC class II locus. We identified an EBV serosignature that predicted viral load in peripheral blood mononuclear cells and was associated with variants in the MHC class I locus. Our study illustrates the utility of epitope profiling to investigate the genetics of pathogen immunity, reports heritable features of the antibody response to viruses, and identifies specific HLA loci important for EBV epitope selection.


Assuntos
Anticorpos Antivirais/metabolismo , Epitopos/metabolismo , Infecções por Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Genótipo , Herpesvirus Humano 4/fisiologia , Epitopos Imunodominantes/metabolismo , Proteínas Virais/metabolismo , Adolescente , Adulto , Idoso , Estudos de Coortes , Mapeamento de Epitopos , Epitopos/genética , Infecções por Vírus Epstein-Barr/imunologia , Antígenos Nucleares do Vírus Epstein-Barr/genética , Feminino , Antígenos HLA/genética , Antígenos HLA/metabolismo , Humanos , Imunidade Humoral , Epitopos Imunodominantes/genética , Masculino , Pessoa de Meia-Idade , Peptídeos/genética , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Estudos Soroepidemiológicos , Carga Viral , Proteínas Virais/genética , Adulto Jovem
3.
Nature ; 603(7900): 321-327, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35073561

RESUMO

Multiple sclerosis (MS) is a heterogenous autoimmune disease in which autoreactive lymphocytes attack the myelin sheath of the central nervous system. B lymphocytes in the cerebrospinal fluid (CSF) of patients with MS contribute to inflammation and secrete oligoclonal immunoglobulins1,2. Epstein-Barr virus (EBV) infection has been epidemiologically linked to MS, but its pathological role remains unclear3. Here we demonstrate high-affinity molecular mimicry between the EBV transcription factor EBV nuclear antigen 1 (EBNA1) and the central nervous system protein glial cell adhesion molecule (GlialCAM) and provide structural and in vivo functional evidence for its relevance. A cross-reactive CSF-derived antibody was initially identified by single-cell sequencing of the paired-chain B cell repertoire of MS blood and CSF, followed by protein microarray-based testing of recombinantly expressed CSF-derived antibodies against MS-associated viruses. Sequence analysis, affinity measurements and the crystal structure of the EBNA1-peptide epitope in complex with the autoreactive Fab fragment enabled tracking of the development of the naive EBNA1-restricted antibody to a mature EBNA1-GlialCAM cross-reactive antibody. Molecular mimicry is facilitated by a post-translational modification of GlialCAM. EBNA1 immunization exacerbates disease in a mouse model of MS, and anti-EBNA1 and anti-GlialCAM antibodies are prevalent in patients with MS. Our results provide a mechanistic link for the association between MS and EBV and could guide the development of new MS therapies.


Assuntos
Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Animais , Linfócitos B , Moléculas de Adesão Celular Neurônio-Glia , Antígenos Nucleares do Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Camundongos , Proteínas do Tecido Nervoso
4.
PLoS Pathog ; 20(6): e1012177, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38843296

RESUMO

BACKGROUND: Epstein-Barr virus (EBV) is a likely prerequisite for multiple sclerosis (MS) but the underlying mechanisms are unknown. We investigated antibody and T cell responses to EBV in persons with MS (pwMS), healthy EBV-seropositive controls (HC) and post-infectious mononucleosis (POST-IM) individuals up to 6 months after disease resolution. The ability of EBV-specific T cell responses to target antigens from the central nervous system (CNS) was also investigated. METHODS: Untreated persons with relapsing-remitting MS, POST-IM individuals and HC were, as far as possible, matched for gender, age and HLA-DRB1*15:01. EBV load was determined by qPCR, and IgG responses to key EBV antigens were determined by ELISA, immunofluorescence and Western blot, and tetanus toxoid antibody responses by multiplex bead array. EBV-specific T cell responses were determined ex vivo by intracellular cytokine staining (ICS) and cross-reactivity of in vitro-expanded responses probed against 9 novel Modified Vaccinia Ankara (MVA) viruses expressing candidate CNS autoantigens. RESULTS: EBV load in peripheral blood mononuclear cells (PBMC) was unchanged in pwMS compared to HC. Serologically, while tetanus toxoid responses were unchanged between groups, IgG responses to EBNA1 and virus capsid antigen (VCA) were significantly elevated (EBNA1 p = 0.0079, VCA p = 0.0298) but, importantly, IgG responses to EBNA2 and the EBNA3 family antigens were also more frequently detected in pwMS (EBNA2 p = 0.042 and EBNA3 p = 0.005). In ex vivo assays, T cell responses to autologous EBV-transformed B cells and to EBNA1 were largely unchanged numerically, but significantly increased IL-2 production was observed in response to certain stimuli in pwMS. EBV-specific polyclonal T cell lines from both MS and HC showed high levels of autoantigen recognition by ICS, and several neuronal proteins emerged as common targets including MOG, MBP, PLP and MOBP. DISCUSSION: Elevated serum EBV-specific antibody responses in the MS group were found to extend beyond EBNA1, suggesting a larger dysregulation of EBV-specific antibody responses than previously recognised. Differences in T cell responses to EBV were more difficult to discern, however stimulating EBV-expanded polyclonal T cell lines with 9 candidate CNS autoantigens revealed a high level of autoreactivity and indicate a far-reaching ability of the virus-induced T cell compartment to damage the CNS.


Assuntos
Anticorpos Antivirais , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/imunologia , Feminino , Masculino , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Adulto , Anticorpos Antivirais/imunologia , Pessoa de Meia-Idade , Reações Cruzadas/imunologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/virologia , Linfócitos T/imunologia , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/virologia , Antígenos Virais/imunologia , Carga Viral , Mononucleose Infecciosa/imunologia , Mononucleose Infecciosa/virologia , Antígenos Nucleares do Vírus Epstein-Barr/imunologia , Imunoglobulina G/imunologia
5.
PLoS Pathog ; 20(4): e1012132, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38620028

RESUMO

Epstein-Barr virus (EBV) is an important cause of human lymphomas, including Burkitt lymphoma (BL). EBV+ BLs are driven by Myc translocation and have stringent forms of viral latency that do not express either of the two major EBV oncoproteins, EBNA2 (which mimics Notch signaling) and LMP1 (which activates NF-κB signaling). Suppression of Myc-induced apoptosis, often through mutation of the TP53 (p53) gene or inhibition of pro-apoptotic BCL2L11 (BIM) gene expression, is required for development of Myc-driven BLs. EBV+ BLs contain fewer cellular mutations in apoptotic pathways compared to EBV-negative BLs, suggesting that latent EBV infection inhibits Myc-induced apoptosis. Here we use an EBNA2-deleted EBV virus (ΔEBNA2 EBV) to create the first in vivo model for EBV+ BL-like lymphomas derived from primary human B cells. We show that cord blood B cells infected with both ΔEBNA2 EBV and a Myc-expressing vector proliferate indefinitely on a CD40L/IL21 expressing feeder layer in vitro and cause rapid onset EBV+ BL-like tumors in NSG mice. These LMP1/EBNA2-negative Myc-driven lymphomas have wild type p53 and very low BIM, and express numerous germinal center B cell proteins (including TCF3, BACH2, Myb, CD10, CCDN3, and GCSAM) in the absence of BCL6 expression. Myc-induced activation of Myb mediates expression of many of these BL-associated proteins. We demonstrate that Myc blocks LMP1 expression both by inhibiting expression of cellular factors (STAT3 and Src) that activate LMP1 transcription and by increasing expression of proteins (DNMT3B and UHRF1) known to enhance DNA methylation of the LMP1 promoters in human BLs. These results show that latent EBV infection collaborates with Myc over-expression to induce BL-like human B-cell lymphomas in mice. As NF-κB signaling retards the growth of EBV-negative BLs, Myc-mediated repression of LMP1 may be essential for latent EBV infection and Myc translocation to collaboratively induce human BLs.


Assuntos
Linfócitos B , Linfoma de Burkitt , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Proteínas Proto-Oncogênicas c-myc , Latência Viral , Animais , Linfoma de Burkitt/virologia , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patologia , Linfoma de Burkitt/genética , Humanos , Camundongos , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Linfócitos B/virologia , Linfócitos B/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/genética , Apoptose , Proteínas Virais/metabolismo , Proteínas Virais/genética
6.
Blood ; 143(5): 429-443, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37847858

RESUMO

ABSTRACT: Hematological malignancies such as Burkitt lymphoma (BL), Hodgkin lymphoma (HL), and diffuse large B-cell lymphoma (DLBCL) cause significant morbidity in humans. A substantial number of these lymphomas, particularly HL and DLBCLs have poorer prognosis because of their association with Epstein-Barr virus (EBV). Our earlier studies have shown that EBV-encoded nuclear antigen (EBNA2) upregulates programmed cell death ligand 1 in DLBCL and BLs by downregulating microRNA-34a. Here, we investigated whether EBNA2 affects the inducible costimulator (ICOS) ligand (ICOSL), a molecule required for efficient recognition of tumor cells by T cells through the engagement of ICOS on the latter. In virus-infected and EBNA2-transfected B-lymphoma cells, ICOSL expression was reduced. Our investigation of the molecular mechanisms revealed that this was due to an increase in microRNA-24 (miR-24) by EBNA2. By using ICOSL 3' untranslated region-luciferase reporter system, we validated that ICOSL is an authentic miR-24 target. Transfection of anti-miR-24 molecules in EBNA2-expressing lymphoma cells reconstituted ICOSL expression and increased tumor immunogenicity in mixed lymphocyte reactions. Because miR-24 is known to target c-MYC, an oncoprotein positively regulated by EBNA2, we analyzed its expression in anti-miR-24 transfected lymphoma cells. Indeed, the reduction of miR-24 in EBNA2-expressing DLBCL further elevated c-MYC and increased apoptosis. Consistent with the in vitro data, EBNA2-positive DLBCL biopsies expressed low ICOSL and high miR-24. We suggest that EBV evades host immune responses through EBNA2 by inducing miR-24 to reduce ICOSL expression, and for simultaneous rheostatic maintenance of proproliferative c-MYC levels. Overall, these data identify miR-24 as a potential therapeutically relevant target in EBV-associated lymphomas.


Assuntos
Infecções por Vírus Epstein-Barr , Doença de Hodgkin , Linfoma Difuso de Grandes Células B , MicroRNAs , Humanos , Antagomirs , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/genética , Doença de Hodgkin/complicações , Ligantes , Linfoma Difuso de Grandes Células B/metabolismo , MicroRNAs/genética , Proteínas Virais/metabolismo
7.
EMBO J ; 40(2): e105699, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33347626

RESUMO

Pathogen type 3 secretion systems (T3SS) manipulate host cell pathways by directly delivering effector proteins into host cells. In Vibrio parahaemolyticus, the leading cause of bacterial seafood-borne diarrheal disease, we showed that a T3SS effector, VgpA, localizes to the host cell nucleolus where it binds Epstein-Barr virus nuclear antigen 1-binding protein 2 (EBP2). An amino acid substitution in VgpA (VgpAL10A ) did not alter its translocation to the nucleus but abolished the effector's capacity to interact with EBP2. VgpA-EBP2 interaction led to the re-localization of c-Myc to the nucleolus and increased cellular rRNA expression and proliferation of cultured cells. The VgpA-EBP2 interaction elevated EBP2's affinity for c-Myc and prolonged the oncoprotein's half-life. Studies in infant rabbits demonstrated that VgpA is translocated into intestinal epithelial cells, where it interacts with EBP2 and leads to nucleolar re-localization of c-Myc. Moreover, the in vivo VgpA-EBP2 interaction during infection led to proliferation of intestinal cells and heightened V. parahaemolyticus' colonization and virulence. These observations suggest that direct effector stimulation of a c-Myc controlled host cell growth program can contribute to pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Nucléolo Celular/metabolismo , Proliferação de Células/fisiologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Vibrio parahaemolyticus/metabolismo , Virulência/fisiologia , Animais , Células CACO-2 , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Infecções por Vírus Epstein-Barr/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Herpesvirus Humano 4/patogenicidade , Humanos , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Coelhos , Vibrioses/metabolismo
8.
PLoS Pathog ; 19(6): e1010478, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37262099

RESUMO

Epstein-Barr virus (EBV) is a ubiquitous human γ-herpesvirus that is causally associated with various malignancies and autoimmune disease. Epstein-Barr Nuclear Antigen 1 (EBNA1) is the viral-encoded DNA binding protein required for viral episome maintenance and DNA replication during latent infection in proliferating cells. EBNA1 is known to be a highly stable protein, but the mechanisms regulating protein stability and how this may be linked to EBNA1 function is not fully understood. Proteomic analysis of EBNA1 revealed interaction with Procollagen Lysine-2 Oxoglutarate 5 Dioxygenase (PLOD) family of proteins. Depletion of PLOD1 by shRNA or inhibition with small molecule inhibitors 2,-2' dipyridyl resulted in the loss of EBNA1 protein levels, along with a selective growth inhibition of EBV-positive lymphoid cells. PLOD1 depletion also caused a loss of EBV episomes from latently infected cells and inhibited oriP-dependent DNA replication. Mass spectrometry identified EBNA1 peptides with lysine hydroxylation at K460 or K461. Mutation of K460, but not K461 abrogates EBNA1-driven DNA replication of oriP, but did not significantly affect EBNA1 DNA binding. Mutations in both K460 and K461 perturbed interactions with PLOD1, as well as decreased EBNA1 protein stability. These findings suggest that PLOD1 is a novel interaction partner of EBNA1 that regulates EBNA1 protein stability and function in viral plasmid replication, episome maintenance and host cell survival.


Assuntos
Infecções por Vírus Epstein-Barr , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase , Humanos , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Lisina/genética , Proteômica , Replicação do DNA , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Replicação Viral , Estabilidade Proteica , Plasmídeos , Origem de Replicação
9.
Ann Neurol ; 96(2): 302-305, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38860471

RESUMO

Synergistic interactions between human herpesvirus 6A (HHV-6A) and Epstein-Barr virus (EBV) are hypothesized in the etiopathogenesis of multiple sclerosis (MS). This study investigated if HHV-6A and EBV seroreactivities interact regarding the risk of developing MS. Antibodies against viral antigens were analyzed in biobank samples from 670 individuals who later developed MS and matched controls. Additive interactions were analyzed. A significant interaction between HHV-6A and EBNA-1 seroreactivities was observed in study participants above the median age of 24.9 years (attributable proportion due to interaction = 0.45). This finding supports the hypothesis that HHV-6A and EBV infections interact in MS development. ANN NEUROL 2024;96:302-305.


Assuntos
Anticorpos Antivirais , Infecções por Vírus Epstein-Barr , Antígenos Nucleares do Vírus Epstein-Barr , Herpesvirus Humano 4 , Herpesvirus Humano 6 , Esclerose Múltipla , Infecções por Roseolovirus , Humanos , Herpesvirus Humano 6/imunologia , Esclerose Múltipla/virologia , Esclerose Múltipla/imunologia , Herpesvirus Humano 4/imunologia , Feminino , Estudos de Casos e Controles , Masculino , Adulto , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/complicações , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Nucleares do Vírus Epstein-Barr/imunologia , Infecções por Roseolovirus/imunologia , Infecções por Roseolovirus/complicações , Adulto Jovem , Pessoa de Meia-Idade , Adolescente
10.
Proc Natl Acad Sci U S A ; 119(30): e2200512119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35857872

RESUMO

Epstein-Barr virus (EBV) is a human tumor virus which preferentially infects resting human B cells. Upon infection in vitro, EBV activates and immortalizes these cells. The viral latent protein EBV nuclear antigen 2 (EBNA2) is essential for B cell activation and immortalization; it targets and binds the cellular and ubiquitously expressed DNA-binding protein CBF1, thereby transactivating a plethora of viral and cellular genes. In addition, EBNA2 uses its N-terminal dimerization (END) domain to bind early B cell factor 1 (EBF1), a pioneer transcription factor specifying the B cell lineage. We found that EBNA2 exploits EBF1 to support key metabolic processes and to foster cell cycle progression of infected B cells in their first cell cycles upon activation. The α1-helix within the END domain was found to promote EBF1 binding. EBV mutants lacking the α1-helix in EBNA2 can infect and activate B cells efficiently, but activated cells fail to complete the early S phase of their initial cell cycle. Expression of MYC, target genes of MYC and E2F, as well as multiple metabolic processes linked to cell cycle progression are impaired in EBVΔα1-infected B cells. Our findings indicate that EBF1 controls B cell activation via EBNA2 and, thus, has a critical role in regulating the cell cycle of EBV-infected B cells. This is a function of EBF1 going beyond its well-known contribution to B cell lineage specification.


Assuntos
Linfócitos B , Infecções por Vírus Epstein-Barr , Antígenos Nucleares do Vírus Epstein-Barr , Regulação da Expressão Gênica , Herpesvirus Humano 4 , Proteínas Proto-Oncogênicas c-myc , Transativadores , Proteínas Virais , Linfócitos B/imunologia , Linfócitos B/virologia , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , Fase S , Transativadores/genética , Transativadores/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
11.
BMC Genomics ; 25(1): 273, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475709

RESUMO

BACKGROUND: There are two major genetic types of Epstein-Barr Virus (EBV): type 1 (EBV-1) and type 2 (EBV-2). EBV functions by manipulating gene expression in host B cells, using virus-encoded gene regulatory proteins including Epstein-Barr Nuclear Antigen 2 (EBNA2). While type 1 EBNA2 is known to interact with human transcription factors (hTFs) such as RBPJ, EBF1, and SPI1 (PU.1), type 2 EBNA2 shares only ~ 50% amino acid identity with type 1 and thus may have distinct binding partners, human genome binding locations, and functions. RESULTS: In this study, we examined genome-wide EBNA2 binding in EBV-1 and EBV-2 transformed human B cells to identify shared and unique EBNA2 interactions with the human genome, revealing thousands of type-specific EBNA2 ChIP-seq peaks. Computational predictions based on hTF motifs and subsequent ChIP-seq experiments revealed that both type 1 and 2 EBNA2 co-occupy the genome with SPI1 and AP-1 (BATF and JUNB) hTFs. However, type 1 EBNA2 showed preferential co-occupancy with EBF1, and type 2 EBNA2 preferred RBPJ. These differences in hTF co-occupancy revealed possible mechanisms underlying type-specific gene expression of known EBNA2 human target genes: MYC (shared), CXCR7 (type 1 specific), and CD21 (type 2 specific). Both type 1 and 2 EBNA2 binding events were enriched at systemic lupus erythematosus (SLE) and multiple sclerosis (MS) risk loci, while primary biliary cholangitis (PBC) risk loci were specifically enriched for type 2 peaks. CONCLUSIONS: This study reveals extensive type-specific EBNA2 interactions with the human genome, possible differences in EBNA2 interaction partners, and a possible new role for type 2 EBNA2 in autoimmune disorders. Our results highlight the importance of considering EBV type in the control of human gene expression and disease-related investigations.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Genoma Humano , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Proteínas Virais/genética , Fatores de Transcrição/metabolismo
12.
PLoS Pathog ; 18(9): e1010738, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36067220

RESUMO

While Epstein-Barr virus causes mostly asymptomatic infection, associated malignancies, and autoimmune and lymphoproliferative diseases occur. To dissect the evolution of humoral immune responses over the course of EBV infection and to gain a better understanding of the potential contribution of antibody (Ab) function to viral control, we comprehensively profiled Ab specificities and Fc-functionalities using systems serology and VirScan. Ab functions against latent (EBNA1), early (p47/54) and two late (gp350/220 and VCA-p18) EBV proteins were overall modest and/or short-lived, differing from humoral responses induced during acute infection by other viruses such as HIV. In the first year post infection, only p18 elicited robust IgM-driven complement deposition and IgG-driven neutrophil phagocytosis while responses against EBNA-1 were largely Fc-functionally silent and only matured during chronic infection to drive phagocytosis. In contrast, Abs against Influenza virus readily mediated broad Fc-activity in all participants. These data suggest that EBV evades the induction of robust Fc-functional Abs, potentially due to the virus' life cycle, switching from lytic to latent stages during infection.


Assuntos
Infecções por Vírus Epstein-Barr , Anticorpos Antivirais , Antígenos Nucleares do Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Imunoglobulina G , Imunoglobulina M
13.
J Neurol Neurosurg Psychiatry ; 95(4): 325-332, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37802637

RESUMO

BACKGROUND: Multiple sclerosis (MS) and presymptomatic axonal injury appear to develop only after an Epstein-Barr virus (EBV) infection. This association remains to be confirmed across a broad preclinical time range, for lytic and latent EBV seroreactivity, and for potential cross-reacting antigens. METHODS: We performed a case-control study with 669 individual serum samples obtained before clinical MS onset, identified through cross-linkage with the Swedish MS register. We assayed antibodies against EBV nuclear antigen 1 (EBNA1), viral capsid antigen p18, glycoprotein 350 (gp350), the potential cross-reacting protein anoctamin 2 (ANO2) and the level of sNfL, a marker of axonal injury. RESULTS: EBNA1 (latency) seroreactivity increased in the pre-MS group, at 15-20 years before clinical MS onset, followed by gp350 (lytic) seroreactivity (p=0.001-0.009), ANO2 seropositivity appeared shortly after EBNA1-seropositivity in 16.7% of pre-MS cases and 10.0% of controls (p=0.001).With an average lag of almost a decade after EBV, sNfL gradually increased, mainly in the increasing subgroup of seropositive pre-MS cases (p=8.10-5 compared with non-MS controls). Seropositive pre-MS cases reached higher sNfL levels than seronegative pre-MS (p=0.038). In the EBNA1-seropositive pre-MS group, ANO2 seropositive cases had 26% higher sNfL level (p=0.0026). CONCLUSIONS: Seroreactivity against latent and lytic EBV antigens, and in a subset ANO2, was detectable on average a decade before the appearance of a gradually increasing axonal injury occurring in the last decade before the onset of clinical MS. These findings strengthen the hypothesis of latent EBV involvement in the pathogenesis of MS.


Assuntos
Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Humanos , Herpesvirus Humano 4 , Estudos de Casos e Controles , Antígenos Virais , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo
14.
J Pathol ; 259(3): 276-290, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36441149

RESUMO

Interstitial cystitis/bladder pain syndrome with Hunner's lesion (HIC) is characterized by chronic inflammation and nerve hyperplasia; however, the pathogenesis of HIC remains a mystery. In this study, we detected both Epstein-Barr virus (EBV) latency infection genes EBNA-1 and LMP-1 and EBV lytic infection BZLF-1 and BRLF-1 expression in the HIC bladders, indicating the coexistence of EBV persistence and reactivation in the B cells in HIC bladders. Upregulation of EBV-associated inflammatory genes in HIC bladders, such as TNF-α and IL-6, suggests EBV infection is implicated in the pathogenesis of bladder inflammation. Nerve hyperplasia and upregulation of brain-derived neurotrophic factor (BDNF) were noted in the HIC bladders. Double immunochemical staining and flow cytometry revealed the origin of BDNF to be EBV-infected B cells. Inducible BDNF expression was noted in B cells upon EBV infection, but not in the T cells. A chromatin immunoprecipitation study revealed BDNF transcription could be promoted by cooperation between EBV nuclear antigens, chromatin modifiers, and B-cell-specific transcription. Knockdown of BDNF in EBV-infected B cells resulted in the inhibition of cell proliferation and viability. Downregulation of phosphorylated SMAD2 and STAT3 after BDNF knockdown may play a role in the mechanism. Implantation of latent EBV-infected B cells into rat bladder walls resulted in a higher expression level of CD45 and PGP9.5, suggesting tissue inflammation and nerve hyperplasia. In contrast, implantation of BDNF depleted EBV-infected B cells abrogated these effects. This is the first study to provide insights into the mechanisms underlying the involvement of EBV-infected B cells in HIC pathogenesis. © 2022 The Pathological Society of Great Britain and Ireland.


Assuntos
Cistite Intersticial , Cistite , Infecções por Vírus Epstein-Barr , Animais , Ratos , Cistite Intersticial/genética , Cistite Intersticial/complicações , Cistite Intersticial/metabolismo , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Hiperplasia , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Cistite/complicações , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Proteínas Virais/metabolismo , Inflamação/complicações
16.
Nucleic Acids Res ; 50(20): 11799-11819, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36350639

RESUMO

The oncogenic Epstein-Barr virus (EBV) evades the immune system but has an Achilles heel: its genome maintenance protein EBNA1. Indeed, EBNA1 is essential for viral genome maintenance but is also highly antigenic. Hence, EBV seemingly evolved a system in which the glycine-alanine repeat (GAr) of EBNA1 limits the translation of its own mRNA to the minimal level to ensure its essential function, thereby, at the same time, minimizing immune recognition. Therefore, defining intervention points at which to interfere with GAr-based inhibition of translation is an important step to trigger an immune response against EBV-carrying cancers. The host protein nucleolin (NCL) plays a critical role in this process via a direct interaction with G-quadruplexes (G4) formed in the GAr-encoding sequence of the viral EBNA1 mRNA. Here we show that the C-terminal arginine-glycine-rich (RGG) motif of NCL is crucial for its role in GAr-based inhibition of translation by mediating interaction of NCL with G4 of EBNA1 mRNA. We also show that this interaction depends on the type I arginine methyltransferase family, notably PRMT1 and PRMT3: drugs or small interfering RNA that target these enzymes prevent efficient binding of NCL on G4 of EBNA1 mRNA and relieve GAr-based inhibition of translation and of antigen presentation. Hence, this work defines type I arginine methyltransferases as therapeutic targets to interfere with EBNA1 and EBV immune evasion.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Infecções Tumorais por Vírus , Humanos , Infecções por Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Sistema Imunitário/metabolismo , Vírus Oncogênicos/genética , Vírus Oncogênicos/metabolismo , Proteína-Arginina N-Metiltransferases , Proteínas Repressoras , RNA Mensageiro/metabolismo , Infecções Tumorais por Vírus/tratamento farmacológico , Infecções Tumorais por Vírus/metabolismo
17.
Nucleic Acids Res ; 50(17): 10110-10122, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36107769

RESUMO

Protein aggregates and abnormal proteins are toxic and associated with neurodegenerative diseases. There are several mechanisms to help cells get rid of aggregates but little is known on how cells prevent aggregate-prone proteins from being synthesised. The EBNA1 of the Epstein-Barr virus (EBV) evades the immune system by suppressing its own mRNA translation initiation in order to minimize the production of antigenic peptides for the major histocompatibility (MHC) class I pathway. Here we show that the emerging peptide of the disordered glycine-alanine repeat (GAr) within EBNA1 dislodges the nascent polypeptide-associated complex (NAC) from the ribosome. This results in the recruitment of nucleolin to the GAr-encoding mRNA and suppression of mRNA translation initiation in cis. Suppressing NAC alpha (NACA) expression prevents nucleolin from binding to the GAr mRNA and overcomes GAr-mediated translation inhibition. Taken together, these observations suggest that EBNA1 exploits a nascent protein quality control pathway to regulate its own rate of synthesis that is based on sensing the nascent GAr peptide by NAC followed by the recruitment of nucleolin to the GAr-encoding RNA sequence.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Proteínas de Ligação a RNA/metabolismo , Alanina , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Glicina , Herpesvirus Humano 4/genética , Humanos , Peptídeos/genética , Fosfoproteínas , Agregados Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nucleolina
18.
Biomed Chromatogr ; 38(2): e5775, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37942577

RESUMO

EBNA1 is an Epstein Barr virus (EBV) protein expressed in all EBV-associated cancers. EBNA1 plays a critical role in the replication and maintenance of EBV episomes in latently infected cells. VK-2019 was developed as a highly specific inhibitor of EBNA1 DNA binding activity and is currently in phase 1 development as a treatment for EBV-associated carcinomas. A sensitive and reliable method was developed to quantify VK-2019 in human plasma using liquid chromatography with tandem mass spectrometry to perform detailed pharmacokinetic studies. VK-2019 was extracted from plasma using protein precipitation with acetonitrile. Separation of VK-2019, two purported metabolites, and the internal standard, VK-2019-d6, was achieved with a Zorbax XDB C18 column using a gradient flow over 6 min. VK-2019 was detected using a SCIEX 4500 triple quadrupole mass spectrometer operating in positive electrospray ionization mode. The assay range was 0.5-500 ng/mL and proved to be accurate and precise. Dilutions of 1:10 were accurately quantified. VK-2019 was stable in plasma at -70°C for approximately 18 months. The method was applied to assess the total plasma concentrations of VK-2019 in a patient who received a single and multiple oral daily doses of 120 mg.


Assuntos
Antineoplásicos , Antígenos Nucleares do Vírus Epstein-Barr , Humanos , Antineoplásicos/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Antígenos Nucleares do Vírus Epstein-Barr/química , Antígenos Nucleares do Vírus Epstein-Barr/farmacologia
19.
Ann Diagn Pathol ; 70: 152286, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447253

RESUMO

Epstein-Barr virus (EBV) is responsible for many B cell lymphoproliferative disorders (LPD) spanning subclinical infection to immunodeficiency-related neoplasms. EBV establishes a latent infection in the host B cell as defined histologically by the expression of EBV latent membrane proteins and nuclear antigens. Herein, we characterize the latency patterns of immunodeficiency-related neoplasms including post-transplant lymphoproliferative disorders (PTLD) and therapy-related LPD (formerly iatrogenic) with latent membrane protein-1 (LMP-1) and EBV nuclear antigen-2 (EBNA-2) immunohistochemistry. The latency pattern was correlated with immunodeficiency and dysregulation (IDD) status and time from transplant procedure. 38 cases of EBV+ PTLD in comparison to 27 cases of classic Hodgkin lymphoma (CHL) and diffuse large B cell lymphoma (DLBCL) arising in either the therapy-related immunodeficiency setting (n = 12) or without an identified immunodeficiency (n = 15) were evaluated for EBV-encoded small RNAs by in situ hybridization (EBER-ISH) and for LMP-1 and EBNA-2 by immunohistochemistry. A full spectrum of EBV latency patterns was observed across PTLD in contrast to CHL and DLBCL arising in the therapy-related immunodeficiency setting. Polymorphic-PTLD (12 of 16 cases, 75 %) and DLBCL-PTLD (9 of 11 cases, 82 %) showed the greatest proportion of cases with latency III pattern. Whereas, EBV+ CHL in an immunocompetent patient showed exclusively latency II pattern (13 of 13 cases, 100 %). The majority of EBV+ PTLD occurred by three years of transplant procedure date and were enriched for latency III pattern (21 of 22 cases, 95 %). Immunohistochemical identification of EBV latency by LMP-1 and EBNA-2 can help classify PTLD in comparison to other EBV+ B cell LPD and lymphomas arising in therapy-related immunodeficiency and non-immunodeficiency settings.


Assuntos
Infecções por Vírus Epstein-Barr , Antígenos Nucleares do Vírus Epstein-Barr , Herpesvirus Humano 4 , Doença de Hodgkin , Linfoma Difuso de Grandes Células B , Transtornos Linfoproliferativos , Proteínas da Matriz Viral , Proteínas Virais , Latência Viral , Humanos , Transtornos Linfoproliferativos/virologia , Transtornos Linfoproliferativos/patologia , Transtornos Linfoproliferativos/diagnóstico , Herpesvirus Humano 4/isolamento & purificação , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/complicações , Masculino , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Feminino , Adulto , Pessoa de Meia-Idade , Proteínas da Matriz Viral/metabolismo , Doença de Hodgkin/virologia , Doença de Hodgkin/patologia , Linfoma Difuso de Grandes Células B/virologia , Linfoma Difuso de Grandes Células B/patologia , Idoso , Adulto Jovem , Adolescente , Imuno-Histoquímica , Criança , Linfoma/virologia , Linfoma/patologia , Hibridização In Situ
20.
Dokl Biochem Biophys ; 515(1): 48-51, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472667

RESUMO

Multiple sclerosis (MS) is an autoimmune neurodegenerative disease leading to inevitable disability and primarily affecting the young and middle-aged population. Recent studies have shown a direct correlation between the risk of MS development and Epstein-Barr virus (EBV) infection. Analysis of the titer of EBV-specific antibodies among patients with MS and healthy donors among Russian population confirmed that MS is characterized by an increased level of serum IgG binding EBNA-1 (EBV nuclear antigen 1). The number of patients with elevated levels of EBNA-1-specific antibodies does not differ statistically significantly between two groups with diametrically opposite courses of MS: benign MS or highly active MS. It can be assumed that the primary link between EBV and the development of MS is restricted to the initiation of the disease and does not impact its severity.


Assuntos
Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Doenças Neurodegenerativas , Pessoa de Meia-Idade , Humanos , Antígenos Nucleares do Vírus Epstein-Barr , Infecções por Vírus Epstein-Barr/epidemiologia , Herpesvirus Humano 4 , Anticorpos Antivirais , Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA