Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.917
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 719: 150043, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38735206

RESUMO

In this study, a simple green synthesis of vanadium pentoxide nanoparticles (VNPs) was prepared by the extract of Kaffir lime fruit (Citrus hystrix) as a green reducing and stabilizing agent, along with the investigation of calcination temperature was carried out at 450 and 550 °C. It was affirmed that, at higher temperature (550 °C), the VNPs possessed a high degree crystalline following the construction of (001) lattice diffraction within an increase in crystalline size from 47.12 to 53.51 nm, although the band gap of the materials at 450 °C was lower than that of the VNPs-550 (2.53 versus 2.66 eV, respectively). Besides, the materials were assessed for the potential bioactivities toward antibacterial, antifungal, DNA cleavage, anti-inflammatory, and hemolytic performances. As a result, the antibacterial activity, with minimal inhalation concentration (MIC) < 6.25 µg/mL for both strains, and fungicidal one of the materials depicted the dose-dependent effects. Once, both VNPs exhibited the noticeable efficacy of the DNA microbial damage, meanwhile, the outstanding anti-inflammatory agent was involved with the IC50 of 123.636 and 227.706 µg/mL, accounting for VNPs-450 and VNPs-550, respectively. Furthermore, this study also demonstrated the hemolytic potential of the VNPs materials. These consequences declare the prospects of the VNPs as the smart and alternative material from the green procedure in biomedicine.


Assuntos
Antibacterianos , Citrus , Frutas , Extratos Vegetais , Compostos de Vanádio , Citrus/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Compostos de Vanádio/química , Compostos de Vanádio/farmacologia , Frutas/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Nanopartículas/química , Testes de Sensibilidade Microbiana , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Temperatura , Hemólise/efeitos dos fármacos , Química Verde , Humanos
2.
Photochem Photobiol Sci ; 23(5): 823-837, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38568410

RESUMO

Titanium dioxide (TiO2) is a well-known material for its biomedical applications, among which its implementation as a photosensitizer in photodynamic therapy has attracted considerable interest due to its photocatalytic properties, biocompatibility, high chemical stability, and low toxicity. However, the photoactivation of TiO2 requires ultraviolet light, which may lead to cell mutation and consequently cancer. To address these challenges, recent research has focused on the incorporation of metal dopants into the TiO2 lattice to shift the band gap to lower energies by introducing allowed energy states within the band gap, thus ensuring the harnessing of visible light. This study presents the synthesis, characterization, and application of TiO2 nanoparticles (NPs) in their undoped, doped, and co-doped forms for antimicrobial photodynamic therapy (APDT) against Candida albicans. Blue light with a wavelength of 450 nm was used, with doses ranging from 20 to 60 J/cm2 and an NP concentration of 500 µg/ml. It was observed that doping TiO2 with Cu, Fe, Ag ions, and co-doping Cu:Fe into the TiO2 nanostructure enhanced the visible light photoactivity of TiO2 NPs. Experimental studies were done to investigate the effects of different ions doped into the TiO2 crystal lattice on their structural, optical, morphological, and chemical composition for APDT applications. In particular, Ag-doped TiO2 emerged as the best candidate, achieving 90-100% eradication of C. albicans.


Assuntos
Antifúngicos , Candida albicans , Luz , Nanopartículas , Titânio , Titânio/química , Titânio/farmacologia , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Candida albicans/efeitos dos fármacos , Nanopartículas/química , Testes de Sensibilidade Microbiana , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Fotoquimioterapia
3.
Inorg Chem ; 63(25): 11616-11627, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38856909

RESUMO

Mucin 7 (MUC7) is one of the salivary proteins whose role in the innate immune system is widely known, but still, neither its mechanism of action nor the impact of its metal coordination is fully understood. MUC7 and its fragments demonstrate potent antimicrobial activity, serving as a natural defense mechanism for organisms against pathogens. This study delves into the bioinorganic chemistry of MUC7 fragments (L1─EGRERDHELRHRRHHHQSPK; L2─EGRERDHELRHRR; L3─HHHQSPK) and their complexes with Cu(II) and Zn(II) ions. The antimicrobial characteristics of the investigated peptides and their complexes were systematically assessed against bacterial and fungal strains at pH 5.40 and pH 7.40. Our findings highlight the efficacy of these systems against Streptococcus sanguinis, a common oral cavity pathogen. Most interestingly, Zn(II) coordination increased (or triggered) the MUC7 antimicrobial activity, which underscores the pivotal role of metal ion coordination in governing the antimicrobial activity of human salivary MUC7 fragments against S. sanguinis.


Assuntos
Complexos de Coordenação , Cobre , Testes de Sensibilidade Microbiana , Mucinas , Proteínas e Peptídeos Salivares , Zinco , Zinco/química , Zinco/farmacologia , Humanos , Cobre/química , Cobre/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Mucinas/química , Mucinas/metabolismo , Mucinas/farmacologia , Proteínas e Peptídeos Salivares/farmacologia , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química
4.
Org Biomol Chem ; 22(17): 3459-3467, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38597668

RESUMO

A water mediated three-component reaction of isatin, 4-aminocoumarin, and 1,3-cyclodicarbonyl compounds is reported for the synthesis of spiro[chromeno[4,3-b]cyclopenta[e]pyridine-7,3'-indoline]trione and the spiro[chromeno[4,3-b]quinoline 7,3'-indoline]trione. Up to 27 different spirooxindole derivatives were synthesized by this method. The bioactivity of these spirooxindole derivatives was evaluated and they were found to show antifungal activity against Cercospora arachidicola, Physalospora piricola, Rhizoctonia cerealis, and Fusarium moniliforme.


Assuntos
Antifúngicos , Benzopiranos , Indóis , Nitrilas , Compostos de Espiro , Água , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Compostos de Espiro/farmacologia , Compostos de Espiro/química , Compostos de Espiro/síntese química , Água/química , Indóis/química , Indóis/farmacologia , Indóis/síntese química , Testes de Sensibilidade Microbiana , Oxindóis/farmacologia , Oxindóis/síntese química , Oxindóis/química , Estrutura Molecular , Relação Estrutura-Atividade , Fusarium/efeitos dos fármacos
5.
J Chem Inf Model ; 64(10): 4277-4285, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38743449

RESUMO

Antifungal peptides (AFPs) are emerging as promising candidates for advanced antifungal therapies because of their broad-spectrum efficacy and reduced resistance development. In silico design of AFPs, however, remains challenging, due to the lack of an efficient and well-validated quantitative assessment of antifungal activity. This study introduced an AFP design approach that leverages an innovative quantitative metric, named the antifungal index (AFI), through a three-step process, i.e., segmentation, single-point mutation, and global multipoint optimization. An exhaustive search of 100 putative AFP sequences indicated that random modifications without guidance only have a 5.97-20.24% chance of enhancing antifungal activity. Analysis of the search results revealed that (1) N-terminus truncation is more effective in enhancing antifungal activity than the modifications at the C-terminus or both ends, (2) introducing the amino acids within the 10-60% sequence region that enhance aromaticity and hydrophobicity are more effective in increasing antifungal efficacy, and (3) incorporating alanine, cysteine, and phenylalanine during multiple point mutations has a synergistic effect on enhancing antifungal activity. Subsequently, 28 designed peptides were synthesized and tested against four typical fungal strains. The success rate for developing promising AFPs, with a minimal inhibitory concentration of ≤5.00 µM, was an impressive 82.14%. The predictive and design tool is accessible at https://antifungipept.chemoinfolab.com.


Assuntos
Antifúngicos , Simulação por Computador , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Sequência de Aminoácidos , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/síntese química , Fungos/efeitos dos fármacos
6.
Bioorg Med Chem ; 109: 117810, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38906069

RESUMO

The antimicrobial activity of new acid-functionalized porphyrins, with or without ultra-high irradiance, was investigated. Antibacterial efficacy was evaluated against Staphylococcus aureus (methicillin-resistant or methicillin-sensitive strains) and antifungal efficacy was evaluated against the yeast Candida albicans and the filamentous fungi Aspergillus fumigatus. Overall, the porphyrins tested are more effective against S. aureus. The best results were obtained with zinc diacid porphyrins 4 and 5 after only 3 min of ultra-high irradiation (500 mW/cm2, 405 nm), demonstrating that acid-functionalized porphyrins are promising as novel antimicrobial drugs for surface disinfection.


Assuntos
Antifúngicos , Aspergillus fumigatus , Candida albicans , Testes de Sensibilidade Microbiana , Porfirinas , Porfirinas/farmacologia , Porfirinas/química , Porfirinas/síntese química , Aspergillus fumigatus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Bactérias Gram-Positivas/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Fungos/efeitos dos fármacos
7.
J Pept Sci ; 30(6): e3569, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38301277

RESUMO

The pursuit of novel antifungal agents is imperative to tackle the threat of antifungal resistance, which poses major risks to both human health and to food security. Iturin A is a cyclic lipopeptide, produced by Bacillus sp., with pronounced antifungal properties against several pathogens. Its challenging synthesis, mainly due to the laborious synthesis of the ß-amino fatty acid present in its structure, has hindered the study of its mode of action and the development of more potent analogues. In this work, a facile synthesis of bioactive iturin A analogues containing an alkylated cysteine residue is presented. Two analogues with opposite configurations of the alkylated cysteine residue were synthesized, to evaluate the role of the stereochemistry of the newly introduced amino acid on the bioactivity. Antifungal assays, conducted against F. graminearum, showed that the novel analogues are bioactive and can be used as a synthetic model for the design of new analogues and in structure-activity relationship studies. The assays also highlight the importance of the ß-amino acid in the natural structure and the role of the stereochemistry of the amino fatty acid, as the analogue with the D configuration showed stronger antifungal properties than the one with the L configuration.


Assuntos
Antifúngicos , Fusarium , Lipopeptídeos , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Relação Estrutura-Atividade , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Lipopeptídeos/síntese química , Fusarium/efeitos dos fármacos , Estrutura Molecular
8.
Macromol Rapid Commun ; 45(9): e2300689, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38288905

RESUMO

Polyionic liquid hydrogels attract increasing attention due to their unique properties and potential applications. However, research on amino acid-based polyionic liquid hydrogels is still in its infancy stage. Moreover, the effect of amino acid types on the properties of hydrogels is rarely studied to date. In this work, amino acid-based polyionic liquid hydrogels (D/L-PCAA hydrogels) are synthesized by copolymerizing vinyl choline-amino acid ionic liquids and acrylic acids using Al3+ as a crosslinking agent and bacterial cellulose (BC) as a reinforcing agent. The effects of amino acid types on mechanical and antimicrobial properties are systematically investigated. D-arginine-based hydrogel (D-PCArg) shows the highest tensile strength (220.7 KPa), D-phenylalanine-based hydrogel (D-PCPhe) exhibits the highest elongation at break (1346%), and L-aspartic acid-based hydrogel (L-PCAsp) has the highest elastic modulus (206.9 KPa) and toughness (1.74 MJ m-3). D/L-PCAsp hydrogels demonstrate stronger antibacterial capacity against Escherichia coli and Staphylococcus aureus, and D/L-PCPhe hydrogels possess higher antifungal activity against Cryptococcus neoformans. Moreover, the resultant hydrogels exhibit prominent hemocompatibility and low toxicity, as well as excellent self-healing capabilities (86%) and conductivity (2.8 S m-1). These results indicate that D/L-PCAA hydrogel provides a promise for applications in wound dressings.


Assuntos
Aminoácidos , Antibacterianos , Escherichia coli , Hidrogéis , Líquidos Iônicos , Staphylococcus aureus , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Escherichia coli/efeitos dos fármacos , Aminoácidos/química , Aminoácidos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/síntese química , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/síntese química
9.
J Nat Prod ; 87(4): 1092-1102, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38557062

RESUMO

As an important bioactive molecular backbone, drimane meroterpenoids have drawn a great deal of attention from both pharmacologists and chemists. Inspired by the prevalidated success of conformational restriction in the discovery of novel pharmaceutical leads, two distinct tetracyclic drimane meroterpenoids, (-)-pelorol and (+)-aureol, were synthesized from the inexpensive starting material (-)-sclareol through 10 and 8 steps with 5.6% and 5.4% overall yield, respectively. The mild conditions, operational facility, and scalability enabled the expedient synthesis and biological exploration of not only natural products themselves but also their mimics. The first agrochemical exploration showed (-)-pelorol and (+)-aureol possessed good antifungal activity against Rhizoctonia solani, with EC50 values of 7.7 and 6.9 µM, respectively. This revealed that tetracyclic drimane meroterpenoids are valuable models for antifungal lead discovery.


Assuntos
Antifúngicos , Rhizoctonia , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Estrutura Molecular , Rhizoctonia/efeitos dos fármacos , Terpenos/farmacologia , Terpenos/síntese química , Terpenos/química , Estereoisomerismo , Sesquiterpenos/farmacologia , Sesquiterpenos/síntese química , Sesquiterpenos/química , Sesquiterpenos Policíclicos/farmacologia , Testes de Sensibilidade Microbiana
10.
Bioorg Chem ; 148: 107479, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772292

RESUMO

Palmarymycins B8 (1), its regioisomer (2) and B7 (3) were synthesized via 10-, 9-, and 11-steps in 6.5 %, 2.3 % and 0.54 % overall yields from chroman-4-one (4), 4-hydroxyindanone (12), and 2,5-dimethoxybenzaldehyde (20) as the starting materials, using benzyl protection, enol trimethylsilyl ether by TMSOTf, Rubottom oxidation and deprotection with hydrogenation under Pd/C catalyst as the key steps, respectively. Their structures were characterized by 1H, 13C NMR, COSY, HSQC, HMBC and HR-ESI-MS spectral data. The structure of palmarumycin B8 was revised from 1 to 2 based on the total synthesis, 2D NMR analysis and DFT calculation. The antifungal assay results indicated that palmarumycin B8 (1) showed moderate inhibitory activity against Phytophthora capsica. Compounds 15 and 16 exhibited excellent in vitro antifungal activities against P. capsica with EC50 values of 2.17 and 8.50 µg/mL, respectively.


Assuntos
Antifúngicos , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Teoria da Densidade Funcional
11.
Bioorg Chem ; 147: 107333, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599055

RESUMO

To promote the development and exploitation of novel antifungal agents, a series of thiazol-2-ylbenzamide derivatives (3A-3V) and thiazole-2-ylbenzimidoyl chloride derivatives (4A-4V) were designed and selective synthesis. The bioassay results showed that most of the target compounds exhibited excellent in vitro antifungal activities against five plant pathogenic fungi (Valsa mali, Sclerotinia scleotiorum, Botrytis cinerea, Rhizoctonia solani and Trichoderma viride). The antifungal effects of compounds 3B (EC50 = 0.72 mg/L) and 4B (EC50 = 0.65 mg/L) against S. scleotiorum were comparable to succinate dehydrogenase inhibitors (SDHIs) thifluzamide (EC50 = 1.08 mg/L) and boscalid (EC50 = 0.78 mg/L). Especially, compounds 3B (EC50 = 0.87 mg/L) and 4B (EC50 = 1.08 mg/L) showed higher activity against R. solani than boscalid (EC50 = 2.25 mg/L). In vivo experiments in rice leaves revealed that compounds 3B (86.8 %) and 4B (85.3 %) exhibited excellent protective activities against R. solani comparable to thifluzamide (88.5 %). Scanning electron microscopy (SEM) results exhibited that compounds 3B and 4B dramatically disrupted the typical structure and morphology of R. solani mycelium. Molecular docking demonstrated that compounds 3B and 4B had significant interactions with succinate dehydrogenase (SDH). Meanwhile, SDH inhibition assay results further proved their potential as SDHIs. In addition, acute oral toxicity tests on A. mellifera L. showed only low toxicity for compounds 3B and 4B to A. mellifera L. populations. These results suggested that these two series of compounds had merit for further investigation as potential low-risk agricultural SDHI fungicides.


Assuntos
Antifúngicos , Benzamidas , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Tiazóis , Relação Estrutura-Atividade , Benzamidas/farmacologia , Benzamidas/síntese química , Benzamidas/química , Tiazóis/farmacologia , Tiazóis/química , Tiazóis/síntese química , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Estrutura Molecular , Relação Dose-Resposta a Droga , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo , Animais , Ascomicetos/efeitos dos fármacos , Rhizoctonia/efeitos dos fármacos , Botrytis
12.
Bioorg Chem ; 149: 107473, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38820940

RESUMO

In silico approaches have been employed to design a new series of benzimidazole-containing sulphonamide derivatives and qualified compounds have been synthesized to analyze their potential as antimicrobial agents. Antibacterial screening of all synthesized compounds was done using the broth microdilution method against several human pathogenic bacteria, viz. Gram-positive bacteria [B. cerus (NCIN-2156), B. subtilis (ATCC-6051), S. aureus (NCIM-2079)] and Gram-negative bacteria [P. aeruginosa (NCIM-2036), E. coli (NCIM-2065), and a drug-resistant strain of E. coli (U-621)], and the compounds presented admirable MIC values, ranging between 100-1.56 µg/mL. The combinatorial analysis showed the magnificent inhibitory efficiency of the tested compounds, acquired equipotent to ten-fold more potency compared to original MIC values. An immense synergistic effect was exhibited by the compounds during combination studies with reference drugs chloramphenicol and sulfamethoxazole was presented as fractional inhibitory concentration (∑FIC). Enzyme inhibition studies of all synthesized compounds were done by using peptidyl transferase and dihydropteroate synthase enzymes isolated from E. coli and S. aureus and each of the compound presented the admirable IC50 values, where the lead compound 3 bound to peptidyl transferase (of S. aureus with IC50 363.51 ± 2.54 µM and E. coli IC50 1.04 ± 0.08 µM) & dihydropteroate synthase (of S. aureus IC50 3.51 ± 0.82 µM and E. coli IC50 2.77 ± 0.65 µM), might account for the antimicrobial effect, exhibited excellent inhibition potential. Antifungal screening was also performed employing food poisoning methods against several pathogenic fungal species, viz A. flavus, F. oxysporum, A. niger, and A. brassicae. The obtained result indicated that few compounds can prove to be a potent drug regimen against dreaded MDR strains of microbes. Structural activity relationship (SAR) analysis and docking studies reveal that the presence of electron-withdrawing, polar, and more lipophilic substituents positively favor the antibacterial activity, whereas, electron-withdrawing, more polar, and hydrophilic substituents favor the antifungal activities. A robust coherence has been found in in-silico and in-vitro biological screening results of the compounds.


Assuntos
Antibacterianos , Benzimidazóis , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Sulfonamidas , Benzimidazóis/farmacologia , Benzimidazóis/química , Benzimidazóis/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Estrutura Molecular , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Di-Hidropteroato Sintase/antagonistas & inibidores , Di-Hidropteroato Sintase/metabolismo , Humanos , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Escherichia coli/efeitos dos fármacos
13.
Chem Biodivers ; 21(5): e202302064, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38390665

RESUMO

Based on our previous research, a 3D-QSAR model (q2=0.51, ONC=5, r2=0.982, F=271.887, SEE=0.052) was established to predict the inhibitory effects of triazole Schiff base compounds on Fusarium graminearum, and its predictive ability was also confirmed through the statistical parameters. According to the results of the model design, 30 compounds with superior bioactivity compared to the template molecule 4 were obtained. Seven of these compounds (DES2-6, DES9-10) with improved biological activity and readily available raw materials were successfully synthesized. Their structures were confirmed through HRMS, NMR, and single crystal X-ray diffraction analysis (DES-5). The bioactivity of the final products was investigated through an in vitro antifungal assay. There was little difference in the EC50 values between the experimental and predicted values of the model, demonstrating the reliability of the model. Especially, DES-3 (EC50=9.915 mg/L) and DES-5 (EC50=9.384 mg/L) exhibited better inhibitory effects on Fusarium graminearum compared to the standard drug (SD) triadimenol (EC50=10.820 mg/L). These compounds could serve as potential new fungicides for future research. The interaction between the final products and isocitrate lyase (ICL) was investigated through molecular docking. Compounds with R groups that have a higher electron-donating capacity were found to be biologically active.


Assuntos
Antifúngicos , Fusarium , Testes de Sensibilidade Microbiana , Relação Quantitativa Estrutura-Atividade , Bases de Schiff , Triazóis , Bases de Schiff/química , Bases de Schiff/farmacologia , Bases de Schiff/síntese química , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Fusarium/efeitos dos fármacos , Estrutura Molecular , Simulação de Acoplamento Molecular
14.
Chem Biodivers ; 21(6): e202400044, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38591818

RESUMO

Chitosan is a cationic polysaccharide derived from chitin deacetylation. This polysaccharide and its oligosaccharides have many biological activities and can be used in several fields due to their favorable characteristics, such as biodegradability, biocompatibility, and nontoxicity. This review aims to explore the antifungal potential of chitosan and chitooligosaccharides along with the conditions used for the activity and mechanisms of action they use to kill fungal cells. The sources, chemical properties, and applications of chitosan and chitooligosaccharides are discussed in this review. It also addresses the threat fungi pose to human health and crop production and how these saccharides have proven to be effective against these microorganisms. The cellular processes triggered by chitosan and chitooligosaccharides in fungal cells, and prospects for their use as potential antifungal agents are also examined.


Assuntos
Antifúngicos , Quitosana , Fungos , Oligossacarídeos , Quitosana/química , Quitosana/farmacologia , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Fungos/efeitos dos fármacos , Humanos , Quitina/química , Quitina/farmacologia , Quitina/análogos & derivados , Testes de Sensibilidade Microbiana
15.
Chem Biodivers ; 21(5): e202400311, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38494946

RESUMO

Phytopathogenic fungi is the most devastating reason for the decrease of the agricultural production and food safety. To develop new fungicidal agents for resistance concerning, a novel series of aminocoumarin derivatives were synthesized and their fungicidal activity were investigated both in vitro and in vivo. Transmission electron microscope (TEM), scanning electron microscope (SEM), RNA-Seq, 3D-QSAR and molecular docking were applied to reveal the underlying anti-fungal mechanisms. Most of the compounds exhibited significant fungicidal activity. Notably, compound 10c had a more extensive fungicidal effect than positive control. TEM indicated that compound 10c could cause abnormal morphology of cell walls, vacuoles and release of cellular contents. Transcriptional analysis data indicated that 895 and 653 out of 1548 differential expressed genes (DEGs) were up-regulated and down-regulated respectively. The Go and KEGG enrichment indicated that the coumarin derivatives could induce significant changes of succinate dehydrogenase (SDH), Acetyl-coenzyme A synthetase (ACCA) and pyruvate dehydrogenase (PDH) genes, which contributed to the disorders of glucolipid metabolism and the dysfunction of mitochondrial. The results demonstrated that aminocoumarins with schiff-base as core moieties could be the promising lead compounds for the discovery of novel fungicides.


Assuntos
Cumarínicos , Desenho de Fármacos , Cumarínicos/farmacologia , Cumarínicos/química , Cumarínicos/síntese química , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Estrutura Molecular , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Relação Quantitativa Estrutura-Atividade , Botrytis/efeitos dos fármacos
16.
Chem Biodivers ; 21(5): e202400027, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38602839

RESUMO

Garlic oil has a wide range of biological activities, and its broad-spectrum activity against phytopathogenic fungi still has the potential to be explored. In this study, enzymatic treatment of garlic resulted in an increase of approximately 50 % in the yield of essential oil, a feasible GC-MS analytical program for garlic oil was provided. Vacuum fractionation of the volatile oil and determination of its inhibitory activity against 10 fungi demonstrated that garlic oil has good antifungal activity. The antifungal activity levels were ranked as diallyl trisulfide (S-3)>diallyl disulfide (S-2)>diallyl monosulfide (S-1), with an EC50 value of S-3 against Botrytis cinerea reached 8.16 mg/L. Following the structural modification of compound S-3, a series of derivatives, including compounds S-4~7, were synthesized and screened for their antifungal activity. The findings unequivocally demonstrated that the compound dimethyl trisulfide (S-4) exhibited exceptional antifungal activity. The EC50 of S-4 against Sclerotinia sclerotiorum reached 6.83 mg/L. SEM, In vivo experiments, and changes in mycelial nucleic acids, soluble proteins and soluble sugar leakage further confirmed its antifungal activity. The study indicated that the trisulfide bond structure was the key to good antifungal activity, which can be developed into a new type of green plant-derived fungicide for plant protection.


Assuntos
Compostos Alílicos , Antifúngicos , Alho , Testes de Sensibilidade Microbiana , Óleos Voláteis , Sulfetos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/síntese química , Sulfetos/farmacologia , Sulfetos/química , Alho/química , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/isolamento & purificação , Compostos Alílicos/farmacologia , Compostos Alílicos/química , Compostos Alílicos/isolamento & purificação , Compostos Alílicos/síntese química , Destilação , Desenho de Fármacos , Botrytis/efeitos dos fármacos , Relação Estrutura-Atividade , Ascomicetos/efeitos dos fármacos , Estrutura Molecular
17.
Chem Biodivers ; 21(5): e202400355, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38453645

RESUMO

In an attempt to search for new natural products-based antifungal agents, fifty-three nootkatone derivatives were designed, synthesized, and evaluated for their antifungal activity against Phytophthora parasitica var nicotianae, Fusarium oxysporum, Fusarium graminearum and Phomopsis sp. by the mycelium growth rate method. Nootkatone derivatives N17 exhibited good inhibitory activity against Phomopsis. sp. with EC50 values of 2.02 µM. The control effect of N17 against Phomopsis. sp. on kiwifruit showed that N17 exhibited a good curative effect in reducing kiwifruit rot at the concentration of 202 µM(100×EC50 ), with the curative effect of 41.11 %, which was better than commercial control of pyrimethanil at the concentration of 13437 µM(100×EC50 ) with the curative effect of 38.65 %. Phomopsis. sp. mycelium treated with N17 showed irregular surface collapse and shrinkage, and the cell membrane crinkled irregularly, vacuoles expanded significantly, mitochondria contracted, and organelles partially swollen by the SEM and TEM detected. Preliminary pharmacological experiments show that N17 exerted antifungal effects by altering release of cellular contents, and altering cell membrane permeability and integrity. The cytotoxicity test demonstrated that N17 showed almost no toxicity to K562 cells. The presented results implied that N17 may be as a potential antifungal agents for developing more efficient fungicides to control Phomopsis sp.


Assuntos
Antifúngicos , Desenho de Fármacos , Fusarium , Testes de Sensibilidade Microbiana , Oximas , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Fusarium/efeitos dos fármacos , Oximas/química , Oximas/farmacologia , Oximas/síntese química , Relação Estrutura-Atividade , Hidrazonas/farmacologia , Hidrazonas/química , Hidrazonas/síntese química , Phytophthora/efeitos dos fármacos , Estrutura Molecular , Sesquiterpenos Policíclicos/farmacologia , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/síntese química , Relação Dose-Resposta a Droga , Ascomicetos/efeitos dos fármacos
18.
Chem Biodivers ; 21(6): e202301970, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38683904

RESUMO

New tranexamic acid (TXA) complexes of ferric(III), cobalt(II), nickel(II), copper(II) and zirconium(IV) were synthesized and characterized by elemental analysis (CHN), conductimetric (Λ), magnetic susceptibility investigations (µeff), Fourier transform infrared (FT-IR), proton nuclear magnetic resonance (1H-NMR), ultraviolet visible (UV-vis.), optical band gap energy (Eg) and thermal studies (TG/DTG and DTA). TXA complexes were established in 1 : 2 (metal: ligand) stoichiometric ratio according to CHN data. Based on FT-IR and 1H-NMR data the disappeared of the carboxylic proton supported the deprotonating of TXA and linked to metal ions via the carboxylate group's oxygen atom as a bidentate ligand. UV-visible spectra and magnetic moment demonstrated that all chelates have geometric octahedral structures. Eg values indicated that our complexes are more electro conductive. DTA revealed presence of water molecules in inner and outer spheres of the complexes. DTA results showed that endothermic and exothermic peaks were identified in the degradation mechanisms. The ligand and metal complexes were investigated for their antimicrobial and herbicidal efficacy. The Co(II) and Ni(II) complexes showed antimicrobial activity against some tested species. The obtained results showed a promising herbicidal effect of TXA ligand and its metal complexes particularly copper and zirconium against the three tested plants.


Assuntos
Complexos de Coordenação , Testes de Sensibilidade Microbiana , Ácido Tranexâmico , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Fungos/efeitos dos fármacos , Estrutura Molecular , Relação Estrutura-Atividade , Ácido Tranexâmico/farmacologia , Ácido Tranexâmico/química , Ácido Tranexâmico/síntese química , Elementos de Transição/química , Elementos de Transição/farmacologia , Compostos Férricos/síntese química , Compostos Férricos/química , Compostos Férricos/farmacologia
19.
Chem Biodivers ; 21(6): e202302033, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38616167

RESUMO

To explore more potential fungicides with new scaffolds, thirty-seven norbornene carboxamide/sulfonamide derivatives were designed, synthesized, and assayed for inhibitory activity against six plant pathogenic fungi and oomycetes. The preliminary antifungal assay suggested that the title derivatives showed moderate to good antifungal activity against six plant pathogens. Especially, compound 6 e presented excellent in vitro antifungal activity against Sclerotinia sclerotiorum (EC50=0.71 mg/L), which was substantially stronger than pydiflumetofen. In vivo antifungal assay indicated 6 e displayed prominent protective and curative effects on rape leaves infected by S. sclerotiorum. The preliminary mechanism research displayed that 6 e could damage the surface morphology and inhibit the sclerotia formation of S. sclerotiorum. In addition, the in vitro enzyme inhibition bioassay indicated that 6 e displayed pronounced laccase inhibition activity (IC50=0.63 µM), much stronger than positive control cysteine. Molecular docking elucidated the binding modes between 6 e and laccase. The bioassay results and mechanism investigation demonstrated that this class of norbornene carboxamide/sulfonamide derivatives could be promising laccase inhibitors for novel fungicide development.


Assuntos
Lacase , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Norbornanos , Sulfonamidas , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Lacase/metabolismo , Lacase/antagonistas & inibidores , Lacase/química , Relação Estrutura-Atividade , Norbornanos/química , Norbornanos/farmacologia , Norbornanos/síntese química , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Ascomicetos/efeitos dos fármacos , Estrutura Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Relação Dose-Resposta a Droga
20.
Chem Biodivers ; 21(6): e202400583, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38590217

RESUMO

Plant disease control mainly relies on pesticides. In this study, a series of coumarin derivatives containing hydrazone moiety were designed and synthesized. The synthesized compounds were characterized and used to evaluate the antifungal activity against four pathogens, Botrytis cinerea, Alternaria solani, Fusarium oxysporum, and Alternaria alternata. The results showed that the inhibition rate of some compounds at 100 µg/mL in 96 hours reached around 70 % against A. alternata, higher than that of the positive control. The corresponding EC50 values were found at around 30 µg/mL. Finally, the compound 3 b was screened out with the lowest EC50 value (19.49 µg/mL). The analysis of SEM and TEM confirmed that the compound 3 b can obviously damage the morphological structure of hyphae, resulting in the depletion of the cells by the destruction of morphological matrix and leakage of contents. RNA sequencing showed that compounds 3 b mainly affected the pentose phosphate pathway, which caused to destroy the layer of mitochondrial structure. Molecular docking showed that compounds 3 b fitted the binding pocket of yeast transketolase and interacted with lysine at the hydrazone structure. Our results suggested that the introduction of hydrazone was an effective strategy for the design of novel bioactive compounds.


Assuntos
Alternaria , Antifúngicos , Botrytis , Cumarínicos , Fusarium , Hidrazonas , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Hidrazonas/química , Hidrazonas/farmacologia , Hidrazonas/síntese química , Cumarínicos/química , Cumarínicos/farmacologia , Cumarínicos/síntese química , Alternaria/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Fusarium/efeitos dos fármacos , Relação Estrutura-Atividade , Botrytis/efeitos dos fármacos , Estrutura Molecular , Relação Dose-Resposta a Droga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA