Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 339
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 602(7895): 135-141, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34987223

RESUMO

The discovery of antibiotics more than 80 years ago has led to considerable improvements in human and animal health. Although antibiotic resistance in environmental bacteria is ancient, resistance in human pathogens is thought to be a modern phenomenon that is driven by the clinical use of antibiotics1. Here we show that particular lineages of methicillin-resistant Staphylococcus aureus-a notorious human pathogen-appeared in European hedgehogs in the pre-antibiotic era. Subsequently, these lineages spread within the local hedgehog populations and between hedgehogs and secondary hosts, including livestock and humans. We also demonstrate that the hedgehog dermatophyte Trichophyton erinacei produces two ß-lactam antibiotics that provide a natural selective environment in which methicillin-resistant S. aureus isolates have an advantage over susceptible isolates. Together, these results suggest that methicillin resistance emerged in the pre-antibiotic era as a co-evolutionary adaptation of S. aureus to the colonization of dermatophyte-infected hedgehogs. The evolution of clinically relevant antibiotic-resistance genes in wild animals and the connectivity of natural, agricultural and human ecosystems demonstrate that the use of a One Health approach is critical for our understanding and management of antibiotic resistance, which is one of the biggest threats to global health, food security and development.


Assuntos
Antibacterianos/história , Arthrodermataceae/metabolismo , Ouriços/metabolismo , Ouriços/microbiologia , Resistência a Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/genética , Seleção Genética/genética , Animais , Antibacterianos/metabolismo , Arthrodermataceae/genética , Dinamarca , Europa (Continente) , Evolução Molecular , Mapeamento Geográfico , História do Século XX , Humanos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Nova Zelândia , Saúde Única , Penicilinas/biossíntese , Filogenia , beta-Lactamas/metabolismo
2.
Antimicrob Agents Chemother ; 68(5): e0160923, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38567956

RESUMO

The increasing prevalence of dermatophyte resistance to terbinafine, a key drug in the treatment of dermatophytosis, represents a significant obstacle to treatment. Trichophyton rubrum is the most commonly isolated fungus in dermatophytosis. In T. rubrum, we identified TERG_07844, a gene encoding a previously uncharacterized putative protein kinase, as an ortholog of budding yeast Saccharomyces cerevisiae polyamine transport kinase 2 (Ptk2), and found that T. rubrum Ptk2 (TrPtk2) is involved in terbinafine tolerance. In both T. rubrum and S. cerevisiae, Ptk2 knockout strains were more sensitive to terbinafine compared with the wild types, suggesting that promotion of terbinafine tolerance is a conserved function of fungal Ptk2. Pma1 is activated through phosphorylation by Ptk2 in S. cerevisiae. Overexpression of T. rubrum Pma1 (TrPma1) in T. rubrum Ptk2 knockout strain (ΔTrPtk2) suppressed terbinafine sensitivity, suggesting that the induction of terbinafine tolerance by TrPtk2 is mediated by TrPma1. Furthermore, omeprazole, an inhibitor of plasma membrane proton pump Pma1, increased the terbinafine sensitivity of clinically isolated terbinafine-resistant strains. These findings suggest that, in dermatophytes, the TrPtk2-TrPma1 pathway plays a key role in promoting intrinsic terbinafine tolerance and may serve as a potential target for combinational antifungal therapy against terbinafine-resistant dermatophytes.


Assuntos
Antifúngicos , Arthrodermataceae , Farmacorresistência Fúngica , Testes de Sensibilidade Microbiana , Saccharomyces cerevisiae , Terbinafina , Terbinafina/farmacologia , Antifúngicos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Farmacorresistência Fúngica/genética , Arthrodermataceae/efeitos dos fármacos , Arthrodermataceae/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosforilação
3.
J Clin Microbiol ; 62(1): e0130823, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38117081

RESUMO

Resistance in dermatophytes is an emerging global public health issue. We, therefore, developed an agar-based method for screening Trichophyton spp. susceptibility to terbinafine (TRB), itraconazole (ITC), and amorolfine (AMF) and validated it using molecularly characterized isolates. Α total of 40 Trichophyton spp. isolates, 28 TRB wild type (WT) (13 T. rubrum, 10 T. mentagrophytes, 5 T. interdigitale) and 12 TRB non-WT (7 T. rubrum, 5 T. indotineae) with different alterations in the squalene epoxidase (SQLE) gene, were used. The optimal test conditions (inoculum and drug concentrations, incubation time, and temperature) and stability over time were evaluated. The method was then applied for 86 WT Trichophyton spp. clinical isolates (68 T. rubrum, 7 T. interdigitale, 6 T. tonsurans, 5 T. mentagrophytes) and 4 non-WT T. indotineae. Optimal growth of drug-free controls was observed using an inoculum of 20 µL 0.5 McFarland after 5-7 days of incubation at 30°C. The optimal concentrations that prevented the growth of WT isolates were 0.016 mg/L of TRB, 1 mg/L of ITC, and 0.25 mg/L of AMF, whereas 0.125 mg/L of TRB was used for the detection of Trichophyton strong SQLE mutants (MIC ≥0.25 mg/L). The agar plates were stable up to 4 months. Inter-observer and inter-experimental agreement were 100%, and the method successfully detected TRB non-WT Trichophyton spp. strains showing 100% agreement with the reference EUCAST methodology. An agar-based method was developed for screening Trichophyton spp. in order to detect TRB non-WT weak and strong mutant isolates facilitating their detection in non-expert routine diagnostic laboratories.


Assuntos
Arthrodermataceae , Itraconazol , Morfolinas , Humanos , Terbinafina/farmacologia , Itraconazol/farmacologia , Trichophyton/genética , Antifúngicos/farmacologia , Ágar , Testes de Sensibilidade Microbiana , Esqualeno Mono-Oxigenase/genética , Farmacorresistência Fúngica/genética , Arthrodermataceae/genética
4.
Med Mycol ; 62(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39174488

RESUMO

The Trichophyton mentagrophytes complex comprises a group of dermatophyte fungi responsible for various dermatological infections. The increasing drug resistance of this species complex, especially terbinafine resistance of Trichophyton indotineae, is a major concern in dermatologist practice. This study provides a comprehensive analysis of T. mentagrophytes complex strains isolated from patients in Hue City, Vietnam, focusing on their phenotypic and genetic characteristics, antifungal susceptibility profiles, and molecular epidemiology. Keratinophilic fungi from dermatophytosis culture samples were identified morphologically and phenotypically, with species and genotypes confirmed by internal transcribed spacer sequencing and phylogenetic analysis. Antifungal susceptibility testing was carried out to evaluate their susceptibility to itraconazole, voriconazole, and terbinafine. The 24% (n = 27/114) of superficial mycoses were phenotypically attributed to T. mentagrophytes complex isolates. Trichophyton interdigitale, mainly genotype II*, was predominant (44.4%), followed by T. mentagrophytes genotype III* (22.2%), T. indotineae (14.8%), T. tonsurans (11.2%), and T. mentagrophytes (7.4%). While all isolates were susceptible to itraconazole and voriconazole, half of T. indotineae isolates exhibited resistance to terbinafine, linked to the Phe397Leu mutation in the SQLE protein. This study highlighted the presence of terbinafine-resistant T. indotineae isolates in Vietnam, emphasizing the need to investigate dermatophyte drug resistance and implement effective measures in clinical practice.


Species diversity within the Trichophyton mentagrophytes complex isolated from dermatophytosis in Hue City, Vietnam, was observed. Terbinafine-resistant T. indotineae isolates were detected for the first time in Vietnam, emphasizing the importance of implementing antifungal susceptibility testing to effectively manage and prevent the spread of resistant isolates.


Assuntos
Antifúngicos , Farmacorresistência Fúngica , Genótipo , Testes de Sensibilidade Microbiana , Filogenia , Terbinafina , Tinha , Humanos , Vietnã , Antifúngicos/farmacologia , Terbinafina/farmacologia , Tinha/microbiologia , Arthrodermataceae/efeitos dos fármacos , Arthrodermataceae/genética , Arthrodermataceae/classificação , Arthrodermataceae/isolamento & purificação , Masculino , Análise de Sequência de DNA , Itraconazol/farmacologia , DNA Espaçador Ribossômico/genética , Feminino , Pessoa de Meia-Idade , DNA Fúngico/genética , Epidemiologia Molecular , Adulto , Trichophyton
5.
Med Mycol ; 62(9)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39174486

RESUMO

This study analyzed the prevalence and antifungal susceptibility of superficial fungal infections in 295 cases from 2019 to 2020 at a dermatology clinic. Dermatophytes were the predominant pathogens (69.5%), including Trichophytonrubrum, T. interdigitale, Microsporum canis, et al., followed by Candida spp. (29.5%), including Candidaalbicans, Ca. parapsilosis, and Ca. glabrata. The most common infections were onychomycosis (36.3%), tinea cruris (30.5%), and tinea corporis (18.6%). The distribution of SFI types showed variations based on gender, age, and season. Common antifungal agents, including terbinafine, voriconazole, ciclopiroxamine, amphotericin B, itraconazole, and ketoconazole have exhibited low minimum inhibitory concentrations against dermatophytes, especially terbinafine, which has been potent against superficial fungal infections caused by dermatophytes in the local area. Candida spp. strains were generally susceptible or classified as wild-type to 5-flucytosine and amphotericin B, with 92.0% being wild-type for itraconazole. However, resistance to fluconazole and voriconazole was observed in a small percentage of Ca. albicans and Ca. parapsilosis strains. The emergence of drug-resistant Candida underscores the importance of prudent antifungal use and continuous surveillance.


Our study analyzed 295 cases of superficial fungal infections in Taiyuan, located in Northern China. Dermatophytes and Candida spp. were primary pathogens, with varied susceptibilities to antifungals. Results deepen our understanding, emphasizing prudent drug use and surveillance.


Assuntos
Antifúngicos , Arthrodermataceae , Candida , Farmacorresistência Fúngica , Testes de Sensibilidade Microbiana , Centros de Atenção Terciária , Humanos , Antifúngicos/farmacologia , China/epidemiologia , Centros de Atenção Terciária/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Arthrodermataceae/efeitos dos fármacos , Arthrodermataceae/genética , Arthrodermataceae/classificação , Arthrodermataceae/isolamento & purificação , Adolescente , Adulto Jovem , Criança , Idoso , Candida/efeitos dos fármacos , Candida/classificação , Candida/isolamento & purificação , Candida/genética , Pré-Escolar , Dermatomicoses/microbiologia , Dermatomicoses/epidemiologia , Epidemiologia Molecular , Prevalência , Lactente , Idoso de 80 Anos ou mais
6.
Clin Lab ; 70(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38868878

RESUMO

BACKGROUND: Onychomycosis is a chronic nail infection, and dermatophytes, yeasts, and nondermatophytic molds may be the causative agents. This study aimed to determine the etiological agents of onychomycosis by using conventional and molecular methods. METHODS: Between June 2020 and July 2021, 37 patients with a presumptive diagnosis of onychomycosis and mycological evidence (culture and/or EUROArray Dermatomycosis assay) were included in the study. Organisms detected in cultured nail specimens were identified by combined phenotypic characteristics and by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). An EUROarray Dermatomycosis assay was used for molecular detection of fungal pathogens. RESULTS: The EUROArray Dermatomycosis assay was positive for a single fungal target in 23 samples, and 14 samples were positive by culture. The most common pathogen was Trichophyton rubrum in both methods. Coinfection was detected in 14 samples by using molecular methods, and Trichophyton rubrum and Fusarium solani (9 samples) were the most common pathogens detected together. Trichophyton spp., nondermatophyte molds, and Candida spp. were detected in 33 (89.2%), 16 (43.2%), and 6 (16.2%) samples, respectively, when the two methods were evaluated together. CONCLUSIONS: Our results revealed that fungal culture allows the diagnosis of onychomycosis, but it is not as sensitive as the EUROArray Dermatomycosis test, especially in patients receiving antifungal therapy.


Assuntos
Arthrodermataceae , Onicomicose , Humanos , Onicomicose/microbiologia , Onicomicose/diagnóstico , Feminino , Arthrodermataceae/isolamento & purificação , Arthrodermataceae/genética , Masculino , Turquia/epidemiologia , Adulto , Pessoa de Meia-Idade , Idoso , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Adulto Jovem , Adolescente , Trichophyton/isolamento & purificação , Trichophyton/genética , Técnicas de Diagnóstico Molecular/métodos , Coinfecção/microbiologia , Coinfecção/diagnóstico , Coinfecção/epidemiologia
7.
Mycoses ; 67(2): e13708, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38404204

RESUMO

BACKGROUND: Terbinafine, an allylamine antifungal, is crucial for treating dermatophytosis by inhibiting squalene epoxidase (SQLE) in the ergosterol biosynthetic pathway. However, resistance is emerging, particularly in India and Southeast Asia, but reports of resistance spread worldwide. Despite this, comprehensive studies on terbinafine resistance in Trichophyton are still limited. OBJECTIVES: This research aimed to determine the prevalence of terbinafine resistance in the Czech Republic, with a focus on Trichophyton rubrum and Trichophyton mentagrophytes, and investigate the underlying molecular mechanisms. PATIENTS/METHODS: A total of 514 clinical strains of T. rubrum and 240 T. mentagrophytes collected from four Czech clinical institutions were screened for terbinafine resistance. Molecular investigations included DNA sequencing, specifically the ITS rDNA region and SQLE gene, as well as antifungal susceptibility testing following EUCAST guidelines. RESULTS: While no resistance was observed in T. rubrum, 2.5% of T. mentagrophytes strains exhibited resistance, marked by the F397L mutation in SQLE. Notably, resistance surged from 1.2% in 2019 to 9.3% in 2020 but reverted to 0% in 2021. All resistant strains were identified as T. mentagrophytes var. indotineae. Resistant strains exhibited high MICs for terbinafine (≥4 mg L-1 ) but low MICs to the other seven antifungals tested except for fluconazole. CONCLUSIONS: This study highlights the emergence of terbinafine-resistant T. mentagrophytes strains in the Czech Republic, with the F397L mutation being pivotal. Due to the relatively low resistance level, the current guidelines for dermatomycosis treatment in the Czech Republic remain effective, but ongoing surveillance is essential for timely adaptations if resistance patterns change.


Assuntos
Antifúngicos , Arthrodermataceae , Humanos , Terbinafina/farmacologia , Terbinafina/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , República Tcheca/epidemiologia , Estudos Prospectivos , Farmacorresistência Fúngica/genética , Arthrodermataceae/genética , Trichophyton , Testes de Sensibilidade Microbiana , Esqualeno Mono-Oxigenase/genética
8.
Mycoses ; 67(1): e13666, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37941162

RESUMO

INTRODUCTION: Wrestling, considered the national sport of Iran, has gained immense popularity among Iranians. Wrestlers frequently encounter skin conditions, with dermatophyte fungal infections, particularly tinea gladiatorum (TG), being a common issue. TG, caused by the Trichophyton genus, has emerged as a major health concern for wrestlers and other contact sport athletes worldwide. This study aimed to assess the genotypic diversity and antifungal susceptibility of Trichophyton tonsurans isolates responsible for TG in Iranian wrestlers from Mazandaran province, northern Iran. MATERIALS AND METHODS: A total of 60 clinical T. tonsurans isolates collected from various cities in Mazandaran, were included in the study. The isolates were identified through PCR-restriction fragment length polymorphism and sequencing methods. Genomic DNA was extracted from these isolates, and the non-transcribed spacer (NTS) region of ribosomal RNA (rRNA) was targeted for genotyping using newly designed primers. Haplotype analysis was performed to explore genetic diversity, and antifungal susceptibility to terbinafine (TRB) and itraconazole (ITC) was assessed. RESULTS: The results revealed five distinct NTS types: NTS-I, NTS-II, NTS-III, NTS-IV and NTS-V, with NTS-IV being the most prevalent. The distribution of NTS types varied across different cities, suggesting potential transmission patterns among wrestlers. Antifungal susceptibility testing showed that all isolates were susceptible to TRB, while one isolate demonstrated resistance to ITC. Genotypic diversity was not correlated with antifungal susceptibility, emphasising the importance of monitoring susceptibility to ensure effective treatment. Haplotype analysis highlighted significant genetic diversity among the T. tonsurans isolates. This diversity may be attributed to factors such as human-to-human transmission, geographic location and lifestyle changes. The study's findings underscore the need for comprehensive genotypic analysis to understand the epidemiology and evolution of T. tonsurans infections in athletes. CONCLUSION: In conclusion, this study provides valuable insights into the genotypic diversity and antifungal susceptibility of T. tonsurans isolates causing TG in Iranian wrestlers. The presence of multiple NTS types and varying susceptibility patterns highlights the complexity of T. tonsurans infections in this population. Further research is warranted to track the transmission routes and genetic evolution of T. tonsurans strains among wrestlers and develop effective control measures.


Assuntos
Arthrodermataceae , População do Oriente Médio , Tinha , Luta Romana , Humanos , Antifúngicos/farmacologia , Arthrodermataceae/genética , DNA Ribossômico , Irã (Geográfico)/epidemiologia , Itraconazol/farmacologia , Tipagem Molecular , Terbinafina , Tinha/tratamento farmacológico , Tinha/epidemiologia , Tinha/etiologia , Tinha/microbiologia , Trichophyton
9.
Mycoses ; 67(7): e13768, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39036952

RESUMO

BACKGROUND: There is a concerning rise in antifungal-resistant dermatophytosis globally, with resistance to terbinafine conferred by point mutations in the squalene epoxidase (SQLE) gene. OBJECTIVES: Report changes in the prevalence and profile of SQLE mutations in onychomycosis patients in the United States. METHODS: A longitudinal cohort study of toenail samples was collected from suspected onychomycosis patients over an 18-month period from 2022 to 2023. Samples were submitted from across the United States and subjected to multiplex real-time polymerase chain reactions for dermatophyte detection, with further screening of SQLE mutations at four known hotspots (393Leu, 397Phe, 415Phe and 440His). RESULTS: A total of 62,056 samples were submitted (mean age: 57.5 years; female: 60.4%). Dermatophytes were detected in 38.5% of samples, primarily Trichophyton rubrum complex (83.6%) and T. mentagrophytes complex (10.7%). A survey of SQLE mutations was carried out in 22,610 dermatophyte samples; there was a significant increase in the prevalence of SQLE mutations between the first quarter of 2022 and the second quarter of 2023 (29.0 to 61.9 per 1000 persons). The Phe397Leu substitution was the predominant mutation; Phe415Ser and His440Tyr have also emerged which were previously reported as minor mutations in skin samples. The temporal change in mutation rates can be primarily attributed to the Phe415Ser substitution. Samples from elderly patients (>70 years) are more likely to be infected with the T. mentagrophytes complex including strains harbouring the Phe415Ser substitution. CONCLUSION: The prevalence of SQLE mutations among onychomycosis patients with Trichophyton infections may be underestimated. Older individuals may have a higher risk.


Assuntos
Antifúngicos , Arthrodermataceae , Farmacorresistência Fúngica , Onicomicose , Esqualeno Mono-Oxigenase , Terbinafina , Humanos , Onicomicose/microbiologia , Onicomicose/epidemiologia , Onicomicose/tratamento farmacológico , Esqualeno Mono-Oxigenase/genética , Feminino , Pessoa de Meia-Idade , Masculino , Terbinafina/farmacologia , Terbinafina/uso terapêutico , Farmacorresistência Fúngica/genética , Estados Unidos/epidemiologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Estudos Longitudinais , Idoso , Arthrodermataceae/genética , Arthrodermataceae/efeitos dos fármacos , Adulto , Mutação , Estudos de Coortes , Trichophyton/genética , Trichophyton/efeitos dos fármacos , Adulto Jovem , Prevalência , Mutação Puntual , Idoso de 80 Anos ou mais , Adolescente , Unhas/microbiologia
10.
Mycopathologia ; 189(1): 2, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217794

RESUMO

Trichophyton species cause dermatophytosis in humans, with a high, worldwide frequency of reports and important public health relevance. We evaluated 61 Trichophyton strains from different sources deposited in the University Recife Mycology (URM) culture collection of the Universidade Federal de Pernambuco, Brazil. Strains were phenotypically identified and confirmed by sequencing Internal Transcribed Spacers rDNA and partial beta-tubulin 2-exon. Additionally, we evaluated their susceptibility to terbinafine and itraconazole. Physiological analyses included urease activity and growth in casein medium. Phenotypic methods allowed the reliable identification of T. rubrum only, whereas, for other species, molecular methods were mandatory. All Trichophyton species exhibited susceptibility profiles to itraconazole (0.04-5.33 µg/mL) and terbinafine (0.17-3.33 µg/mL). Our analyses revealed a heterogeneous distribution of T. mentagrophytes, which does not support the current distribution within the species complex of T. mentagrophytes and its genotypes.


Assuntos
Arthrodermataceae , Tinha , Humanos , Trichophyton , Terbinafina/farmacologia , Antifúngicos/farmacologia , Itraconazol , Brasil , Universidades , Testes de Sensibilidade Microbiana , Arthrodermataceae/genética
11.
Mycopathologia ; 189(2): 29, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483637

RESUMO

The emerging pathogen Trichophyton indotineae, often resistant to terbinafine (TRB), is known to cause severe dermatophytoses such as tinea corporis and tinea cruris. In order to achieve successful treatment for these infections, insight in the resistance profile of T. indotineae strains and rapid, reliable identification is necessary. In this research, a screening medium was tested on T. indotineae strains (n = 20) as an indication tool of TRB resistance. The obtained results were confirmed by antifungal susceptibility testing (AST) for TRB following the in vitro broth microdilution reference method. Additionally, AST was performed for eight other antifungal drugs: fluconazole, itraconazole, voriconazole, ketoconazole, griseofulvin, ciclopirox olamine, naftifine and amorolfine. Forty-five percent of the strains were confirmed to be resistant to terbinafine. The TRB resistant strains showed elevated minimal inhibitory concentration values for naftifine and amorolfine as well. DNA sequencing of the squalene epoxidase-encoding gene showed that TRB resistance was a consequence of missense point mutations in this gene, which led to amino acid substitutions F397L or L393F. MALDI-TOF MS was used as a quick, accurate identification tool for T. indotineae, as it can be challenging to distinguish it from closely related species such as Trichophyton mentagrophytes or Trichophyton interdigitale using morphological characteristics. While MALDI-TOF MS could reliably identify ≥ 95% of the T. indotineae strains (depending on the spectral library), it could not be used to successfully distinguish TRB susceptible from TRB resistant strains.


Assuntos
Alilamina/análogos & derivados , Antifúngicos , Arthrodermataceae , Terbinafina/farmacologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Trichophyton/genética , Arthrodermataceae/genética , Testes de Sensibilidade Microbiana , Farmacorresistência Fúngica/genética
12.
Mycopathologia ; 189(3): 37, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704808

RESUMO

Trichophyton rubrum is a human fungal pathogen that causes dermatophytosis, an infection that affects keratinized tissues. Integrated molecular signals coordinate mechanisms that control pathogenicity. Transcriptional regulation is a core regulation of relevant fungal processes. Previous RNA sequencing data revealed that the absence of the transcription factor StuA resulted in the differential expression of the MAPK-related high glycerol osmolarity gene (hog1) in T. rubrum. Here we validated the role of StuA in regulating the transcript levels of hog1. We showed through RT-qPCR that transcriptional regulation controls hog1 levels in response to glucose, keratin, and co-culture with human keratinocytes. In addition, we also detected hog1 pre-mRNA transcripts that underwent alternative splicing, presenting intron retention in a StuA-dependent mechanism. Our findings suggest that StuA and alternative splicing simultaneously, but not dependently, coordinate hog1 transcript levels in T. rubrum. As a means of preventing and treating dermatophytosis, our results contribute to the search for new potential drug therapies based on the molecular aspects of signaling pathways in T. rubrum.


Assuntos
Processamento Alternativo , Arthrodermataceae , Regulação Fúngica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno , Tinha , Fatores de Transcrição , Humanos , Arthrodermataceae/genética , Arthrodermataceae/metabolismo , Glucose/metabolismo , Queratinócitos/microbiologia , Queratinas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tinha/metabolismo , Tinha/microbiologia
13.
Mycopathologia ; 189(4): 59, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890181

RESUMO

Dermatophyte biofilms frequently count for inadequate responses and resistance to standard antifungal treatments, resulting in refractory chronic onychomycosis infection. Although antimicrobial photodynamic therapy (aPDT) has clinically proven to exert significant antifungal effects or even capable of eradicating dermatophyte biofilms, considerably less is known about the molecular mechanisms underlying aPDT and the potential dysregulation of signaling networks that could antagonize its action. The aim of this study is to elucidate the molecular mechanisms underlining aPDT combat against dermatophyte biofilm in recalcitrant onychomycosis and to decipher the potential detoxification processes elicited by aPDT, facilitating the development of more effective photodynamic interventions. We applied genome-wide comparative transcriptome analysis to investigate how aPDT disrupting onychomycosis biofilm formed by three distinct dermatophytes, including Trichophyton rubrum, Trichophyton mentagrophytes, and Microsporum gypseum, the most frequently occurring pathogenic species. In total, 352.13 Gb of clean data were obtained for the transcriptomes of dermatophyte biofilms with or without aPDT treatment, resulting in 2,422.42 million reads with GC content of 51.84%, covering 99.9%, 98.5% and 99.4% of annotated genes of T. rubrum, T. mentagrophytes, and M. gypseum, respectively. The genome-wide orthologous analysis identified 6624 transcribed single-copy orthologous genes in all three species, and 36.5%, 6.8% and 17.9% of which were differentially expressed following aPDT treatment. Integrative orthology analysis demonstrated the upregulation of oxidoreductase activities is a highly conserved detoxification signaling alteration in response to aPDT across all investigated dermatophyte biofilms. This study provided new insights into the molecular mechanisms underneath anti-dermatophyte biofilm effects of aPDT and successfully identified a conserved detoxification regulation upon the aPDT application.


Assuntos
Arthrodermataceae , Biofilmes , Perfilação da Expressão Gênica , Fotoquimioterapia , Biofilmes/efeitos dos fármacos , Arthrodermataceae/efeitos dos fármacos , Arthrodermataceae/genética , Microsporum/efeitos dos fármacos , Microsporum/genética , Humanos , Antifúngicos/farmacologia , Onicomicose/microbiologia , Onicomicose/tratamento farmacológico , Transcriptoma
14.
Mycopathologia ; 189(4): 52, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864945

RESUMO

Treatment-resistant dermatophytosis caused by the members of the Trichophyton mentagrophytes/Trichophyton interdigitale species group (TMTISG) is increasing worldwide. We aimed to determine the prevalence of TMTISG in patients with dermatophytosis in two centers from north of Iran and detect the possible mutations in the squalene epoxidase (SQLE) gene in relevant terbinafine (TRB) resistant pathogenic isolates. From November 2021 to December 2022, 1960 patients suspected to dermatophytosis and referred to two mycology referral laboratories in the north of Iran were included in the study. Identification of all dermatophyte isolates was confirmed by RFLP of rDNA internal transcribed spacer (ITS) regions. Antifungal susceptibility testing against five common antifungals using the CLSI-M38-A3 protocol was performed. The TMTISG isolates resistant to TRB, were further analyzed to determine the possible mutations in the SQLE gene. Totally, 647 cases (33%) were positive for dermatophytosis of which 280 cases (43.3%) were identified as members of TMTISG. These were more frequently isolated from tinea corporis 131 (44.56%) and tinea cruris 116 (39.46%). Of 280 TMTISG isolates, 40 (14.3%) were resistant to TRB (MIC ≥ 4 µg/mL), all found to be T. indotineae in ITS sequencing. In SQLE sequencing 34 (85%) of TRB-resistant isolates had coincident mutations of Phe397Leu and Ala448Thr whereas four and two isolates had single mutations of Phe397Leu and Leu393Ser, respectively. Overall, the resistance of Iranian TMTISG isolates to TRB greatly occurred by a mutation of Phe397Leu in the SQLE gene as alone or in combination with Ala448Thr. Nevertheless, for the occurrence of in vitro resistance, only the presence of Phe397Leu mutation seems to be decisive.


Assuntos
Antifúngicos , Arthrodermataceae , Farmacorresistência Fúngica , Testes de Sensibilidade Microbiana , Esqualeno Mono-Oxigenase , Terbinafina , Tinha , Irã (Geográfico)/epidemiologia , Farmacorresistência Fúngica/genética , Humanos , Antifúngicos/farmacologia , Terbinafina/farmacologia , Estudos Transversais , Tinha/microbiologia , Tinha/epidemiologia , Prevalência , Arthrodermataceae/genética , Arthrodermataceae/efeitos dos fármacos , Masculino , Feminino , Esqualeno Mono-Oxigenase/genética , Adulto , Pessoa de Meia-Idade , Mutação , Idoso , Adulto Jovem , Adolescente , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Criança
15.
Med Mycol ; 61(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36965872

RESUMO

Trichophyton rubrum and T. mentagrophytes are the most common agents of dermatomycosis, a disease affecting millions worldwide. It has been widely recognized that secreted proteases are a key factor for host colonization. Dermatophytes have an unusually high amount of secreted protease, differentially expressed, and influenced by various conditions. This study analyzed the rule and expression of secreted deuterolysin protease of the M35 protein family in these two representative dermatophyte species. All strains secreted protease and could grow on keratin as the sole carbon and nitrogen source. Adding glucose to the keratin medium reduced the growth rate. Deuterolysin genes were most strongly expressed at acid conditions. NPIIc and NPIId expression was significantly higher than the other three deuterolysins. NPIIc had a high expression level in the two T. rubrum strains but a low expression in T. mentagrophytes strains. Both T. mentagrophytes strains had a high NPIId expression at low pH. NPIIc and NPIId deletion in T. rubrum caused a minor reduction in total protease activity, indicating the redundancy of protease in dermatophytes. It was postulated that protease gene enrichment in dermatophytes allows a sophisticated regulation of protease secretion to cope with changing conditions.


Nail infections and ringworm are caused by fungi called dermatophytes. About 20% of the world's population suffers from it at least once. Dermatophytes secrete skin protein-digesting enzymes. This study demonstrates the changing enzyme profile in response to different pH levels.


Assuntos
Arthrodermataceae , Humanos , Animais , Arthrodermataceae/genética , Trichophyton/genética , Peptídeo Hidrolases/metabolismo , Queratinas/metabolismo , Concentração de Íons de Hidrogênio
16.
Med Mycol ; 61(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37505466

RESUMO

Onychomycosis is an important public health problem whose prevalence continues to grow and impact public health at several levels. Nevertheless, today the main diagnostic methods used in routine practice have many drawbacks. The aim of this study was to evaluate, for the first time, the clinical performance of a new multiplex polymerase chain reaction (PCR) (Novaplex®) in the identification of the causative agent on nail samples, and its impact on the turnaround time, compared to our traditional laboratory methods. From June 2022 to December 2022, all nail samples sent to our laboratory for suspected onychomycosis were included in this prospective study. We collected for each sample the results obtained with the Novaplex® PCR method and with the traditional direct microscopy examination and culture. Each discordant result was checked using a third method, which is another PCR method (DermaGenius® kit) as a resolver. For culture-positive samples, a turnaround time was calculated and compared to the one obtained with the Novaplex® method. A total of 131 samples were included. Among them, 5 were positive (3.8%) on direct microscopy, 33 were positive (25.2%) after culture, and 98 were negative (74.8%). All positive (n = 33) and negative (n = 69) cultures were also positive/negative with the Novaplex® PCR. Twenty-nine samples were positive with the Novaplex® method but negative with culture (discordant results). The percentage agreement between the culture and the Novaplex® methods was 77.9% (102 out of 131). While tested with the resolver (DermaGenius® PCR), 28 out of 29 discordant results were similarly found positive. The percentage agreement between the two PCR methods (Novaplex® and DermaGenius®) was 96.6%. The Novaplex® PCR method evaluated proved to be very reliable and allowed the direct identification of 62 out of 131 positive samples (47.3%) with the following distribution: 79.0% of Trichophyton rubrum complex, 11.3% of Trichophyton mentagrophytes complex, 6.5% of both Trichophyton rubrum complex and Trichophyton mentagrophytes complex, and 3.2% of Candida albicans. The median time [± 95% CI] for positive culture (between incubation and validation of the final identification) was 15 [12-23] days, while the turnaround time for the Novaplex® method adapted to our clinical laboratory routine is ≤7 days. Laboratory confirmation of onychomycosis is crucial and should always be obtained before starting treatment. The evaluated PCR method offered a rapid, reliable, robust, and inexpensive method of identification of the causative agent compared to traditional methods.


The aim of this study was to evaluate the clinical performance of a multiplex PCR in the identification of the causative agent of onychomycosis on nail samples, and its impact on the turnaround time, compared to our traditional laboratory methods. This new method is rapid, reliable, robust, and inexpensive.


Assuntos
Arthrodermataceae , Onicomicose , Animais , Onicomicose/diagnóstico , Onicomicose/veterinária , Arthrodermataceae/genética , Estudos Prospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , DNA Fúngico , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase Multiplex/veterinária , Trichophyton/genética
17.
Med Mycol ; 61(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120732

RESUMO

The classical dermatophytes diagnosis is based on mycological culture and microscopy observation both human and animal hair, skin, and nail samples. The aim of this work was to develop the new in-house real-time PCR with pan-dematophyte reaction for detection and identification of the main dermatophytes directly from hair samples, providing a simple and rapid diagnosis of dermatophytosis in dogs and cats. An in-house SYBR-Green real-time PCR was designed and used for detecting a DNA fragment encoding chitin synthase 1 (CHS1). A total of 287 samples were processed by culture, microscopic examination with KOH 10%, and real-time PCR (qPCR) analysis. Melting curve analysis of the CHS1 fragment revealed to be reproducible, showing a single distinct peak for each species of dermatophyte, namely Trichophyton mentagrophytes, T. verrucosum, Microsporum canis, and Nannizzia gypsea (formerly M. gypseum). Then, out of the 287 clinically suspected cases of dermatophytosis, 50% were positive for dermatophytes by qPCR, 44% by mycological culture, and 25% by microscopic examination. Microsporum canis was identified in 117 samples tested by culture and 134 samples tested by qPCR, followed by N. gypsea in 5 samples (either tested by culture or qPCR) and T. mentagrophytes detected in 4 and 5 samples when tested by culture or qPCR, respectively. Overall, qPCR allowed the diagnosis of dermatophytosis in clinical samples. The results suggest this newly proposed in-house real-time PCR assay can be used as alternative diagnosis and rapid identification of dermatophytes frequently associated to clinical hair samples of dogs and cats.


The aim of this work was to develop a molecular detection strategy for dermatophytes by SYBR-Green real-time PCR of hair samples from animals. The melting curve analysis of the CHS1 fragment revealed to be reproducible, showing a single distinct peak for distinct dermatophyte species and allowed the diagnosis of dermatophytosis in dogs and cats caused mainly by Trichophyton mentagrophytes, Microsporum sp., and Nannizzia gypsea).


Assuntos
Arthrodermataceae , Doenças do Gato , Dermatomicoses , Doenças do Cão , Tinha , Gatos , Animais , Cães , Humanos , Arthrodermataceae/genética , Dermatomicoses/diagnóstico , Dermatomicoses/veterinária , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Doenças do Gato/diagnóstico , Doenças do Cão/diagnóstico , Microsporum/genética , Cabelo , Quitina Sintase/genética , Tinha/veterinária , Trichophyton/genética
18.
Ann Clin Microbiol Antimicrob ; 22(1): 15, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36805670

RESUMO

BACKGROUND: Dermatophytes have the ability to invade the keratin layer of humans and cause infections. The aims of this study were the accurate identification of dermatophytes by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism method and sequencing and comparison between the in vitro activities of newer and established antifungal agents against them. METHODS: Clinical specimens of patients from five Iranian university laboratories were entered in this study. Samples were cultured on sabouraud dextrose agar medium. For molecular identification, extracted DNAs were amplified by the universal fungal primers ITS1 and ITS4, and digested with MvaI enzymes. The antifungal susceptibility test for each isolate to terbinafine, griseofulvin, caspofungin, fluconazole, itraconazole, luliconazole, and isavuconazole was performed, according to the microdilution CLSI M38-A2 and CLSI M61 standard methods. RESULTS: Two hundred and seven fungi species similar to dermatophytes were isolated of which 198 (95.6%) were dermatophytes by molecular assay. The most commonly isolated were Trichophyton mentagrophytes (76/198), followed by Trichophyton interdigitale (57/198), Trichophyton rubrum (34/198), Trichophyton tonsurans (12/198), Microsporum canis (10/198), Trichophyton simii (3/198), Epidermophyton floccosum (3/198), Trichophyton violaceum (2/198), and Trichophyton benhamiae (1/198). The GM MIC and MIC90 values for all the isolates were as follows: terbinafine (0.091 and 1 µg/ml), griseofulvin (1.01 and 4 µg/ml), caspofungin (0.06 and 4 µg/ml), fluconazole (16.52 and 32 µg/ml), itraconazole (0.861 and 8 µg/ml), isavuconazole (0.074 and 2 µg/ml), and luliconazole (0.018 and 0.25 µg/ml). CONCLUSION: Trichophyton mentagrophytes, Trichophyton interdigitale, and Trichophyton rubrum were the most common fungal species isolated from the patients. luliconazole, terbinafine, and isavuconazole in vitro were revealed to be the most effective antifungal agents against all dermatophyte isolates.


Assuntos
Antifúngicos , Arthrodermataceae , Humanos , Antifúngicos/farmacologia , Arthrodermataceae/genética , Fluconazol , Itraconazol/farmacologia , Terbinafina , Irã (Geográfico) , Caspofungina , Griseofulvina , Hospitais Universitários , Triazóis/farmacologia
19.
Mycoses ; 66(7): 604-608, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37014115

RESUMO

OBJECTIVES: We assessed the performance of the Seegene Novaplex™ Dermatophyte Assay for diagnosis of dermatophytosis. METHODS: Sixty-one clinical samples from skin, nail, hair and culture were selected based on RT-PCR according to Wisselink et al. Of these samples, 26 samples were negative and 35 samples were positive with 39 dermatophytes strains. Emerging fungal strains harbouring terbinafine resistance (i.e. T. indotineae and T. mentagrophytes) were included. RESULTS: The specificities of the Novaplex™ Dermatophyte Assay ranged between 94.3% and 97.9%. The sensitivities for the detection of T. rubrum complex, T. mentagrophytes/T. interdigitale species complex and C. albicans were 94.1% (95% CI: 71.3-99.9), 78.6% (95% CI: 49.2-95.3) and 100% (95% CI: 69.2-100), respectively, with Cohen's kappa of at least 72.9%. CONCLUSIONS: The Seegene Novaplex™ Dermatophyte Assay can be used for reliable screening of dermatophytes, including emerging strains in a routine laboratory setting.


Assuntos
Arthrodermataceae , Humanos , Arthrodermataceae/genética , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade , DNA Fúngico , Pele/microbiologia , Candida albicans
20.
Mycoses ; 66(8): 680-687, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37139949

RESUMO

BACKGROUND: Numerous reports of resistance to terbinafine in Trichophyton spp. from all over the world are arousing justified attention and concern. Point mutations in the gene that encodes the squalene epoxidase (SQLE) enzyme are responsible for these therapeutic resistances. OBJECTIVES: Primary objective of the study was to describe first isolates of Trichophyton spp. resistant to terbinafine among the patients treated between September 2019 and June 2022 at the Dermatology Units of Ospedale Maggiore Policlinico and San Bortolo Hospital. Secondary objective was to study the resistance mechanism. METHODS: Patients with confirmed Trichophyton spp. infection has been treated with systemic and topical terbinafine. Patients were then re-evaluated 12 weeks after the therapy. Patients with incomplete or absent response to terbinafine underwent a new skin scraping for direct mycological examination, new identification of dermatophyte species from culture and MALDI-TOF, molecular species identification, antifungal susceptibility testing and molecular analysis of SQLE gene. RESULTS: We identified five patients without clinical response to treatment with terbinafine. The DNA sequencing of the ITS region identified one Trichophyton rubrum and four Trichophyton indotineae. The T. rubrum strain showed minimum inhibitory concentration (MIC) (90% growth inhibition) of 4 mg/L for terbinafine. The four T. indotineae strains showed a MICs range of 0.25-4 mg/L for terbinafine. The analysis of the SQLE gene in the T. rubrum strain showed a nucleotide substitution generating a missense mutation (L393F). The SQLE gene sequencing in the T. indotineae strains showed a nucleotide substitution generating a missense mutation (F397L) in two strains, a nucleotide substitution L393S in one strain and a nucleotide substitution F415C in another strain. CONCLUSIONS: We report the first cases of terbinafine-resistant Trichophyton isolates in the Italian population. Solid antifungal management programs will be needed to promote more responsible use of antimycotics and preserve their therapeutic efficacy to control antifungal resistance.


Assuntos
Antifúngicos , Arthrodermataceae , Humanos , Terbinafina/farmacologia , Terbinafina/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Trichophyton , Esqualeno Mono-Oxigenase/genética , Arthrodermataceae/genética , Mutação , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana , Itália
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA