Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 229(1): 161-172, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38169301

RESUMO

Human babesiosis is a potentially fatal tick-borne disease caused by intraerythrocytic Babesia parasites. The emergence of resistance to recommended therapies highlights the need for new and more effective treatments. Here we demonstrate that the 8-aminoquinoline antimalarial drug tafenoquine inhibits the growth of different Babesia species in vitro, is highly effective against Babesia microti and Babesia duncani in mice and protects animals from lethal infection caused by atovaquone-sensitive and -resistant B. duncani strains. We further show that a combination of tafenoquine and atovaquone achieves cure with no recrudescence in both models of human babesiosis. Interestingly, elimination of B. duncani infection in animals following drug treatment also confers immunity to subsequent challenge. Altogether, the data demonstrate superior efficacy of tafenoquine plus atovaquone combination over current therapies for the treatment of human babesiosis and highlight its potential in providing protective immunity against Babesia following parasite clearance.


Assuntos
Aminoquinolinas , Babesia , Babesiose , Humanos , Animais , Camundongos , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Modelos Teóricos
2.
Cancer Immunol Immunother ; 73(3): 49, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349553

RESUMO

T-cell receptor (TCR) engineered T-cell therapy has recently emerged as a promising adoptive immunotherapy approach for tumor treatment, yet hindered by tumor immune evasion resulting in poor therapeutic efficacy. The introduction of ferroptosis-targeted inducers offers a potential solution, as they empower T cells to induce ferroptosis and exert influence over the tumor microenvironment. Atovaquone (ATO) stands as a prospective pharmaceutical candidate with the potential to target ferroptosis, effectively provoking an excessive generation and accumulation of reactive oxygen species (ROS). In this study, we evaluated the effectiveness of a combination therapy comprising ATO and TCR-T cells against hepatocellular carcinoma (HCC), both in vitro and in vivo. The results of lactate dehydrogenase and cytokine assays demonstrated that ATO enhanced cytotoxicity mediated by AFP-specific TCR-T cells and promoted the release of IFN-γ in vitro. Additionally, in an established HCC xenograft mouse model, the combined therapy with low-dose ATO and TCR-T cells exhibited heightened efficacy in suppressing tumor growth, with no apparent adverse effects, comparable to the results achieved through monotherapy. The RNA-seq data unveiled a significant activation of the ferroptosis-related pathway in the combination therapy group in comparison to the TCR-T cells group. Mechanistically, the synergy between ATO and TCR-T cells augmented the release of IFN-γ by TCR-T cells, while concurrently elevating the intracellular and mitochondrial levels of ROS, expanding the labile iron pool, and impairing the integrity of the mitochondrial membrane in HepG2 cells. This multifaceted interaction culminated in the potentiation of ferroptosis within the tumor, primarily induced by an excess of ROS. In summary, the co-administration of ATO and TCR-T cells in HCC exhibited heightened vulnerability to ferroptosis. This heightened susceptibility led to the inhibition of tumor growth and the stimulation of an anti-tumor immune response. These findings suggest that repurposing atovaquone for adoptive cell therapy combination therapy holds the potential to enhance treatment outcomes in HCC.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/terapia , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Espécies Reativas de Oxigênio , Estudos Prospectivos , Neoplasias Hepáticas/terapia , Receptores de Antígenos de Linfócitos T , Modelos Animais de Doenças , Microambiente Tumoral
3.
Curr Opin Infect Dis ; 37(5): 327-332, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39109671

RESUMO

PURPOSE OF REVIEW: This review provides the most recent evidence of the challenges that occur in the management of babesiosis in immunocompromised hosts. RECENT FINDINGS: The epidemiology of babesiosis is affected by climate change leading to increasing numbers of cases as well as increasing areas of endemicity. Immunosuppressed hosts, especially with asplenia or B-cell defects, are at high risk of having severe disease as well as persistent and relapsed infection. Resistance to the primary therapies azithromycin and atovaquone can develop leading to further challenges in treating persistent or relapsed disease in the immunocompromised host. SUMMARY: Babesiosis is likely to become a more frequent infectious complication in immunosuppressed hosts as the areas of endemicity expand. Reduced efficacy of standard therapies is likely to continue emerging so more effort needs to be placed on methods of assessing resistance in vitro and developing more reliable treatments for resistant infections.


Assuntos
Babesiose , Hospedeiro Imunocomprometido , Humanos , Babesiose/diagnóstico , Babesiose/tratamento farmacológico , Antiprotozoários/uso terapêutico , Atovaquona/uso terapêutico , Resistência a Medicamentos , Babesia/patogenicidade
4.
Nutr Cancer ; 76(5): 452-462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38494910

RESUMO

Abnormal activation of the Wnt/ß-catenin signaling pathway is a driving force behind the progression of gastric cancer. Atovaquone, known as an antimalarial drug, has emerged as a potential candidate for anti-cancer therapy. This study investigated atovaquone's effects on gastric cancer and its underlying mechanisms. Using gastric cancer cell lines, we found that atovaquone, at concentrations relevant to clinical use, significantly reduced their viability. Notably, atovaquone exhibited a lower effectiveness in reducing the viability of normal gastric cells compared to gastric cancer cells. We further demonstrated that atovaquone inhibited gastric cancer growth and colony formation. Mechanism studies revealed that atovaquone inhibited mitochondrial respiration and induced oxidative stress. Experiments using ρ0 cells, deficient in mitochondrial respiration, indicated a slightly weaker effect of atovaquone on inducing apoptosis compared to wildtype cells. Atovaquone increased phosphorylated ß-catenin at Ser45 and Ser33/37/Thr41, elevated Axin, and reduced ß-catenin. The inhibitory effects of atovaquone on ß-catenin were reversed upon depletion of CK1α. Furthermore, the combination of atovaquone with paclitaxel suppressed gastric cancer growth and improved overall survival in mice. Given that atovaquone is already approved for clinical use, these findings suggest its potential as a valuable addition to the drug arsenal available for treating gastric cancer.


Assuntos
Neoplasias Gástricas , Via de Sinalização Wnt , Animais , Camundongos , Atovaquona/farmacologia , Atovaquona/uso terapêutico , beta Catenina/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Linhagem Celular Tumoral , Caseína Quinases/metabolismo , Proliferação de Células
5.
Anticancer Drugs ; 35(4): 317-324, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215016

RESUMO

The development of chemo-resistance in nasopharyngeal carcinoma (NPC) presents a significant therapeutic challenge, and its underlying mechanisms remain poorly understood. In our previous studies, we highlighted the association between isoprenylcysteine carboxylmethyltransferase (ICMT) and chemoresistance in NPC. In this current research, we revealed that both 5-FU and cisplatin-resistant NPC cells exhibited elevated mitochondrial function and increased expression of mitochondrial genes, independent of ICMT. Our investigations further showed that classic mitochondrial inhibitors, such as oligomycin, antimycin, and rotenone, were notably more effective in reducing viability in chemo-resistant NPC cells compared to parental cells. Moreover, we identified two antimicrobial drugs, tigecycline and atovaquone, recognized as mitochondrial inhibitors, as potent agents for decreasing chemo-resistant NPC cells by targeting mitochondrial respiration. Remarkably, tigecycline and atovaquone, administered at tolerable doses, inhibited chemo-resistant NPC growth in mouse models and extended overall survival rates. This work unveils the efficacy of mitochondrial inhibition as a promising strategy to overcome chemo-resistance in NPC. Additionally, our findings highlight the potential repurposing of clinically available drugs like tigecycline and atovaquone for treating NPC patients who develop chemoresistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Nasofaríngeas , Animais , Camundongos , Humanos , Carcinoma Nasofaríngeo/metabolismo , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Tigeciclina/farmacologia , Tigeciclina/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/farmacologia , Mitocôndrias , Neoplasias Nasofaríngeas/metabolismo
6.
J Korean Med Sci ; 39(22): e186, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38859743

RESUMO

Herein, we report a case of uncomplicated falciparum malaria with late parasitological failure in a 45-year-old businessman returning from Ghana. The patient visited the emergency department with high fever, headache, and dizziness. He traveled without antimalarial chemoprophylaxis. Laboratory tests led to the diagnosis of uncomplicated falciparum malaria with an initial density of 37,669 parasites per µL of blood (p/µL). The patient was treated with intravenous artesunate followed by atovaquone/proguanil. He was discharged with improved condition and decreased parasite density of 887 p/µL. However, at follow-up, parasite density increased to 7,630 p/µL despite the absence of any symptoms. Suspecting treatment failure, the patient was administered intravenous artesunate and doxycycline for seven days and then artemether/lumefantrine for three days. Blood smear was negative for asexual parasitemia after re-treatment but positive for gametocytemia until day 101 from the initial diagnosis. Overall, this case highlights the risk of late parasitological failure in patients with imported uncomplicated falciparum malaria.


Assuntos
Antimaláricos , Atovaquona , Malária Falciparum , Plasmodium falciparum , Proguanil , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/diagnóstico , Gana , Antimaláricos/uso terapêutico , Pessoa de Meia-Idade , Masculino , Plasmodium falciparum/isolamento & purificação , Proguanil/uso terapêutico , Atovaquona/uso terapêutico , Viagem , Artemisininas/uso terapêutico , Artesunato/uso terapêutico , Parasitemia/tratamento farmacológico , Parasitemia/diagnóstico , Doxiciclina/uso terapêutico , Combinação de Medicamentos , Falha de Tratamento , Combinação Arteméter e Lumefantrina/uso terapêutico
7.
J Infect Dis ; 228(5): 591-603, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36892247

RESUMO

BACKGROUND: Mpox virus (MPXV) is a zoonotic orthopoxvirus and caused an outbreak in 2022. Although tecovirimat and brincidofovir are approved as anti-smallpox drugs, their effects in mpox patients have not been well documented. In this study, by a drug repurposing approach, we identified potential drug candidates for treating mpox and predicted their clinical impacts by mathematical modeling. METHODS: We screened 132 approved drugs using an MPXV infection cell system. We quantified antiviral activities of potential drug candidates by measuring intracellular viral DNA and analyzed the modes of action by time-of-addition assay and electron microscopic analysis. We further predicted the efficacy of drugs under clinical concentrations by mathematical simulation and examined combination treatment. RESULTS: Atovaquone, mefloquine, and molnupiravir exhibited anti-MPXV activity, with 50% inhibitory concentrations of 0.51-5.2 µM, which was more potent than cidofovir. Whereas mefloquine was suggested to inhibit viral entry, atovaquone and molnupiravir targeted postentry processes. Atovaquone was suggested to exert its activity through inhibiting dihydroorotate dehydrogenase. Combining atovaquone with tecovirimat enhanced the anti-MPXV effect of tecovirimat. Quantitative mathematical simulations predicted that atovaquone can promote viral clearance in patients by 7 days at clinically relevant drug concentrations. CONCLUSIONS: These data suggest that atovaquone would be a potential candidate for treating mpox.


Assuntos
Mefloquina , Monkeypox virus , Humanos , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Mefloquina/farmacologia , Mefloquina/uso terapêutico , Monkeypox virus/efeitos dos fármacos
8.
Clin Infect Dis ; 76(3): e884-e893, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35962785

RESUMO

BACKGROUND: The impact of chemoprophylaxis targeting Plasmodium falciparum on Plasmodium vivax and Plasmodium ovale, which may remain quiescent as hypnozoites in the liver, is debated. METHODS: We conducted a nested case-control analysis of the outcomes of P. vivax and P. ovale infections in imported malaria cases in France among civilian travelers from 1 January 2006, to 31 December 2017. Using adjusted logistic regression, we assessed the effect of chemoprophylaxis on the incubation period, time from symptoms to diagnosis, management, blood results, symptoms, and hospitalization duration. We analyzed the effect of blood-stage drugs (doxycycline, mefloquine, chloroquine, chloroquine-proguanil) or atovaquone-proguanil on the incubation period. We used a counterfactual approach to ascertain the causal effect of chemoprophylaxis on postinfection characteristics. RESULTS: Among 247 P. vivax- and 615 P. ovale-infected travelers, 30% and 47%, respectively, used chemoprophylaxis, and 7 (3%) and 8 (1%) were severe cases. Chemoprophylaxis users had a greater risk of presenting symptoms >2 months after returning for both species (P. vivax odds ratio [OR], 2.91 [95% confidence interval {CI}, 1.22-6.95], P = .02; P. ovale OR, 2.28 [95% CI, 1.47-3.53], P < .001). Using drugs only acting on the blood stage was associated with delayed symptom onset after 60 days, while using atovaquone-proguanil was not. CONCLUSIONS: Civilian travelers infected with P. vivax or P. ovale reporting chemoprophylaxis use, especially of blood-stage agents, had a greater risk of delayed onset of illness. The impact of chemoprophylaxis on the outcomes of infection with relapse-causing species calls for new chemoprophylaxis acting against erythrocytic and liver stages.


Assuntos
Antimaláricos , Malária Vivax , Malária , Plasmodium ovale , Humanos , Atovaquona/uso terapêutico , Plasmodium vivax , Antimaláricos/uso terapêutico , Estudos de Casos e Controles , Viagem , Malária/tratamento farmacológico , Malária Vivax/tratamento farmacológico , Malária Vivax/prevenção & controle , Cloroquina/uso terapêutico , Quimioprevenção
9.
Antimicrob Agents Chemother ; 67(6): e0170922, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37154745

RESUMO

Atovaquone-proguanil (AP) is used as treatment for uncomplicated malaria, and as a chemoprophylactic agent against Plasmodium falciparum. Imported malaria remains one of the top causes of fever in Canadian returning travelers. Twelve sequential whole-blood samples before and after AP treatment failure were obtained from a patient diagnosed with P. falciparum malaria upon their return from Uganda and Sudan. Ultradeep sequencing was performed on the cytb, dhfr, and dhps markers of treatment resistance before and during the episode of recrudescence. Haplotyping profiles were generated using three different approaches: msp2-3D7 agarose and capillary electrophoresis, and cpmp using amplicon deep sequencing (ADS). A complexity of infection (COI) analysis was conducted. De novo cytb Y268C mutants strains were observed during an episode of recrudescence 17 days and 16 h after the initial malaria diagnosis and AP treatment initiation. No Y268C mutant reads were observed in any of the samples prior to the recrudescence. SNPs in the dhfr and dhps genes were observed upon initial presentation. The haplotyping profiles suggest multiple clones mutating under AP selection pressure (COI > 3). Significant differences in COI were observed by capillary electrophoresis and ADS compared to the agarose gel results. ADS using cpmp revealed the lowest haplotype variation across the longitudinal analysis. Our findings highlight the value of ultra-deep sequencing methods in the understanding of P. falciparum haplotype infection dynamics. Longitudinal samples should be analyzed in genotyping studies to increase the analytical sensitivity.


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Sefarose/uso terapêutico , Canadá , Proguanil/farmacologia , Proguanil/uso terapêutico , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Malária Falciparum/prevenção & controle , Combinação de Medicamentos , Falha de Tratamento , Tetra-Hidrofolato Desidrogenase , Sequenciamento de Nucleotídeos em Larga Escala , Recidiva
10.
Microb Pathog ; 184: 106340, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37683834

RESUMO

BACKGROUND: Despite recent advances for treating cerebral toxoplasmosis (CT), monitoring the parasite burden and treatment response is still challenging. miRNAs are small non-coding RNAs with regulatory functions that can be used in diagnosis and treatment monitoring. We investigated the changes in miR-146a, BAG-1 gene, IL-6, and IL-10 tissue levels in the brain of BALB/c mice with chronic CT caused by the PRU strain of T. gondii following anti-parasitic and antibiotic treatment. METHOD: Fifty-three 6-to 8-week-old BALB/c mice were infected using intraperitoneal inoculation of cerebral cysts of T. gondii PRU strain and then divided into five groups as follows: group 1 included mice treated with 100 mg/kg/d Atovaquone (AT), group 2 included mice treated with 400 mg/kg/d clindamycin (CL), group 3 included mice treated with combination therapy (AT + CL), group 4 included infected untreated mice as a positive control (PC), and; group 5 included uninfected untreated mice as negative control (NC). After the completion of the treatment course, tissue level of mir-146a, miR-155, BAG-1 gene, IL-6, and IL-10 was investigated with real-time polymerase chain reaction. The IL-6/IL-10 ratio was calculated as an indicator of immune response. Moreover, brain cyst numbers were counted on autopsy samples. RESULTS: miR-146a, IL-6, IL-10, and BAG-1 genes were expressed in PC, but not in the NC group; miR-146a, IL-6, IL-10, and BAG-1 gene expression were significantly lower in AT, CL, and AT + CL compared with PC. MiR-146a and BAG-1 levels in AT and CL were not different statistically, however, they both had lower levels compared to AT + CL (P < 0.01). There was no difference in the expression of IL-6 and IL-10 between treatment groups. BAG-1 expression was significantly lower in AT, than in CL and AT + CL (P < 0.0089 and < 0.002, respectively). The PC group showed a higher ratio of IL-6/IL-10, although this increase was not statistically significant. It is noteworthy that the treatment with AT reduced this ratio; in the inter-group comparison, this ratio showed a decrease in the AT and AT + CL compared to the PC. The number of brain tissue cysts was significantly lower in AT, CL, and AT + CL, than in PC (p < 0.0001). AT had significantly lower brain cysts than CL and AT + CL (P < 0.0001). CONCLUSION: It seems that the factors studied in the current research (microRNA and cytokines) are a suitable index for evaluating the response to antiparasitic and antibiotic treatment. However, more studies should be conducted in the future to confirm our findings.


Assuntos
Cistos , MicroRNAs , Toxoplasma , Toxoplasmose Cerebral , Animais , Camundongos , Toxoplasmose Cerebral/tratamento farmacológico , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Citocinas/metabolismo , Clindamicina/farmacologia , Clindamicina/uso terapêutico , Interleucina-10/genética , Interleucina-6 , Toxoplasma/metabolismo , MicroRNAs/genética , Antibacterianos
11.
BMC Cancer ; 23(1): 1070, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932661

RESUMO

BACKGROUND: Colorectal cancer is a common malignant tumour. Invasive growth and distant metastasis are the main characteristics of its malignant biological behaviour, and they are also the primary factors leading to death in colon cancer patients. Atovaquone is an antimalarial drug, and its anticancer effect has recently been demonstrated in several cancer models in vitro and in vivo, but it has not been examined in the treatment of colorectal cancer. METHODS: To elucidate the effect of atovaquone on colorectal cancer. We used RNA transcriptome sequencing, RT‒PCR and Western blot experiments to examine the expression of NF-κB (p-P65), EMT-related proteins and related inflammatory factors (IL1B, IL6, CCL20, CCL2, CXCL8, CXCL6, IL6ST, FAS, IL10 and IL1A). The effect of atovaquone on colorectal cancer metastasis was validated using an animal model of lung metastases. We further used transcriptome sequencing, the GCBI bioinformatics database and the STRING database to predict relevant target proteins. Furthermore, pathological sections were collected from relevant cases for immunohistochemical verification. RESULTS: This study showed that atovaquone could inhibit colorectal cancer metastasis and invasion in vivo and in vitro, inhibit the expression of E-cadherin protein, and promote the protein expression of N-cadherin, vimentin, ZEB1, Snail and Slug. Atovaquone could inhibit EMT by inhibiting NF-κB (p-P65) and related inflammatory factors. Further bioinformatics analysis and verification showed that PDGFRß was one of the targets of atovaquone. CONCLUSION: In summary, atovaquone can inhibit the expression of NF-κB (p-P65) and related inflammatory factors by inhibiting the protein expression of p-PDGFRß, thereby inhibiting colorectal cancer metastasis. Atovaquone may be a promising drug for the treatment of colorectal cancer metastasis.


Assuntos
Neoplasias Colorretais , NF-kappa B , Animais , Humanos , NF-kappa B/metabolismo , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Linhagem Celular Tumoral , Transdução de Sinais , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal , Movimento Celular
12.
FASEB J ; 36(4): e22226, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35233843

RESUMO

Black and Hispanic cancer patients have a higher incidence of cancer mortality. Many factors (e.g., socioeconomic differences, insufficient access to healthcare) contribute to racial disparity. Emerging research implicates biological disparity in cancer outcomes. Studies show distinct differences in the tumor immune microenvironment (TIME) in Black cancer patients. Studies also have linked altered mitochondrial metabolism to changes in immune cell activation in TIME. Recent publications revealed a novel immunomodulatory role for triphenylphosphonium-based mitochondrial-targeted drugs (MTDs). These are synthetically modified, naturally occurring molecules (e.g., honokiol, magnolol, metformin) or FDA-approved small molecule drugs (e.g., atovaquone, hydroxyurea). Modifications involve conjugating the parent molecule via an alkyl linker chain to a triphenylphosphonium moiety. These modified molecules (e.g., Mito-honokiol, Mito-magnolol, Mito-metformin, Mito-atovaquone, Mito-hydroxyurea) accumulate in tumor cell mitochondria more effectively than in normal cells and inhibit mitochondrial respiration, induce reactive oxygen species, activate AMPK and redox transcription factors, and inhibit cancer cell proliferation. Besides these intrinsic effects of MTDs in redox signaling and proliferation in tumors, MTDs induced extrinsic effects in the TIME of mouse xenografts. MTD treatment inhibited tumor-suppressive immune cells, myeloid-derived suppressor cells, and regulatory T cells, and activated T cells and antitumor immune effects. One key biological disparity in Black cancer patients was related to altered mitochondrial oxidative metabolism; MTDs targeting vulnerabilities in tumor cells and the TIME may help us understand this biological disparity. Clinical trials should include an appropriate number of Black and Hispanic cancer patients and should validate the intratumoral, antihypoxic effects of MTDs with imaging.


Assuntos
Disparidades nos Níveis de Saúde , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Microambiente Tumoral , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/uso terapêutico , População Negra , Hispânico ou Latino , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Lignanas/farmacologia , Lignanas/uso terapêutico , Neoplasias/etnologia , Neoplasias/imunologia , Neoplasias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos
13.
Malar J ; 22(1): 105, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959593

RESUMO

BACKGROUND: New anti-malarial drugs are needed urgently to address the increasing challenges of drug-resistant falciparum malaria. Two rhinacanthin analogues containing a naphthoquinone moiety resembling atovaquone showed promising in-vitro activity against a P. falciparum laboratory reference strain (K1). The anti-malarial activity of these 2 compounds was further evaluated for P. falciparum field isolates from an area of multi-drug resistance in Northeast Thailand. METHODS: Using a pLDH enzyme-linked immunosorbent assay, four P. falciparum isolates from Northeast Thailand in 2018 were tested for in vitro sensitivity to the two synthetic rhinacanthin analogues 1 and 2 as well as established anti-malarials. Mutations in the P. falciparum cytochrome b gene, a marker for atovaquone (ATQ) resistance, were genotyped in all four field isolates as well as 100 other clinical isolates from the same area using PCR-artificial Restriction Fragment Length Polymorphisms. Pfkelch13 mutations, a marker for artemisinin (ART) resistance, were also examined in all isolates. RESULTS: The 50% inhibitory concentrations (IC50) of P. falciparum field isolates for rhinacanthin analogue 1 was 321.9-791.1 nM (median = 403.1 nM). Parasites were more sensitive to analogue 2: IC50 48.6-63.3 nM (median = 52.2 nM). Similar results were obtained against P. falciparum reference laboratory strains 3D7 and W2. The ART-resistant IPC-5202 laboratory strain was more sensitive to these compounds with a median IC50 45.9 and 3.3 nM for rhinacanthin analogues 1 and 2, respectively. The ATQ-resistant C2B laboratory strain showed high-grade resistance towards both compounds (IC50 > 15,000 nM), and there was a strong positive correlation between the IC50 values for these compounds and ATQ (r = 0.83-0.97, P < 0.001). There were no P. falciparum cytochrome b mutations observed in the field isolates, indicating that P. falciparum isolates from this area remained ATQ-sensitive. Pfkelch13 mutations and the ring-stage survival assay confirmed that most isolates were resistant to ART. CONCLUSIONS: Two rhinacanthin analogues showed parasiticidal activity against multi-drug resistant P. falciparum isolates, although less potent than ATQ. Rhinacanthin analogue 2 was more potent than analogue 1, and can be a lead compound for further optimization as an anti-malarial in areas with multidrug resistance.


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum , Atovaquona/uso terapêutico , Tailândia , Citocromos b/genética , Malária Falciparum/parasitologia , Resistência a Medicamentos
14.
Med Mycol ; 61(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37656874

RESUMO

Pneumocystis jirovecii is a transmissible fungus responsible for severe pneumonia (Pneumocystis pneumonia [PCP]) in immunocompromised patients. Missense mutations due to atovaquone selective pressure have been identified on cytochrome b (CYB) gene of P. jirovecii. It was recently shown that atovaquone prophylaxis can lead to the selection of specific P. jirovecii CYB mutants potentially resistant to atovaquone among organ transplant recipients. In this context, our objectives were to provide data on P. jirovecii CYB mutants and the putative selective pressure exerted by atovaquone on P. jirovecii organisms in France. A total of 123 patients (124 P. jirovecii specimens) from four metropolitan hospitals and two overseas hospitals were retrospectively enrolled. Fourteen patients had prior exposure to atovaquone, whereas 109 patients did not at the time of P. jirovecii detection. A 638 base-pair fragment of the CYB gene of P. jirovecii was amplified and sequenced. A total of 10 single nucleotide polymorphisms (SNPs) were identified. Both missense mutations C431T (Ala144Val) and C823T (Leu275Phe), located at the Qo active site of the enzyme, were significantly associated with prior atovaquone exposure, these mutations being conversely incidental in the absence of prior atovaquone exposure (P < 0.001). Considering that the aforementioned hospitals may be representative of the national territory, these findings suggest that the overall presence of P. jirovecii CYB mutants remains low in France.


The mutations C431T (Ala144Val) and C823T (Leu275Phe) at the cytochrome b (CYB) active site of Pneumocystis jirovecii are associated with patient prior exposure to atovaquone. Conversely, these mutations are incidental in the absence of exposure. Overall, the presence of P. jirovecii CYB mutants remains low in France.


Assuntos
Pneumocystis carinii , Animais , Pneumocystis carinii/genética , Atovaquona/uso terapêutico , Citocromos b/genética , Estudos Retrospectivos , Mutação
15.
J Infect Dis ; 225(2): 238-242, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34664651

RESUMO

Human babesiosis caused by Babesia microti can be fatal in immunocompromised patients, and the currently used drugs are often ineffective. A recent study found that clofazimine clears B. microti Munich strain in immunocompromised mice. In the present study, we investigated the efficacies of clofazimine and 2-drug combinations involving clofazimine, atovaquone, and azithromycin against B. microti Peabody mjr strain in immunocompromised mice. Treatment with clofazimine alone, clofazimine plus azithromycin, and atovaquone plus azithromycin was ineffective and failed to eliminate the parasites completely, while a 44-day treatment with clofazimine plus atovaquone was highly effective and resulted in a radical cure.


Assuntos
Antibacterianos/uso terapêutico , Antiprotozoários/uso terapêutico , Atovaquona/uso terapêutico , Azitromicina/uso terapêutico , Babesia microti/efeitos dos fármacos , Babesiose/tratamento farmacológico , Clofazimina/uso terapêutico , Animais , Babesia microti/genética , Babesia microti/isolamento & purificação , Babesiose/imunologia , Quimioterapia Combinada , Humanos , Hospedeiro Imunocomprometido , Camundongos
16.
BMC Med ; 20(1): 439, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357883

RESUMO

BACKGROUND: Individuals with a family history of colorectal cancer (CRC) are at a high risk of developing CRC. Preclinical studies suggest that the anti-malaria drug proguanil and atovaquone might play a role in preventing CRC, but population-based evidence is still lacking. METHODS: By accessing a couple of nationwide Swedish registers, we performed a cohort study to explore whether using proguanil and atovaquone might associate with a lower risk of CRC by adopting a new-user study design. Adults who have 1 or more first-degree relatives (parents or siblings) diagnosed with CRC were identified and linked with the Prescribed Drug Register to evaluate their administration history of proguanil and atovaquone. Survival analysis of the time to CRC diagnosis with Cox proportional hazards regression was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS: A total of 16,817 incident proguanil/atovaquone users were identified and matched with 168,170 comparisons, who did not use proguanil/atovaquone, on the ratio of 1:10. We found a significant negative association between proguanil/atovaquone use and risk of CRC (adjusted HR, 0.76; 95% CI, 0.62-0.93). Test for trend showed significant dose- and duration-response correlations (P < 0.001). The association was more pronounced in CRC diagnosed at an advanced stage than at an early stage (adjusted HR, 0.69 vs.0.81). CONCLUSIONS: This national-wide population-based cohort study showed that the use of proguanil and atovaquone was associated with a reduced risk of CRC among individuals with a family history of CRC.


Assuntos
Antimaláricos , Neoplasias Colorretais , Malária Falciparum , Adulto , Humanos , Proguanil/uso terapêutico , Atovaquona/uso terapêutico , Estudos de Coortes , Combinação de Medicamentos , Antimaláricos/efeitos adversos , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/prevenção & controle , Malária Falciparum/tratamento farmacológico
17.
J Infect Dis ; 224(2): 326-331, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33245345

RESUMO

Although atovaquone is effective in treating and preventing Pneumocystis pneumonia (PCP), its use is limited by nonlinear absorption and adverse events. The current study was undertaken to examine the activity of encochleated atovaquone (eATQ), a novel lipid-crystal nanoparticle formulation, in a mouse model of PCP. eATQ 100-200 mg was superior to commercially available atovaquone at 14 days in decreasing total Pneumocystis nuclei and asci. eATQ plus anidulafungin reduced nuclei significantly better than commercial atovaquone plus anidulafungin. eATQ is a novel formulation of atovaquone that warrants further evaluation for treatment and prevention of PCP.


Assuntos
Antifúngicos , Atovaquona , Pneumonia por Pneumocystis , Anidulafungina/uso terapêutico , Animais , Antifúngicos/uso terapêutico , Atovaquona/uso terapêutico , Modelos Animais de Doenças , Camundongos , Pneumonia por Pneumocystis/tratamento farmacológico , Pneumonia por Pneumocystis/prevenção & controle
18.
Artigo em Inglês | MEDLINE | ID: mdl-33361308

RESUMO

Atovaquone-proguanil remains effective against multidrug-resistant Plasmodium falciparum in Southeast Asia, but resistance is mediated by a single point mutation in cytochrome b (cytb) that can arise during treatment. Among 14 atovaquone-proguanil treatment failures in a clinical trial in Cambodia, only one recrudescence harbored the cytb mutation Y268C. Deep sequencing did not detect the mutation at baseline or in the first 3 days of treatment, suggesting that it arose de novo Further sequencing across cytb similarly found no low-frequency cytb mutations that were up-selected from baseline to recrudescence. Copy number amplification in dihydroorotate dehydrogenase (DHODH) and cytb as markers of atovaquone tolerance was also absent. Cytb mutation played a minor role in atovaquone-proguanil treatment failures in an active comparator clinical trial.


Assuntos
Antimaláricos , Malária Falciparum , Naftoquinonas , Antimaláricos/uso terapêutico , Atovaquona/uso terapêutico , Camboja , Citocromos b/genética , Combinação de Medicamentos , Humanos , Malária Falciparum/tratamento farmacológico , Naftoquinonas/uso terapêutico , Plasmodium falciparum/genética , Proguanil/uso terapêutico
19.
Eur J Clin Microbiol Infect Dis ; 40(9): 1815-1820, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33770336

RESUMO

Alveolar echinococcosis (AE) is caused by the larval stage of Echinococcus multilocularis. Chemotherapy for AE involves albendazole (ABZ), which has shown insufficient efficacy. More effective chemotherapy for AE is needed. Previously, we have demonstrated that atovaquone (ATV), an antimalarial, inhibits mitochondrial complex III of E. multilocularis and restricts the development of larval cysts in in vivo experiments. Therefore, in this study, we evaluated the efficacy of ABZ and ATV combination therapy on E. multilocularis in culture and in vivo experiments. Protoscoleces were treated with 50 µM ABZ and/or ATV in the medium; the duration of parasite elimination was determined under aerobic and anaerobic culture. In the in vivo experiment, the effects of ABZ and ATV combination treatment in BALB/c mice infected orally with eggs from the feces of an adult-stage E. multilocularis-infected dog were compared with those of standard oral ABZ therapy. In the culture assay, the duration of elimination associated with ABZ and ATV combination treatment was shorter than that associated with ATV alone under aerobic conditions. Protoscolex viability progressively reduced owing to the combination treatment under anaerobic conditions; however, either drug used singly did not exhibit antiparasitic effects under hypoxia. Furthermore, compared with ABZ alone, the combination treatment significantly reduced the growth of the primary cyst in the liver of mice infected orally with parasite eggs (P = .011). ATV enhances the effect of ABZ in the treatment of AE in mice.


Assuntos
Albendazol/uso terapêutico , Antiparasitários/uso terapêutico , Atovaquona/uso terapêutico , Equinococose/tratamento farmacológico , Echinococcus multilocularis/efeitos dos fármacos , Albendazol/farmacologia , Animais , Antiparasitários/farmacologia , Atovaquona/farmacologia , Quimioterapia Combinada , Equinococose/parasitologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C
20.
J Chem Inf Model ; 61(3): 1334-1345, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33617262

RESUMO

Plasmodium falciparum (P. falciparum) is the main parasite known to cause malaria in humans. The antimalarial drug atovaquone is known to inhibit the Qo-site of the cytochrome bc1 complex of P. falciparum, which ultimately blocks ATP synthesis, leading to cell death. Through the years, mutations of the P. falciparum cytochrome bc1 complex, causing resistance to atovaquone, have emerged. The present investigation applies molecular dynamics (MD) simulations to study how the specific mutations Y279S and L282V, known to cause atovaquone resistance in malarial parasites, affect the inhibition mechanism of two known inhibitors. Binding free energy estimates were obtained through free energy perturbation calculations but were unable to confidently resolve the effects of mutations due to the great complexity of the binding environment. Meanwhile, basic mechanistic considerations from the MD simulations provide a detailed characterization of inhibitor binding modes and indicate that the Y279S mutation weakens the natural binding of the inhibitors, while no conclusive effect of the L282V mutation could be observed.


Assuntos
Antimaláricos , Malária Falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Citocromos/uso terapêutico , Resistência a Medicamentos , Humanos , Malária Falciparum/tratamento farmacológico , Mutação , Plasmodium falciparum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA