Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(12): e2207471120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36927155

RESUMO

Inner mitochondrial membrane fusion and cristae shape depend on optic atrophy protein 1, OPA1. Mutations in OPA1 lead to autosomal dominant optic atrophy (ADOA), an important cause of inherited blindness. The Guanosin Triphosphatase (GTPase) and GTPase effector domains (GEDs) of OPA1 are essential for mitochondrial fusion; yet, their specific roles remain elusive. Intriguingly, patients carrying OPA1 GTPase mutations have a higher risk of developing more severe multisystemic symptoms in addition to optic atrophy, suggesting pathogenic contributions for the GTPase and GED domains, respectively. We studied OPA1 GTPase and GED mutations to understand their domain-specific contribution to protein function by analyzing patient-derived cells and gain-of-function paradigms. Mitochondria from OPA1 GTPase (c.870+5G>A and c.889C>T) and GED (c.2713C>T and c.2818+5G>A) mutants display distinct aberrant cristae ultrastructure. While all OPA1 mutants inhibited mitochondrial fusion, some GTPase mutants resulted in elongated mitochondria, suggesting fission inhibition. We show that the GED is dispensable for fusion and OPA1 oligomer formation but necessary for GTPase activity. Finally, splicing defect mutants displayed a posttranslational haploinsufficiency-like phenotype but retained domain-specific dysfunctions. Thus, OPA1 domain-specific mutants result in distinct impairments in mitochondrial dynamics, providing insight into OPA1 function and its contribution to ADOA pathogenesis and severity.


Assuntos
Mitocôndrias , Atrofia Óptica Autossômica Dominante , Humanos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/metabolismo , Atrofia Óptica Autossômica Dominante/patologia , Mutação
2.
Hum Mol Genet ; 31(5): 761-774, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34559197

RESUMO

Exonic (i.e. coding) variants in genes associated with disease can exert pathogenic effects both at the protein and mRNA level, either by altering the amino acid sequence or by affecting pre-mRNA splicing. The latter is often neglected due to the lack of RNA analyses in genetic diagnostic testing. In this study we considered both pathomechanisms and performed a comprehensive analysis of nine exonic nucleotide changes in OPA1, which is the major gene underlying autosomal dominant optic atrophy (DOA) and is characterized by pronounced allelic heterogeneity. We focused on the GTPase-encoding domain of OPA1, which harbors most of the missense variants associated with DOA. Given that the consensus splice sites extend into the exons, we chose a split codon, namely codon 438, for our analyses. Variants at this codon are the second most common cause of disease in our large cohort of DOA patients harboring disease-causing variants in OPA1. In silico splice predictions, heterologous splice assays, analysis of patient's RNA when available, and protein modeling revealed different molecular outcomes for variants at codon 438. The wildtype aspartate residue at amino acid position 438 is directly involved in the dimerization of OPA1 monomers. We found that six amino acid substitutions at codon 438 (i.e. all substitutions of the first and second nucleotide of the codon) destabilized dimerization while only substitutions of the first nucleotide of the codon caused exon skipping. Our study highlights the value of combining RNA analysis and protein modeling approaches to accurately assign patients to future precision therapies.


Assuntos
Atrofia Óptica Autossômica Dominante , Códon/genética , Análise Mutacional de DNA , GTP Fosfo-Hidrolases/genética , Humanos , Mutação , Nucleotídeos , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/patologia , Linhagem
3.
Brain ; 146(2): 455-460, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36317462

RESUMO

Hereditary optic neuropathies are caused by the degeneration of retinal ganglion cells whose axons form the optic nerves, with a consistent genetic heterogeneity. As part of our diagnostic activity, we retrospectively evaluated the combination of Leber hereditary optic neuropathy mutations testing with the exon sequencing of 87 nuclear genes on 2186 patients referred for suspected hereditary optic neuropathies. The positive diagnosis rate in individuals referred for Leber hereditary optic neuropathy testing was 18% (199/1126 index cases), with 92% (184/199) carrying one of the three main pathogenic variants of mitochondrial DNA (m.11778G>A, 66.5%; m.3460G>A, 15% and m.14484T>C, 11%). The positive diagnosis rate in individuals referred for autosomal dominant or recessive optic neuropathies was 27% (451/1680 index cases), with 10 genes accounting together for 96% of this cohort. This represents an overall positive diagnostic rate of 30%. The identified top 10 nuclear genes included OPA1, WFS1, ACO2, SPG7, MFN2, AFG3L2, RTN4IP1, TMEM126A, NR2F1 and FDXR. Eleven additional genes, each accounting for less than 1% of cases, were identified in 17 individuals. Our results show that 10 major genes account for more than 96% of the cases diagnosed with our nuclear gene panel.


Assuntos
Atrofia Óptica Autossômica Dominante , Atrofia Óptica Hereditária de Leber , Doenças do Nervo Óptico , Humanos , Atrofia Óptica Hereditária de Leber/genética , Estudos Retrospectivos , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/patologia , Doenças do Nervo Óptico/genética , Mutação/genética , DNA Mitocondrial/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Proteases Dependentes de ATP/genética , Proteínas de Transporte/genética , Proteínas Mitocondriais/genética , Proteínas de Membrana/genética
4.
Hum Mol Genet ; 29(22): 3631-3645, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33231680

RESUMO

OPA1 mutations are the major cause of dominant optic atrophy (DOA) and the syndromic form DOA plus, pathologies for which there is no established cure. We used a 'drug repurposing' approach to identify FDA-approved molecules able to rescue the mitochondrial dysfunctions induced by OPA1 mutations. We screened two different chemical libraries by using two yeast strains carrying the mgm1I322M and the chim3P646L mutations, identifying 26 drugs able to rescue their oxidative growth phenotype. Six of them, able to reduce the mitochondrial DNA instability in yeast, have been then tested in Opa1 deleted mouse embryonic fibroblasts expressing the human OPA1 isoform 1 bearing the R445H and D603H mutations. Some of these molecules were able to ameliorate the energetic functions and/or the mitochondrial network morphology, depending on the type of OPA1 mutation. The final validation has been performed in patients' fibroblasts, allowing to select the most effective molecules. Our current results are instrumental to rapidly translating the findings of this drug repurposing approach into clinical trial for DOA and other neurodegenerations caused by OPA1 mutations.


Assuntos
Reposicionamento de Medicamentos , GTP Fosfo-Hidrolases/genética , Doenças Neurodegenerativas/tratamento farmacológico , Atrofia Óptica Autossômica Dominante/tratamento farmacológico , Animais , DNA Mitocondrial/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , GTP Fosfo-Hidrolases/antagonistas & inibidores , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mutação/efeitos dos fármacos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/patologia , Linhagem , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
5.
Exp Eye Res ; 215: 108901, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34933001

RESUMO

The purpose of this study was to evaluate the neuroprotective effects of omega-3 polyunsaturated fatty acid (ω3-PUFA) supplementation in a mouse model of OPA1-associated autosomal dominant optic atrophy (ADOA). The blood level of arachidonic acid (AA) and eicosapentaenoic acid (EPA) served to adjust the treatment dosage (AA/EPA = 1.0-1.5). Eight-month-old mice were allocated to four groups (n = 20/group): the ω3-PUFA-treated Opa1enu/+, untreated Opa1enu/+, ω3-PUFA-treated wild-type and untreated wild-type groups. Treated mice received the ω3-PUFAs, EPA and docosahexaenoic acid (DHA; 5:1 ratio) by daily gavage for 4 months based on the measured AA/EPA ratio. Blood, retina and optic nerve (ON) fatty acid levels were determined by gas chromatography, and the retina and ON were histologically examined. Western blotting and/or immunohistochemistry was performed to analyse retinal mediators involved in Opa1-mutation-mediated apoptosis, inflammation and oxidative stress. Increased EPA and reduced AA levels were primarily observed predominantly in the blood and retinal tissues, and a similarly high EPA level tended to be observed in the ONs of ω3-PUFA-treated mice. Retinal ganglion cell and ON axonal densities were higher in both mouse strains upon ω3-PUFA treatment than in the corresponding untreated groups. Caspase-3 expression analysis showed fewer apoptotic retinal cells in both groups of treated mice. Decreases in inflammatory microglia and astrocytes activation and proapoptotic Bcl-2-associated X protein (Bax) expression were noted in the treated groups, with no difference in the antioxidant superoxide dismutase-2 expression. ω3-PUFA supplementation had neuroprotective effects on the retinas of Opa1enu/+ and wild-type mice via blockade of microglia and astrocytes activation and suppression of Bax and caspase-3. Our findings indicated that inhibition of oxidative stress may not be involved in ω3-PUFA-mediated neuroprotection. These novel findings support the use of ω3-PUFAs as a beneficial therapy in the occurrence of ADOA, posing the basis for future clinical trials to confirm these observations.


Assuntos
Ácidos Graxos Ômega-3 , Neuroglia , Fármacos Neuroprotetores , Atrofia Óptica Autossômica Dominante , Animais , Apoptose , Ácido Araquidônico/metabolismo , Caspase 3/metabolismo , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Ômega-3/farmacologia , GTP Fosfo-Hidrolases/metabolismo , Camundongos , Neuroglia/metabolismo , Neuroglia/patologia , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Atrofia Óptica Autossômica Dominante/tratamento farmacológico , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/metabolismo , Atrofia Óptica Autossômica Dominante/patologia , Retina/metabolismo , Proteína X Associada a bcl-2/metabolismo
6.
BMC Ophthalmol ; 22(1): 322, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883160

RESUMO

PURPOSE: To describe the genetic and clinical features of nineteen patients from eleven unrelated Chinese pedigrees with OPA1-related autosomal dominant optic atrophy (ADOA) and define the phenotype-genotype correlations. METHODS: Detailed ophthalmic examinations were performed. Targeted next-generation sequencing (NGS) was conducted in the eleven probands using a custom designed panel PS400. Sanger sequencing and cosegregation were used to verify the identified variants. The pathogenicity of gene variants was evaluated according to American College of Medical Genetics and Genomics (ACMG) guidelines. RESULTS: Nineteen patients from the eleven unrelated Chinese ADOA pedigrees had impaired vision and optic disc pallor. Optical coherence tomography showed significant thinning of the retinal nerve fiber layer. The visual field showed varying degrees of central or paracentral scotoma. The onset of symptoms occurred between 3 and 24 years of age (median age 6 years). Eleven variants in OPA1 were identified in the cohort, and nine novel variants were identified. Among the novel variants, two splicing variants c.984 + 1_984 + 2delGT, c.1194 + 2 T > C, two stop-gain variants c.1937C > G, c.2830G > T, and one frameshift variant c.2787_2794del8, were determined to be pathogenic based on ACMG. A novel splicing variant c.1316-10 T > G was determined to be likely pathogenic. In addition, a novel missense c.1283A > C (p.N428T) and two novel splicing variants c.2496G > A and c.1065 + 5G > C were of uncertain significance. CONCLUSIONS: Six novel pathogenic variants were identified. The findings will facilitate genetic counselling by expanding the pathogenic mutation spectrum of OPA1.


Assuntos
Atrofia Óptica Autossômica Dominante , GTP Fosfo-Hidrolases/genética , Estudos de Associação Genética , Humanos , Mutação , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/patologia , Linhagem
7.
Mol Genet Genomics ; 296(4): 845-862, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33884488

RESUMO

Autosomal dominant optic atrophy (ADOA) is an important cause of irreversible visual impairment in children and adolescents. About 60-90% of ADOA is caused by the pathogenic variants of OPA1 gene. By evaluating the pathogenicity of OPA1 variants and summarizing the relationship between the genotype and phenotype, this study aimed to provide a reference for clinical genetic test involving OPA1. Variants in OPA1 were selected from the exome sequencing results in 7092 cases of hereditary eye diseases and control groups from our in-house data. At the same time, the urine cells of some optic atrophy patients with OPA1 variants as well as their family members were collected and oxygen consumption rates (OCR) were measured in these cells to evaluate the pathogenicity of variants. As a result, 97 variants were detected, including 94 rare variants and 3 polymorphisms. And the 94 rare variants were classified into three groups: pathogenic (33), variants of uncertain significance (19), and likely benign (42). Our results indicated that the frameshift variants at the 3' terminus might be pathogenic, while the variants in exon 7 and intron 4 might be benign. The penetrance of the missense variants was higher than that of truncation variants. The OCR of cells with pathogenic OPA1 variants were significantly lower than those without pathogenic variants. In conclusion, some variants might be benign although predicted pathogenic in previous studies while some might have unknown pathogenesis. Measuring the OCR in urine cells could be used as a method to evaluate the pathogenicity of some OPA1 variants.


Assuntos
GTP Fosfo-Hidrolases/genética , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/patologia , Adolescente , Adulto , Estudos de Casos e Controles , Células Cultivadas , Criança , Pré-Escolar , Análise Mutacional de DNA , Família , Feminino , Estudos de Associação Genética , Testes Genéticos , Humanos , Masculino , Mutação de Sentido Incorreto , Atrofia Óptica Autossômica Dominante/epidemiologia , Atrofia Óptica Autossômica Dominante/urina , Linhagem , Fenótipo , Polimorfismo Genético , Urinálise/métodos , Urina/citologia , Adulto Jovem
8.
Int J Mol Sci ; 22(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34445085

RESUMO

Retinal ganglion cells (RGCs) undergo dendritic pruning in a variety of neurodegenerative diseases, including glaucoma and autosomal dominant optic atrophy (ADOA). Axotomising RGCs by severing the optic nerve generates an acute model of RGC dendropathy, which can be utilized to assess the therapeutic potential of treatments for RGC degeneration. Photobiomodulation (PBM) with red light provided neuroprotection to RGCs when administered ex vivo to wild-type retinal explants. In the current study, we used aged (13-15-month-old) wild-type and heterozygous B6;C3-Opa1Q285STOP (Opa1+/-) mice, a model of ADOA exhibiting RGC dendropathy. These mice were pre-treated with 4 J/cm2 of 670 nm light for five consecutive days before the eyes were enucleated and the retinas flat-mounted into explant cultures for 0-, 8- or 16-h ex vivo. RGCs were imaged by confocal microscopy, and their dendritic architecture was quantified by Sholl analysis. In vivo 670 nm light pretreatment inhibited the RGC dendropathy observed in untreated wild-type retinas over 16 h ex vivo and inhibited dendropathy in ON-center RGCs in wild-type but not Opa1+/- retinas. Immunohistochemistry revealed that aged Opa1+/- RGCs exhibited increased nitrosative damage alongside significantly lower activation of NF-κB and upregulation of DJ-1. PBM restored NF-κB activation in Opa1+/- RGCs and enhanced DJ-1 expression in both genotypes, indicating a potential molecular mechanism priming the retina to resist future oxidative insult. These data support the potential of PBM as a treatment for diseases involving RGC degeneration.


Assuntos
Atrofia Óptica Autossômica Dominante/terapia , Fototerapia , Proteína Desglicase DJ-1/análise , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/efeitos da radiação , Animais , Modelos Animais de Doenças , Luz , Camundongos , Neuroproteção/efeitos da radiação , Atrofia Óptica Autossômica Dominante/patologia , Degeneração Retiniana , Células Ganglionares da Retina/citologia , Regulação para Cima/efeitos da radiação
9.
BMC Med Genet ; 21(1): 236, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33243194

RESUMO

BACKGROUND: Dominant optic atrophy (DOA) is an inherited optic neuropathy that mainly affects visual acuity, central visual fields and color vision due to a progressive loss of retinal ganglion cells and their axons that form the optic nerve. Approximately 45-90% of affected individuals with DOA harbor pathogenic variants in the OPA1 gene. The mutation spectrum of OPA1 comprises nonsense, canonical and non-canonical splice site, frameshift and missense as well as copy number variants, but intragenic inversions have not been reported so far. CASE PRESENTATION: We report a 33-year-old male with characteristic clinical features of DOA. Whole-genome sequencing identified a structural variant of 2.4 kb comprising an inversion of 937 bp at the OPA1 locus. Fine mapping of the breakpoints to single nucleotide level revealed that the structural variation was an inversion flanked by two deletions. As this rearrangement inverts the entire first exon of OPA1, it was classified as likely pathogenic. CONCLUSIONS: We report the first DOA case harboring an inversion in the OPA1 gene. Our study demonstrates that copy-neutral genomic rearrangements have to be considered as a possible cause of disease in DOA cases.


Assuntos
GTP Fosfo-Hidrolases/genética , Atrofia Óptica Autossômica Dominante/genética , Inversão de Sequência , Adulto , Axônios , Sequência de Bases , GTP Fosfo-Hidrolases/deficiência , Expressão Gênica , Humanos , Masculino , Atrofia Óptica Autossômica Dominante/diagnóstico , Atrofia Óptica Autossômica Dominante/patologia , Tomografia de Coerência Óptica , Sequenciamento Completo do Genoma
10.
Ann Neurol ; 86(3): 368-383, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31298765

RESUMO

OBJECTIVE: Autosomal dominant optic atrophy (ADOA) starts in early childhood with loss of visual acuity and color vision deficits. OPA1 mutations are responsible for the majority of cases, but in a portion of patients with a clinical diagnosis of ADOA, the cause remains unknown. This study aimed to identify novel ADOA-associated genes and explore their causality. METHODS: Linkage analysis and sequencing were performed in multigeneration families and unrelated patients to identify disease-causing variants. Functional consequences were investigated in silico and confirmed experimentally using the zebrafish model. RESULTS: We defined a new ADOA locus on 7q33-q35 and identified 3 different missense variants in SSBP1 (NM_001256510.1; c.113G>A [p.(Arg38Gln)], c.320G>A [p.(Arg107Gln)] and c.422G>A [p.(Ser141Asn)]) in affected individuals from 2 families and 2 singletons with ADOA and variable retinal degeneration. The mutated arginine residues are part of a basic patch that is essential for single-strand DNA binding. The loss of a positive charge at these positions is very likely to lower the affinity of SSBP1 for single-strand DNA. Antisense-mediated knockdown of endogenous ssbp1 messenger RNA (mRNA) in zebrafish resulted in compromised differentiation of retinal ganglion cells. A similar effect was achieved when mutated mRNAs were administered. These findings point toward an essential role of ssbp1 in retinal development and the dominant-negative nature of the identified human variants, which is consistent with the segregation pattern observed in 2 multigeneration families studied. INTERPRETATION: SSBP1 is an essential protein for mitochondrial DNA replication and maintenance. Our data have established pathogenic variants in SSBP1 as a cause of ADOA and variable retinal degeneration. ANN NEUROL 2019;86:368-383.


Assuntos
Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença/genética , Proteínas Mitocondriais/genética , Atrofia Óptica Autossômica Dominante/genética , Animais , Diferenciação Celular/genética , Células Cultivadas , Feminino , Técnicas de Silenciamento de Genes , Ligação Genética/genética , Humanos , Masculino , Camundongos , Mutação de Sentido Incorreto , Atrofia Óptica Autossômica Dominante/patologia , Linhagem , RNA Mensageiro/genética , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Peixe-Zebra/genética
11.
Adv Exp Med Biol ; 1185: 513-517, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31884663

RESUMO

Inherited retinal dystrophies (IRDs) are a broad group of neurodegenerative disorders associated with reduced or deteriorating visual system. In the retina, cells are under constant oxidative stress, leading to elevated reactive oxygen species (ROS) generation that induces mitochondrial dysfunction and alteration of the mitochondrial network. This mitochondrial dysfunction combined with mutations in mitochondrial DNA and nuclear genes makes photoreceptors and retinal ganglion cells more susceptible to cell death. In this minireview, we focus on mitochondrial dynamics and their contribution to neuronal degeneration underlying IRDs, with particular attention to Leber hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (DOA), and propose targeting cell resilience and mitochondrial dynamics modulators as potential therapeutic approaches for retinal disorders.


Assuntos
Mitocôndrias/fisiologia , Atrofia Óptica Autossômica Dominante/patologia , Atrofia Óptica Hereditária de Leber/patologia , Estresse Oxidativo , Retina/citologia , DNA Mitocondrial/genética , Humanos
12.
Biochim Biophys Acta Bioenerg ; 1859(4): 263-269, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29382469

RESUMO

OPA1 is a dynamin-related GTPase that controls mitochondrial dynamics, cristae integrity, energetics and mtDNA maintenance. The exceptional complexity of this protein is determined by the presence, in humans, of eight different isoforms that, in turn, are proteolytically cleaved into combinations of membrane-anchored long forms and soluble short forms. Recent advances highlight how each OPA1 isoform is able to fulfill "essential" mitochondrial functions, whereas only some variants carry out "specialized" features. Long forms determine fusion, long or short forms alone build cristae, whereas long and short forms together tune mitochondrial morphology. These findings offer novel challenging therapeutic potential to gene therapy.


Assuntos
Processamento Alternativo , GTP Fosfo-Hidrolases/genética , Mitocôndrias/enzimologia , Membranas Mitocondriais/enzimologia , Atrofia Óptica Autossômica Dominante/terapia , Animais , DNA Mitocondrial/química , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/uso terapêutico , Expressão Gênica , Terapia Genética/métodos , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Isoenzimas/uso terapêutico , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial/genética , Membranas Mitocondriais/ultraestrutura , Atrofia Óptica Autossômica Dominante/enzimologia , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/patologia , Fosforilação Oxidativa
13.
Pharmacol Res ; 131: 199-210, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29454676

RESUMO

OPA1 is a GTPase that controls several functions, such as mitochondrial dynamics and energetics, mtDNA maintenance and cristae integrity. In the last years, there have been described other cellular pathways and mechanisms involving OPA1 directly or through its interaction. All this new information, by implementing our knowledge on OPA1 is instrumental to elucidating the pathogenic mechanisms of OPA1 mutations. Indeed, these are associated with dominant optic atrophy (DOA), one of the most common inherited optic neuropathies, and with an increasing number of heterogeneous neurodegenerative disorders. In this review, we overview all recent findings on OPA1 protein functions, on its dysfunction and related clinical phenotypes, focusing on the current therapeutic options and future perspectives to treat DOA and the other associated neurological disorders due to OPA1 mutations.


Assuntos
GTP Fosfo-Hidrolases/genética , Mutação , Atrofia Óptica Autossômica Dominante/genética , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial , Atrofia Óptica Autossômica Dominante/metabolismo , Atrofia Óptica Autossômica Dominante/patologia , Atrofia Óptica Autossômica Dominante/terapia , Fenótipo
14.
J Neurochem ; 140(3): 485-494, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27861891

RESUMO

Dominant optic atrophy (DOA) is because of mutations in the mitochondrial protein OPA1. The disease principally affects retinal ganglion cells, whose axons degenerate leading to vision impairments, and sometimes other neuronal phenotypes. The exact mechanisms underlying DOA pathogenesis are not known. We previously demonstrated that the main role of OPA1, as a mitochondrial fusogenic and anti-apoptotic protein, are inhibited by interaction with the stress inducible pro-apoptotic BNIP3 protein. Because BNIP3 was recently reported to participate in autophagy and mitophagy, we tested the involvement of these processes in DOA pathogenesis. Using an in vitro neuronal model of DOA, we identified a BNIP3 down-regulation that reduced autophagy and mitophagy. Restoring BNIP3 had a biphasic effect, first rescuing autophagy and mitophagy levels but later leading to cell death. Similarly, in an in vivo mouse model of DOA, we showed that BNIP3 levels are decreased in young adult mice and increase to normal levels upon aging, paralleling disease progression. Altogether, our results indicate that the relationship between OPA1 and BNIP3 may have important bearings on DOA pathogenesis.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Haploinsuficiência/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia/fisiologia , Neurônios/metabolismo , Atrofia Óptica Autossômica Dominante/metabolismo , Animais , Feminino , GTP Fosfo-Hidrolases/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Proteínas Mitocondriais/genética , Neurônios/patologia , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/patologia , Gravidez , Ratos , Ratos Wistar
15.
Curr Opin Ophthalmol ; 27(6): 475-480, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27585216

RESUMO

PURPOSE OF REVIEW: Review recent advances in clinical and experimental studies of dominant optic atrophy (DOA) to better understand the complexities of pathophysiology caused by the optic atrophy 1 (OPA1) mutation. RECENT FINDINGS: DOA is the most commonly diagnosed inherited optic atrophy, causing progressive bilateral visual loss that begins early in life. During the past 25 years, there has been substantial progress in the understanding of the clinical, genetic, and pathophysiological basis of this disease. The histopathological hallmark of DOA is the primary degeneration of retinal ganglion cells, preferentially in the papillomacular bundle, which results temporal optic disc pallor and cecocentral scotomata in patients with DOA. Loss of OPA1 protein function by OPA1 gene mutations causes mitochondrial dysfunction because of the loss of mitochondrial fusion, impaired mitochondrial oxidative phosphorylation, increases in reactive oxygen species, and altered calcium homeostasis. These factors lead to apoptosis of retinal ganglion cells by a haploinsufficiency mechanism. SUMMARY: Improved understanding of the pathophysiology of DOA provides insights that can be used to develop therapeutic approaches to the DOA.


Assuntos
GTP Fosfo-Hidrolases/genética , Mitocôndrias/fisiologia , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/patologia , Células Ganglionares da Retina/patologia , Animais , Apoptose , Cálcio/metabolismo , Homeostase , Humanos , Mutação , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo
16.
Hum Mutat ; 36(1): 20-5, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25243597

RESUMO

Autosomal-dominant optic atrophy (ADOA) is the most common inherited optic neuropathy, due to mutations in the optic atrophy 1 gene (OPA1) in about 60%-80% of cases. At present, the clinical heterogeneity of patients carrying OPA1 variants renders genotype-phenotype correlations difficulty. Since 2005, when we published the first locus-specific database (LSDB) dedicated to OPA1, a large amount of new clinical and genetic knowledge has emerged, prompting us to update this database. We have used the Leiden Open-Source Variation Database to develop a clinico-biological database, aiming to add clinical phenotypes related to OPA1 variants. As a first step, we validated this new database by registering several patients previously reported in the literature, as well as new patients from our own institution. Contributors may now make online submissions of clinical and molecular descriptions of phenotypes due to OPA1 variants, including detailed ophthalmological and neurological data, with due respect to patient anonymity. The updated OPA1 LSDB (http://opa1.mitodyn.org/) should prove useful for molecular diagnoses, large-scale variant statistics, and genotype-phenotype correlations in ADOA studies.


Assuntos
Ataxia/patologia , Blefaroptose/patologia , Bases de Dados Genéticas , GTP Fosfo-Hidrolases/genética , Perda Auditiva Neurossensorial/patologia , Doenças Musculares/patologia , Mutação , Oftalmoplegia/patologia , Atrofia Óptica Autossômica Dominante/patologia , Atrofia Óptica/patologia , Ataxia/genética , Blefaroptose/genética , Feminino , Estudos de Associação Genética , Heterogeneidade Genética , Perda Auditiva Neurossensorial/genética , Humanos , Internet , Masculino , Doenças Musculares/genética , Oftalmoplegia/genética , Atrofia Óptica/genética , Atrofia Óptica Autossômica Dominante/genética
17.
Semin Neurol ; 35(5): 578-86, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26444403

RESUMO

As a group, inherited optic neuropathies represent an important cause of severe irreversible visual loss among children and young adults. Leber hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (DOA) are the two most common forms encountered in clinical practice and several shared disease pathways have emerged that contribute to retinal ganglion cell loss, and eventually visual failure. In this review, the author critically appraises the evidence base for the various therapeutic strategies that have been put forward to treat these two mitochondrially determined optic neuropathies, including future developments. Innovative in vitro fertilization techniques to prevent female carriers of childbearing age from transmitting pathogenic mitochondrial DNA mutations to their biological children will also be discussed.


Assuntos
Atrofia Óptica Autossômica Dominante , Atrofia Óptica Hereditária de Leber , Humanos , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/patologia , Atrofia Óptica Autossômica Dominante/terapia , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/patologia , Atrofia Óptica Hereditária de Leber/terapia
18.
Brain ; 137(Pt 8): 2164-77, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24970096

RESUMO

The genetic diagnosis in inherited optic neuropathies often remains challenging, and the emergence of complex neurological phenotypes that involve optic neuropathy is puzzling. Here we unravel two novel principles of genetic mechanisms in optic neuropathies: deep intronic OPA1 mutations, which explain the disease in several so far unsolved cases; and an intralocus OPA1 modifier, which explains the emergence of syndromic 'optic atrophy plus' phenotypes in several families. First, we unravelled a deep intronic mutation 364 base pairs 3' of exon 4b in OPA1 by in-depth investigation of a family with severe optic atrophy plus syndrome in which conventional OPA1 diagnostics including gene dosage analyses were normal. The mutation creates a new splice acceptor site resulting in aberrant OPA1 transcripts with retained intronic sequence and subsequent translational frameshift as shown by complementary DNA analysis. In patient fibroblasts we demonstrate nonsense mediated messenger RNA decay, reduced levels of OPA1 protein, and impairment of mitochondrial dynamics. Subsequent site-specific screening of >360 subjects with unexplained inherited optic neuropathy revealed three additional families carrying this deep intronic mutation and a base exchange four nucleotides upstream, respectively, thus confirming the clinical significance of this mutational mechanism. Second, in all severely affected patients of the index family, the deep intronic mutation occurred in compound heterozygous state with an exonic OPA1 missense variant (p.I382M; NM_015560.2). The variant alone did not cause a phenotype, even in homozygous state indicating that this long debated OPA1 variant is not pathogenic per se, but acts as a phenotypic modifier if it encounters in trans with an OPA1 mutation. Subsequent screening of whole exomes from >600 index patients identified a second family with severe optic atrophy plus syndrome due to compound heterozygous p.I382M, thus confirming this mechanism. In summary, we provide genetic and functional evidence that deep intronic mutations in OPA1 can cause optic atrophy and explain disease in a substantial share of families with unsolved inherited optic neuropathies. Moreover, we show that an OPA1 modifier variant explains the emergence of optic atrophy plus phenotypes if combined in trans with another OPA1 mutation. Both mutational mechanisms identified in this study-deep intronic mutations and intragenic modifiers-might represent more generalizable mechanisms that could be found also in a wide range of other neurodegenerative and optic neuropathy diseases.


Assuntos
GTP Fosfo-Hidrolases/genética , Genoma Humano/genética , Mutação/genética , Atrofia Óptica Autossômica Dominante/genética , Adolescente , Adulto , Idoso , Éxons/genética , Feminino , Dosagem de Genes/genética , Loci Gênicos/genética , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia Óptica Autossômica Dominante/classificação , Atrofia Óptica Autossômica Dominante/patologia , Linhagem , Fenótipo , Síndrome
19.
Stem Cell Reports ; 19(1): 68-83, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38101398

RESUMO

Autosomal dominant optic atrophy (ADOA), mostly caused by heterozygous OPA1 mutations and characterized by retinal ganglion cell (RGC) loss and optic nerve degeneration, is one of the most common types of inherited optic neuropathies. Previous work using a two-dimensional (2D) differentiation model of induced pluripotent stem cells (iPSCs) has investigated ADOA pathogenesis but failed to agree on the effect of OPA1 mutations on RGC differentiation. Here, we use 3D retinal organoids capable of mimicking in vivo retinal development to resolve the issue. We generated isogenic iPSCs carrying the hotspot OPA1 c.2708_2711delTTAG mutation and found that the mutant variant caused defective initial and terminal differentiation and abnormal electrophysiological properties of organoid-derived RGCs. Moreover, this variant inhibits progenitor proliferation and results in mitochondrial dysfunction. These data demonstrate that retinal organoids coupled with gene editing serve as a powerful tool to definitively identify disease-related phenotypes and provide valuable resources to further investigate ADOA pathogenesis and screen for ADOA therapeutics.


Assuntos
Atrofia Óptica Autossômica Dominante , Células Ganglionares da Retina , Humanos , Células Ganglionares da Retina/metabolismo , Retina/metabolismo , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/metabolismo , Atrofia Óptica Autossômica Dominante/patologia , Mutação , Diferenciação Celular/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo
20.
Brain ; 135(Pt 12): 3599-613, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23250881

RESUMO

Dominant optic atrophy is a rare inherited optic nerve degeneration caused by mutations in the mitochondrial fusion gene OPA1. Recently, the clinical spectrum of dominant optic atrophy has been extended to frequent syndromic forms, exhibiting various degrees of neurological and muscle impairments frequently found in mitochondrial diseases. Although characterized by a specific loss of retinal ganglion cells, the pathophysiology of dominant optic atrophy is still poorly understood. We generated an Opa1 mouse model carrying the recurrent Opa1(delTTAG) mutation, which is found in 30% of all patients with dominant optic atrophy. We show that this mouse displays a multi-systemic poly-degenerative phenotype, with a presentation associating signs of visual failure, deafness, encephalomyopathy, peripheral neuropathy, ataxia and cardiomyopathy. Moreover, we found premature age-related axonal and myelin degenerations, increased autophagy and mitophagy and mitochondrial supercomplex instability preceding degeneration and cell death. Thus, these results support the concept that Opa1 protects against neuronal degeneration and opens new perspectives for the exploration and the treatment of mitochondrial diseases.


Assuntos
GTP Fosfo-Hidrolases/genética , Regulação da Expressão Gênica/genética , Doenças Mitocondriais/genética , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/fisiopatologia , Deleção de Sequência/genética , Estimulação Acústica , Fatores Etários , Senilidade Prematura/genética , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Distribuição de Qui-Quadrado , Creatina/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Eletrorretinografia , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Potenciais Evocados Visuais/genética , Glicólise/genética , Humanos , Ácido Láctico/metabolismo , Locomoção/genética , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças Mitocondriais/complicações , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Sistema Nervoso/patologia , Sistema Nervoso/ultraestrutura , Atrofia Óptica Autossômica Dominante/patologia , Atrofia Óptica Autossômica Dominante/reabilitação , Nervo Óptico/patologia , Nervo Óptico/fisiopatologia , Nervo Óptico/ultraestrutura , Fenótipo , Condicionamento Físico Animal , Psicoacústica , Desempenho Psicomotor/fisiologia , Tempo de Reação/genética , Retina/patologia , Retina/fisiopatologia , Retina/ultraestrutura , Células Ganglionares da Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA