Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 422
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 77(4): 723-733.e6, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31932164

RESUMO

Bacteria possess an array of defenses against foreign invaders, including a broadly distributed bacteriophage defense system termed CBASS (cyclic oligonucleotide-based anti-phage signaling system). In CBASS systems, a cGAS/DncV-like nucleotidyltransferase synthesizes cyclic di- or tri-nucleotide second messengers in response to infection, and these molecules activate diverse effectors to mediate bacteriophage immunity via abortive infection. Here, we show that the CBASS effector NucC is related to restriction enzymes but uniquely assembles into a homotrimer. Binding of NucC trimers to a cyclic tri-adenylate second messenger promotes assembly of a NucC homohexamer competent for non-specific double-strand DNA cleavage. In infected cells, NucC activation leads to complete destruction of the bacterial chromosome, causing cell death prior to completion of phage replication. In addition to CBASS systems, we identify NucC homologs in over 30 type III CRISPR/Cas systems, where they likely function as accessory nucleases activated by cyclic oligoadenylate second messengers synthesized by these systems' effector complexes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Desoxirribonuclease I/química , Desoxirribonuclease I/metabolismo , Escherichia coli/virologia , Regulação Alostérica , Bacteriófago lambda/genética , Bacteriófago lambda/fisiologia , Sistemas CRISPR-Cas , Clivagem do DNA , Enzimas de Restrição do DNA/química , Escherichia coli/enzimologia , Escherichia coli/imunologia , Genoma Viral , Multimerização Proteica , Sistemas do Segundo Mensageiro
2.
Mol Cell ; 77(4): 709-722.e7, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31932165

RESUMO

Bacteria are continually challenged by foreign invaders, including bacteriophages, and have evolved a variety of defenses against these invaders. Here, we describe the structural and biochemical mechanisms of a bacteriophage immunity pathway found in a broad array of bacteria, including E. coli and Pseudomonas aeruginosa. This pathway uses eukaryotic-like HORMA domain proteins that recognize specific peptides, then bind and activate a cGAS/DncV-like nucleotidyltransferase (CD-NTase) to generate a cyclic triadenylate (cAAA) second messenger; cAAA in turn activates an endonuclease effector, NucC. Signaling is attenuated by a homolog of the AAA+ ATPase Pch2/TRIP13, which binds and disassembles the active HORMA-CD-NTase complex. When expressed in non-pathogenic E. coli, this pathway confers immunity against bacteriophage λ through an abortive infection mechanism. Our findings reveal the molecular mechanisms of a bacterial defense pathway integrating a cGAS-like nucleotidyltransferase with HORMA domain proteins for threat sensing through protein detection and negative regulation by a Trip13 ATPase.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/virologia , Nucleotidiltransferases/metabolismo , ATPases Associadas a Diversas Atividades Celulares/química , Proteínas de Bactérias/química , Bacteriófago lambda/fisiologia , Desoxirribonuclease I/metabolismo , Escherichia coli/imunologia , Escherichia coli/metabolismo , Nucleotidiltransferases/química , Peptídeos/metabolismo , Sistemas do Segundo Mensageiro
3.
Mol Microbiol ; 121(5): 895-911, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38372210

RESUMO

The site-specific recombination pathway of bacteriophage λ encompasses isoenergetic but highly directional and tightly regulated integrative and excisive reactions that integrate and excise the vial chromosome into and out of the bacterial chromosome. The reactions require 240 bp of phage DNA and 21 bp of bacterial DNA comprising 16 protein binding sites that are differentially used in each pathway by the phage-encoded Int and Xis proteins and the host-encoded integration host factor and factor for inversion stimulation proteins. Structures of higher-order protein-DNA complexes of the four-way Holliday junction recombination intermediates provided clarifying insights into the mechanisms, directionality, and regulation of these two pathways, which are tightly linked to the physiology of the bacterial host cell. Here we review our current understanding of the mechanisms responsible for regulating and executing λ site-specific recombination, with an emphasis on key studies completed over the last decade.


Assuntos
Bacteriófago lambda , Recombinação Genética , Bacteriófago lambda/genética , Bacteriófago lambda/fisiologia , DNA Viral/genética , DNA Viral/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , DNA Bacteriano/metabolismo , DNA Bacteriano/genética , Sítios de Ligação , Fatores Hospedeiros de Integração/metabolismo , Fatores Hospedeiros de Integração/genética
4.
J Virol ; 98(5): e0006824, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38661364

RESUMO

The portal protein of tailed bacteriophage plays essential roles in various aspects of capsid assembly, motor assembly, genome packaging, connector formation, and infection processes. After DNA packaging is complete, additional proteins are assembled onto the portal to form the connector complex, which is crucial as it bridges the mature head and tail. In this study, we report high-resolution cryo-electron microscopy (cryo-EM) structures of the portal vertex from bacteriophage lambda in both its prohead and mature virion states. Comparison of these structures shows that during head maturation, in addition to capsid expansion, the portal protein undergoes conformational changes to establish interactions with the connector proteins. Additionally, the independently assembled tail undergoes morphological alterations at its proximal end, facilitating its connection to the head-tail joining protein and resulting in the formation of a stable portal-connector-tail complex. The B-DNA molecule spirally glides through the tube, interacting with the nozzle blade region of the middle-ring connector protein. These insights elucidate a mechanism for portal maturation and DNA translocation within the phage lambda system. IMPORTANCE: The tailed bacteriophages possess a distinct portal vertex that consists of a ring of 12 portal proteins associated with a 5-fold capsid shell. This portal protein is crucial in multiple stages of virus assembly and infection. Our research focused on examining the structures of the portal vertex in both its preliminary prohead state and the fully mature virion state of bacteriophage lambda. By analyzing these structures, we were able to understand how the portal protein undergoes conformational changes during maturation, the mechanism by which it prevents DNA from escaping, and the process of DNA spirally gliding.


Assuntos
Bacteriófago lambda , Proteínas do Capsídeo , Capsídeo , Montagem de Vírus , Bacteriófago lambda/fisiologia , Bacteriófago lambda/genética , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/química , Microscopia Crioeletrônica , Empacotamento do DNA , DNA Viral/genética , DNA Viral/metabolismo , Modelos Moleculares , Conformação Proteica , Vírion/metabolismo , Vírion/ultraestrutura
5.
Annu Rev Microbiol ; 74: 1-19, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32453973

RESUMO

Two strains of good fortune in my career were to stumble upon the Watson-Gilbert laboratory at Harvard when I entered graduate school in 1964, and to study gene regulation in bacteriophage λ when I was there. λ was almost entirely a genetic item a few years before, awaiting biochemical incarnation. Throughout my career I was a relentless consumer of the work of previous and current generations of λ geneticists. Empowered by this background, my laboratory made contributions in two areas. The first was regulation of early gene transcription in λ, the study of which began with the discovery of the Rho transcription termination factor, and the regulatory mechanism of transcription antitermination by the λ N protein, subjects of my thesis work. This was developed into a decades-long program during my career at Cornell, studying the mechanism of transcription termination and antitermination. The second area was the classic problem of prophage induction in response to cellular DNA damage, the study of which illuminated basic cellular processes to survive DNA damage.


Assuntos
Bacteriófago lambda/genética , Dano ao DNA , DNA , Transcrição Gênica , Bacteriófago lambda/fisiologia , Regulação da Expressão Gênica , História do Século XX , Humanos , Masculino , RNA Viral/genética , Pesquisa/história , Fatores de Transcrição
6.
Cell ; 141(4): 682-91, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20478257

RESUMO

When the process of cell-fate determination is examined at single-cell resolution, it is often observed that individual cells undergo different fates even when subject to identical conditions. This "noisy" phenotype is usually attributed to the inherent stochasticity of chemical reactions in the cell. Here we demonstrate how the observed single-cell heterogeneity can be explained by a cascade of decisions occurring at the subcellular level. We follow the postinfection decision in bacteriophage lambda at single-virus resolution, and show that a choice between lysis and lysogeny is first made at the level of the individual virus. The decisions by all viruses infecting a single cell are then integrated in a precise (noise-free) way, such that only a unanimous vote by all viruses leads to the establishment of lysogeny. By detecting and integrating over the subcellular "hidden variables," we are able to predict the level of noise measured at the single-cell level.


Assuntos
Bacteriólise , Bacteriófago lambda/fisiologia , Escherichia coli/virologia , Lisogenia , Técnicas Bacteriológicas , Bacteriófago lambda/ultraestrutura
7.
Nucleic Acids Res ; 51(11): 5634-5646, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37158237

RESUMO

In this study, we specifically visualized DNA molecules at their AT base pairs after in vitro phage ejection. Our AT-specific visualization revealed that either end of the DNA molecule could be ejected first with a nearly 50% probability. This observation challenges the generally accepted theory of Last In First Out (LIFO), which states that the end of the phage λ DNA that enters the capsid last during phage packaging is the first to be ejected, and that both ends of the DNA are unable to move within the extremely condensed phage capsid. To support our observations, we conducted computer simulations that revealed that both ends of the DNA molecule are randomized, resulting in the observed near 50% probability. Additionally, we found that the length of the ejected DNA by LIFO was consistently longer than that by First In First Out (FIFO) during in vitro phage ejection. Our simulations attributed this difference in length to the stiffness difference of the remaining DNA within the phage capsid. In conclusion, this study demonstrates that a DNA molecule within an extremely dense phage capsid exhibits a degree of mobility, allowing it to switch ends during ejection.


Assuntos
Bacteriófago lambda , DNA Viral , Empacotamento do Genoma Viral , Bacteriófago lambda/fisiologia , DNA Viral/metabolismo , Capsídeo/metabolismo
8.
J Bacteriol ; 206(6): e0002224, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38771038

RESUMO

Phage-induced lysis of Gram-negative bacterial hosts usually requires a set of phage lysis proteins, a holin, an endopeptidase, and a spanin system, to disrupt each of the three cell envelope layers. Genome annotations and previous studies identified a gene region in the Shewanella oneidensis prophage LambdaSo, which comprises potential holin- and endolysin-encoding genes but lacks an obvious spanin system. By a combination of candidate approaches, mutant screening, characterization, and microscopy, we found that LambdaSo uses a pinholin/signal-anchor-release (SAR) endolysin system to induce proton leakage and degradation of the cell wall. Between the corresponding genes, we found that two extensively nested open-reading frames encode a two-component spanin module Rz/Rz1. Unexpectedly, we identified another factor strictly required for LambdaSo-induced cell lysis, the phage protein Lcc6. Lcc6 is a transmembrane protein of 65 amino acid residues with hitherto unknown function, which acts at the level of holin in the cytoplasmic membrane to allow endolysin release. Thus, LambdaSo-mediated cell lysis requires at least four protein factors (pinholin, SAR endolysin, spanin, and Lcc6). The findings further extend the known repertoire of phage proteins involved in host lysis and phage egress. IMPORTANCE: Lysis of bacteria can have multiple consequences, such as the release of host DNA to foster robust biofilm. Phage-induced lysis of Gram-negative cells requires the disruption of three layers, the outer and inner membranes and the cell wall. In most cases, the lysis systems of phages infecting Gram-negative cells comprise holins to disrupt or depolarize the membrane, thereby releasing or activating endolysins, which then degrade the cell wall. This, in turn, allows the spanins to become active and fuse outer and inner membranes, completing cell envelope disruption and allowing phage egress. Here, we show that the presence of these three components may not be sufficient to allow cell lysis, implicating that also in known phages, further factors may be required.


Assuntos
Bacteriólise , Endopeptidases , Shewanella , Shewanella/virologia , Shewanella/genética , Endopeptidases/metabolismo , Endopeptidases/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Bacteriófago lambda/fisiologia , Bacteriófago lambda/genética
9.
Nature ; 564(7735): 283-286, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30518855

RESUMO

The arms race between bacteria and the phages that infect them drives the continual evolution of diverse anti-phage defences. Previously described anti-phage systems have highly varied defence mechanisms1-11; however, all mechanisms rely on protein components to mediate defence. Here we report a chemical anti-phage defence system that is widespread in Streptomyces. We show that three naturally produced molecules that insert into DNA are able to block phage replication, whereas molecules that target DNA by other mechanisms do not. Because double-stranded DNA phages are the most numerous group in the biosphere and the production of secondary metabolites by bacteria is ubiquitous12, this mechanism of anti-phage defence probably has a major evolutionary role in shaping bacterial communities.


Assuntos
Bacteriófagos/efeitos dos fármacos , Bacteriófagos/genética , Metabolismo Secundário , Streptomyces/química , Streptomyces/virologia , Replicação Viral/efeitos dos fármacos , Bacteriófago lambda/efeitos dos fármacos , Bacteriófago lambda/genética , Bacteriófago lambda/crescimento & desenvolvimento , Bacteriófago lambda/fisiologia , Bacteriófagos/crescimento & desenvolvimento , Evolução Biológica , DNA Viral/biossíntese , DNA Viral/genética , Daunorrubicina/farmacologia , Escherichia coli/virologia , Pseudomonas aeruginosa/virologia , Streptomyces/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34916284

RESUMO

When host cells are in low abundance, temperate bacteriophages opt for dormant (lysogenic) infection. Phage lambda implements this strategy by increasing the frequency of lysogeny at higher multiplicity of infection (MOI). However, it remains unclear how the phage reliably counts infecting viral genomes even as their intracellular number increases because of replication. By combining theoretical modeling with single-cell measurements of viral copy number and gene expression, we find that instead of hindering lambda's decision, replication facilitates it. In a nonreplicating mutant, viral gene expression simply scales with MOI rather than diverging into lytic (virulent) and lysogenic trajectories. A similar pattern is followed during early infection by wild-type phage. However, later in the infection, the modulation of viral replication by the decision genes amplifies the initially modest gene expression differences into divergent trajectories. Replication thus ensures the optimal decision-lysis upon single-phage infection and lysogeny at higher MOI.


Assuntos
Bacteriófago lambda/fisiologia , Lisogenia , Modelos Biológicos , Replicação Viral , Dosagem de Genes , Regulação Viral da Expressão Gênica , Genoma Viral
11.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34083444

RESUMO

The evolution of antibiotic-resistant bacteria threatens to become the leading cause of worldwide mortality. This crisis has renewed interest in the practice of phage therapy. Yet, bacteria's capacity to evolve resistance may debilitate this therapy as well. To combat the evolution of phage resistance and improve treatment outcomes, many suggest leveraging phages' ability to counter resistance by evolving phages on target hosts before using them in therapy (phage training). We found that in vitro, λtrn, a phage trained for 28 d, suppressed bacteria ∼1,000-fold for three to eight times longer than its untrained ancestor. Prolonged suppression was due to a delay in the evolution of resistance caused by several factors. Mutations that confer resistance to λtrn are ∼100× less common, and while the target bacterium can evolve complete resistance to the untrained phage in a single step, multiple mutations are required to evolve complete resistance to λtrn. Mutations that confer resistance to λtrn are more costly than mutations for untrained phage resistance. Furthermore, when resistance does evolve, λtrn is better able to suppress these forms of resistance. One way that λtrn improved was through recombination with a gene in a defunct prophage in the host genome, which doubled phage fitness. This transfer of information from the host genome is an unexpected but highly efficient mode of training phage. Lastly, we found that many other independently trained λ phages were able to suppress bacterial populations, supporting the important role training could play during phage therapeutic development.


Assuntos
Bacteriófago lambda/fisiologia , Escherichia coli/virologia , Interações Hospedeiro-Patógeno , Mutação , Escherichia coli/genética
12.
Mol Microbiol ; 116(4): 1044-1063, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34379857

RESUMO

The CI and Cro repressors of bacteriophage λ create a bistable switch between lysogenic and lytic growth. In λ lysogens, CI repressor expressed from the PRM promoter blocks expression of the lytic promoters PL and PR to allow stable maintenance of the lysogenic state. When lysogens are induced, CI repressor is inactivated and Cro repressor is expressed from the lytic PR promoter. Cro repressor blocks PRM transcription and CI repressor synthesis to ensure that the lytic state proceeds. RexA and RexB proteins, like CI, are expressed from the PRM promoter in λ lysogens; RexB is also expressed from a second promoter, PLIT , embedded in rexA. Here we show that RexA binds CI repressor and assists the transition from lysogenic to lytic growth, using both intact lysogens and defective prophages with reporter genes under the control of the lytic PL and PR promoters. Once lytic growth begins, if the bistable switch does return to the immune state, RexA expression lessens the probability that it will remain there, thus stabilizing the lytic state and activation of the lytic PL  and PR  promoters. RexB modulates the effect of RexA and may also help establish phage DNA replication as lytic growth ensues.


Assuntos
Bacteriófago lambda/fisiologia , Replicação do DNA , Lisogenia , Proteínas Repressoras/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas Virais/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , DNA Viral , Regulação Viral da Expressão Gênica , Genes Virais , Regiões Promotoras Genéticas , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/metabolismo
13.
Mol Microbiol ; 116(3): 877-889, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34184328

RESUMO

When subcloned into low-copy-number expression vectors, rumAB, encoding polVR391 (RumA'2 B), is best characterized as a potent mutator giving rise to high levels of spontaneous mutagenesis in vivo. This is in dramatic contrast to the poorly mutable phenotype when polVR391 is expressed from the native 88.5 kb R391, suggesting that R391 expresses cis-acting factors that suppress the expression and/or the activity of polVR391 . Indeed, we recently discovered that SetRR391 , an ortholog of λ cI repressor, is a transcriptional repressor of rumAB. Here, we report that CroSR391 , an ortholog of λ Cro, also serves as a potent transcriptional repressor of rumAB. Levels of RumA are dependent upon an interplay between SetRR391 and CroSR391 , with the greatest reduction of RumA protein levels observed in the absence of SetRR391 and the presence of CroSR391 . Under these conditions, CroSR391 completely abolishes the high levels of mutagenesis promoted by polVR391 expressed from low-copy-number plasmids. Furthermore, deletion of croSR391 on the native R391 results in a dramatic increase in mutagenesis, indicating that CroSR391 plays a major role in suppressing polVR391 mutagenesis in vivo. Inactivating mutations in CroSR391 therefore have the distinct possibility of increasing cellular mutagenesis that could lead to the evolution of antibiotic resistance of pathogenic bacteria harboring R391.


Assuntos
Bacteriófago lambda/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Escherichia coli/virologia , Metiltransferases/metabolismo , Mutagênese , Proteínas Repressoras/fisiologia , Proteínas Virais Reguladoras e Acessórias/fisiologia , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Resposta SOS em Genética , Deleção de Sequência
14.
Microbiology (Reading) ; 167(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34032565

RESUMO

Bacteria often evolve resistance to phage through the loss or modification of cell surface receptors. In Escherichia coli and phage λ, such resistance can catalyze a coevolutionary arms race focused on host and phage structures that interact at the outer membrane. Here, we analyse another facet of this arms race involving interactions at the inner membrane, whereby E. coli evolves mutations in mannose permease-encoding genes manY and manZ that impair λ's ability to eject its DNA into the cytoplasm. We show that these man mutants arose concurrently with the arms race at the outer membrane. We tested the hypothesis that λ evolved an additional counter-defence that allowed them to infect bacteria with deleted man genes. The deletions severely impaired the ancestral λ, but some evolved phage grew well on the deletion mutants, indicating that they regained infectivity by evolving the ability to infect hosts independently of the mannose permease. This coevolutionary arms race fulfils the model of an inverse gene-for-gene infection network. Taken together, the interactions at both the outer and inner membranes reveal that coevolutionary arms races can be richer and more complex than is often appreciated.


Assuntos
Membrana Externa Bacteriana/imunologia , Bacteriófago lambda/fisiologia , Evolução Biológica , Proteínas de Escherichia coli/imunologia , Escherichia coli/genética , Escherichia coli/virologia , Membrana Externa Bacteriana/virologia , Bacteriófago lambda/genética , Escherichia coli/imunologia , Proteínas de Escherichia coli/genética , Interações Hospedeiro-Patógeno , Mutação , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/imunologia
15.
Curr Genet ; 67(5): 739-745, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33877398

RESUMO

The lambda (λ) T4rII exclusion (Rex) phenotype is defined as the inability of T4rII to propagate in Escherichia coli lysogenized by bacteriophage λ. The Rex system requires the presence of two lambda immunity genes, rexA and rexB, to exclude T4 (rIIA-rIIB) from plating on a lawn of E. coli λ lysogens. The onset of the Rex phenotype by T4rII infection imparts a harsh cellular environment that prevents T4rII superinfection while killing the majority of the cell population. Since the discovery of this powerful exclusion system in 1955 by Seymour Benzer, few mechanistic models have been proposed to explain the process of Rex activation and the physiological manifestations associated with Rex onset. For the first time, key host proteins have recently been linked to Rex, including σE, σS, TolA, and other membrane proteins. Together with the known Rex system components, the RII proteins of bacteriophage T4 and the Rex proteins from bacteriophage λ, we are closer than ever to solving the mystery that has eluded investigators for over six decades. Here, we review the fundamental Rex components in light of this new knowledge.


Assuntos
Bacteriófago T4/fisiologia , Bacteriófago lambda/fisiologia , Escherichia coli/virologia , Bacteriófago T4/genética , Bacteriófago lambda/genética , Escherichia coli/genética , Mutação , Fenótipo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/fisiologia , Proteínas Virais/genética , Proteínas Virais/fisiologia
16.
J Appl Microbiol ; 130(6): 2008-2017, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32358825

RESUMO

AIMS: To identify a lambda promoter pL mutant that could extend the thermal stability of the thermo-inducible λcI857-pR/pL system and to evaluate the effects of the modified system for the controlled expression of lysis gene E during the production of bacterial ghosts (BGs). METHODS AND RESULTS: The promoter pL mutant was identified by random mutagenesis and site-directed mutagenesis. The results showed that a T â†’ 35C mutation in the pL promoter was responsible for the phenotype alteration. Under the same induction conditions, the lysis rates of the modified lytic system on Escherichia coli and Salmonella enteritidis were significantly lower than that of the control, while the lysis rates of Escherichia coli with the thermo-inducible lytic system were significantly higher than that of S. enteritidis with the corresponding plasmid (P < 0·05). CONCLUSIONS: Increasing the heat stability of the thermo-inducible lytic systems decreased lysis efficiency during the production of BGs. There exist differences in the lysis efficiency of thermo-inducible lytic systems between different bacterial strains. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings enrich current knowledge about modifications to thermo-inducible systems and provide a reference for the application of these modified systems for the production of BGs and controlled gene expression in bacteria.


Assuntos
Bacteriófago lambda/fisiologia , Regulação Viral da Expressão Gênica , Regiões Promotoras Genéticas/genética , Proteínas Virais/genética , Bacteriólise , Bacteriófago lambda/genética , Escherichia coli/fisiologia , Escherichia coli/virologia , Mutação , Plasmídeos/genética , Plasmídeos/fisiologia , Salmonella enteritidis/fisiologia , Salmonella enteritidis/virologia , Temperatura
17.
J Biol Chem ; 294(10): 3343-3349, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30242122

RESUMO

Cellular decision-making guides complex development such as cell differentiation and disease progression. Much of our knowledge about decision-making is derived from simple models, such as bacteriophage lambda infection, in which lambda chooses between the vegetative lytic fate and the dormant lysogenic fate. This paradigmatic system is broadly understood but lacking mechanistic details, partly due to limited resolution of past studies. Here, we discuss how modern technologies have enabled high-resolution examination of lambda decision-making to provide new insights and exciting possibilities in studying this classical system. The advent of techniques for labeling specific DNA, RNA, and proteins in cells allows for molecular-level characterization of events in lambda development. These capabilities yield both new answers and new questions regarding how the isolated lambda genetic circuit acts, what biological events transpire among phages in their natural context, and how the synergy of simple phage macromolecules brings about complex behaviors.


Assuntos
Bacteriófago lambda/fisiologia , DNA Viral/metabolismo , Lisogenia/fisiologia , RNA Viral/metabolismo , DNA Viral/genética , RNA Viral/genética
18.
Mol Microbiol ; 112(6): 1798-1813, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31545538

RESUMO

Genetic elements in the bacteriophage λ immunity region contribute to stable maintenance and synchronous induction of the integrated Escherichia coli prophage. There is a bistable switch between lysogenic and lytic growth that is orchestrated by the CI and Cro repressors acting on the lytic (PL and PR ) and lysogenic (PRM ) promoters, referred to as the Genetic Switch. Other less well-characterized elements in the phage immunity region include the PLIT promoter and the immunity terminator, TIMM . The PLIT promoter is repressed by the bacterial LexA protein in λ lysogens. LexA repressor, like the λ CI repressor, is inactivated during the SOS response to DNA damage, and this regulation ensures that the PLIT promoter and the lytic PL and PR promoters are synchronously activated. Proper RexA and RexB protein levels are critical for the switch from lysogeny to lytic growth. Mutation of PLIT reduces RexB levels relative to RexA, compromising cellular energetics and causing a 10-fold reduction in lytic phage yield. The RexA and RexB proteins interact with themselves and each other in a bacterial two-hybrid system. We also find that the transcription terminator, TIMM , is a Rho-independent, intrinsic terminator. Inactivation of TIMM has minimal effect on λ lysogenization or prophage induction.


Assuntos
Bacteriófago lambda/genética , Bacteriófago lambda/fisiologia , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/metabolismo , Proteínas de Bactérias/metabolismo , DNA Viral/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Regulação Viral da Expressão Gênica/genética , Genes de Troca/genética , Genes Virais/genética , Lisogenia/genética , Mutação , Regiões Promotoras Genéticas/genética , Proteínas Repressoras , Serina Endopeptidases/metabolismo , Transcrição Gênica , Proteínas Virais Reguladoras e Acessórias , Ativação Viral
19.
Nat Rev Mol Cell Biol ; 9(10): 770-80, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18797474

RESUMO

Gene regulatory networks have an important role in every process of life, including cell differentiation, metabolism, the cell cycle and signal transduction. By understanding the dynamics of these networks we can shed light on the mechanisms of diseases that occur when these cellular processes are dysregulated. Accurate prediction of the behaviour of regulatory networks will also speed up biotechnological projects, as such predictions are quicker and cheaper than lab experiments. Computational methods, both for supporting the development of network models and for the analysis of their functionality, have already proved to be a valuable research tool.


Assuntos
Redes Reguladoras de Genes , Modelos Genéticos , Algoritmos , Animais , Bacteriófago lambda/genética , Bacteriófago lambda/fisiologia , Humanos , Modelos Lineares , Matemática , Modelos Biológicos , Modelos Estatísticos , Processos Estocásticos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
BMC Bioinformatics ; 20(1): 296, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31151381

RESUMO

BACKGROUND: Gene regulatory networks can be modelled in various ways depending on the level of detail required and biological questions addressed. One of the earliest formalisms used for modeling is a Boolean network, although these models cannot describe most temporal aspects of a biological system. Differential equation models have also been used to model gene regulatory networks, but these frameworks tend to be too detailed for large models and many quantitative parameters might not be deducible in practice. Hybrid models bridge the gap between these two model classes - these are useful when concentration changes are important while the information about precise concentrations and binding site affinities is partial. RESULTS: In this paper we study the stable behaviours of phage λ via a hybrid system based model. We identify wild type and mutant behaviours that arise for various orderings of binding site affinities. We propose experiments for detecting these behaviours: we suggest several ways of altering binding affinities with either mutations or genome rearrangements to achieve modified behaviours. The feasibility of these experiments is assessed. The interplay between the qualitative aspects of a network, e.g. network topology, and quantitative parameters, e.g. growth and degradation rates of proteins, is demonstrated. We also provide a software for exploring all feasible states of a hybrid system model and identifying all attractors. CONCLUSIONS: The behaviours of phage λ are determined mainly by the topology of this network and by the mutual order of binding affinities. Exact affinities and growth and degradation rates of proteins fine tune the system. We show that only two stable behaviours are possible for phage λ if the main constraints of λ switch are preserved - these behaviours correspond to lysis and lysogeny. We identify several variants of both lysis and lysogeny - one wild type and one modified behaviour for each. We elucidate the necessary constraints for binding site affinities to achieve both wild type lysis and lysogeny. Our software is applicable to a wide range of biological models described as a hybrid system.


Assuntos
Bacteriófago lambda/genética , Regulação Viral da Expressão Gênica , Redes Reguladoras de Genes , Bacteriófago lambda/fisiologia , Lisogenia , Modelos Biológicos , Mutação , Óperon , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA