Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 412
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Yeast ; 41(1-2): 35-51, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38054508

RESUMO

Yeasts are a diverse group of fungal microorganisms that are widely used to produce fermented foods and beverages. In Mexico, open fermentations are used to obtain spirits from agave plants. Despite the prevalence of this traditional practice throughout the country, yeasts have only been isolated and studied from a limited number of distilleries. To systematically describe the diversity of yeast species from open agave fermentations, here we generate the YMX-1.0 culture collection by isolating 4524 strains from 68 sites with diverse climatic, geographical, and biological contexts. We used MALDI-TOF mass spectrometry for taxonomic classification and validated a subset of the strains by ITS and D1/D2 sequencing, which also revealed two potential novel species of Saccharomycetales. Overall, the composition of yeast communities was weakly associated with local variables and types of climate, yet a core set of six species was consistently isolated from most producing regions. To explore the intraspecific variation of the yeasts from agave fermentations, we sequenced the genomes of four isolates of the nonconventional yeast Kazachstania humilis. The genomes of these four strains were substantially distinct from a European isolate of the same species, suggesting that they may belong to different populations. Our work contributes to the understanding and conservation of an open fermentation system of great cultural and economic importance, providing a valuable resource to study the biology and genetic diversity of microorganisms living at the interface of natural and human-associated environments.


Assuntos
Agave , Humanos , Fermentação , Agave/microbiologia , México , Leveduras , Bebidas Alcoólicas/microbiologia
2.
FEMS Yeast Res ; 242024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38684485

RESUMO

Scotch Whisky, a product of high importance to Scotland, has gained global approval for its distinctive qualities derived from the traditional production process, which is defined in law. However, ongoing research continuously enhances Scotch Whisky production and is fostering a diversification of flavour profiles. To be classified as Scotch Whisky, the final spirit needs to retain the aroma and taste of 'Scotch'. While each production step contributes significantly to whisky flavour-from malt preparation and mashing to fermentation, distillation, and maturation-the impact of yeast during fermentation is crucially important. Not only does the yeast convert the sugar to alcohol, it also produces important volatile compounds, e.g. esters and higher alcohols, that contribute to the final flavour profile of whisky. The yeast chosen for whisky fermentations can significantly influence whisky flavour, so the yeast strain employed is of high importance. This review explores the role of yeast in Scotch Whisky production and its influence on flavour diversification. Furthermore, an extensive examination of nonconventional yeasts employed in brewing and winemaking is undertaken to assess their potential suitability for adoption as Scotch Whisky yeast strains, followed by a review of methods for evaluating new yeast strains.


Assuntos
Bebidas Alcoólicas , Fermentação , Aromatizantes , Bebidas Alcoólicas/microbiologia , Bebidas Alcoólicas/análise , Aromatizantes/metabolismo , Leveduras/metabolismo , Leveduras/genética , Leveduras/classificação , Paladar , Escócia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Compostos Orgânicos Voláteis/metabolismo
3.
Int Microbiol ; 27(1): 143-154, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37227543

RESUMO

The microbiota during pit mud fermentation is a crucial factor in Baijiu brewing since it determines the yield and flavor. However, the impact of the microbial community during the initial fermentation stage on Baijiu quality remains uncertain. Herein, high-throughput sequencing was employed to investigate the microbial diversities and distribution during Baijiu fermentation in individual pit mud workshops at both initial and late stages. During the initial fermentation stage, the bacterial community exerted a more pronounced effect on Baijiu quality than the fungal community. And the high-yield pit mud workshop exhibited lower richness and evenness, as well as greater Bray-Curtis dissimilarity during Baijiu fermentation. Lactobacillus was the dominant genus and biomarker in high-yield pit mud, and it constituted the only genus within the bacterial association network during the late fermentation stage. Fungal communities tended to maintain a simple association network with selected core species. Based on the correlation network, Rhizopus and Trichosporon were identified as biomarkers in Baijiu fermentation process. Together, Lactobacillus and Rhizopus could serve as bio-indicators for Baijiu quality during the initial fermentation stage. Therefore, these findings provided novel insights into microbiota interactions during fermentation and the impact of initial microbiota on final Baijiu quality.


Assuntos
Microbiota , Micobioma , Fermentação , Bebidas Alcoólicas/análise , Bebidas Alcoólicas/microbiologia , Bactérias/genética
4.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38565314

RESUMO

AIMS: Ethyl hexanoate, one of the key flavor compounds in strong-flavor Baijiu. To improve the content of ethyl hexanoate in strong-flavor Baijiu, a functional strain with high yield of ethyl hexanoate was screened and its ester-producing performance was studied. METHODS AND RESULTS: Upon identification, the strain was classified as Candida sp. and designated as ZY002. Under optimal fermentation conditions, the content of ethyl hexanoate synthesized by ZY002 can be as high as 170.56 mg L-1. A fermentation test was carried out using the ZY002 strain bioaugmented Daqu to verify the role of the strain applied to Baijiu brewing. It was found that strain ZY002 could not only improve the moisture and alcohol contents of fermented grains but also diminish the presence of reducing sugar and crude starch. Furthermore, it notably amplified the abundance of flavor compounds. CONCLUSION: In this study, Candida sp. ZY002 with a high yield of ethyl hexanoate provided high-quality strain resources for the actual industrial production of Baijiu.


Assuntos
Candida , Caproatos , Ésteres , Fermentação , Alimentos Fermentados , Caproatos/metabolismo , Ésteres/metabolismo , Ésteres/análise , Alimentos Fermentados/microbiologia , Alimentos Fermentados/análise , Candida/metabolismo , Aromatizantes/metabolismo , Microbiologia de Alimentos , Bebidas Alcoólicas/microbiologia , Bebidas Alcoólicas/análise
5.
Food Microbiol ; 123: 104566, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038883

RESUMO

Daqu is used as the fermentation starter of Baijiu and contributes diversified functional microbes for saccharifying grains and converting sugars into ethanol and aroma components in Baijiu products. Daqu is mainly classified into three types, namely low (LTD), medium (MTD) and high (HTD) temperature Daqu, according to the highest temperatures reached in their fermentation processes. In this study, we used the PacBio small-molecule real-time (SMRT) sequencing technology to determine the full-length 16 S rRNA gene sequences from the metagenomes of 296 samples of different types of Daqu collected from ten provinces in China, and revealed the bacterial diversity at the species level in the Daqu samples. We totally identified 310 bacteria species, including 78 highly abundant species (with a relative abundance >0.1% each) which accounted for 91.90% of the reads from all the Daqu samples. We also recognized the differentially enriched bacterial species in different types of Daqu, and in the Daqu samples with the same type but from different provinces. Specifically, Lactobacillales, Enterobacterales and Bacillaceae were significantly enriched in the LTD, MTD and HTD groups, respectively. The potential co-existence and exclusion relationships among the bacteria species involved in all the Daqu samples and in the LTD, MTD and HTD samples from a specific region were also identified. These results provide a better understanding of the bacterial diversity in different types of Daqu at the species level.


Assuntos
Bactérias , Fermentação , RNA Ribossômico 16S , RNA Ribossômico 16S/genética , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , China , Microbiota , Filogenia , DNA Bacteriano/genética , Biodiversidade , Bebidas Alcoólicas/microbiologia , Bebidas Alcoólicas/análise , Microbiologia de Alimentos , Metagenoma , Alimentos Fermentados/microbiologia
6.
J Sci Food Agric ; 104(10): 5973-5981, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38436499

RESUMO

BACKGROUND: Baijiu is a well-known alcoholic beverage in China and the quality is determined by various microorganisms during the fermentation process. Yeast is one of the most important microorganisms in the fermentation of baijiu. It has a strong esterification capacity and also affects the aroma. RESULTS: High-throughput sequencing results showed that the fermented grains (jiupei) during baijiu production were mainly composed of eight highly abundant yeast species. The species and abundance of yeasts changed significantly with the fermentation process. The flavor of 30 yeast strains in the jiupei was determined by a sniffing test and gas chromatography-mass spectrometry (GC-MS). The strain with the highest flavor substance content (2.34 mg L-1), named YX3205, was identified as Clavispora lusitaniae. Tolerance results showed that C. lusitaniae YX3205 can tolerate up to 15% (v v-1) ethanol. In a solid-state simulated fermentation experiment, the content of 24 flavor substances was significantly increased in the fortified group, and the total ester content reached 4240.73 µg kg-1, which was 2.8 times higher than that of the control group. CONCLUSION: The present study demonstrated the potential of C. lusitaniae YX3205 to enhance the flavor of baijiu, thereby serving as a valuable strain for the improvement of the flavor quality of baijiu. © 2024 Society of Chemical Industry.


Assuntos
Bebidas Alcoólicas , Fermentação , Aromatizantes , Paladar , Leveduras , Aromatizantes/metabolismo , Aromatizantes/química , Leveduras/metabolismo , Leveduras/classificação , Leveduras/genética , Bebidas Alcoólicas/análise , Bebidas Alcoólicas/microbiologia , China , Cromatografia Gasosa-Espectrometria de Massas , Grão Comestível/química , Grão Comestível/microbiologia , Grão Comestível/metabolismo , Etanol/metabolismo , Etanol/análise
7.
J Sci Food Agric ; 104(9): 5021-5030, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38296914

RESUMO

BACKGROUND: Baijiu brewing is a complex and multifaceted multimicrobial co-fermentation process, in which various microorganisms interact to form an interdependent micro-ecosystem, subsequently influencing metabolic activities and compound production. Among these microorganisms, Bacillus, an important bacterial genus in the liquor brewing process, remains unclear in its role in shaping the brewing microbial community and its functional metabolism. RESULTS: A baijiu fermentation system was constructed using B. subtilis JP1 isolated from native jiupei (grain mixture) combined with daqu (a saccharifying agent) and huangshui (a fermentation byproduct). Based on high-throughput amplicon sequencing analysis, it was evident that B. subtilis JP1 significantly influences bacterial microbial diversity and fungal community structure in baijiu fermentation. Of these, Aspergillus and Monascus emerge as the most markedly altered microbial genera in the jiupei community. Based on co-occurrence networks and bidirectional orthogonal partial least squares discriminant analysis models, it was demonstrated that the addition of B. subtilis JP1 intensified microbial interactions in jiupei fermentation, consequently enhancing the production of volatile flavor compounds such as heptanoic acid, butyl hexanoate and 3-methylthiopropanol in jiupei. CONCLUSION: B. subtilis JP1 significantly alters the microbial community structure of jiupei, enhancing aroma formation during fermentation. These findings will contribute to a broader application in solid-state fermentation. © 2024 Society of Chemical Industry.


Assuntos
Bebidas Alcoólicas , Bacillus subtilis , Fermentação , Microbiota , Bebidas Alcoólicas/microbiologia , Bebidas Alcoólicas/análise , Aspergillus/metabolismo , Aspergillus/isolamento & purificação , Bacillus subtilis/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Aromatizantes/metabolismo , Aromatizantes/química , Fungos/genética , Fungos/isolamento & purificação , Fungos/metabolismo , Metaboloma , Monascus/metabolismo , Monascus/genética , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química
8.
Yeast ; 40(3-4): 134-142, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36755487

RESUMO

In the traditional (kimoto) method of sake (Japanese rice wine) brewing, Saccharomyces cerevisiae yeast cells are exposed to lactate, which is produced by lactic acid bacteria in the seed mash. Lactate promotes the appearance of glucose-repression-resistant [GAR+ ] cells. Herein, we compared the resistance to glucose repression among kimoto, industrial, and laboratory yeast strains. We observed that the frequencies of the spontaneous emergence of [GAR+ ] cells among the kimoto strains were higher than those among the industrial and laboratory strains. The fermentation ability of a kimoto yeast (strain U44) was lower than that of an industrial strain (K701), as [GAR+ ] cells generally showed slower ethanol production. The addition of lactate decreased the fermentation abilities of the K701 strain by increasing the number of [GAR+ ] cells, but it did not affect those of the U44 strain. These results suggest that lactate controlled fermentation by promoting the appearance of [GAR+ ] cells in the industrial sake strains but not in the kimoto strains.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Bebidas Alcoólicas/microbiologia , Fermentação , Proteínas de Saccharomyces cerevisiae/metabolismo , Ácido Láctico/análise , Glucose/farmacologia
9.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36812944

RESUMO

The fruit-like aroma of two valine-derived volatiles, isobutanol and isobutyl acetate, has great impact on the flavour and taste of alcoholic beverages, including sake, a traditional Japanese alcoholic beverage. With the growing worldwide interest in sake, breeding of yeast strains with intracellular valine accumulation is a promising approach to meet a demand for sakes with a variety of flavour and taste by increasing the valine-derived aromas. We here isolated a valine-accumulating sake yeast mutant (K7-V7) and identified a novel amino acid substitution, Ala31Thr, on Ilv6, a regulatory subunit for acetohydroxy acid synthase. Expression of the Ala31Thr variant Ilv6 conferred valine accumulation on the laboratory yeast cells, leading to increased isobutanol production. Additionally, enzymatic analysis revealed that Ala31Thr substitution in Ilv6 decreased sensitivity to feedback inhibition by valine. This study demonstrated for the first time that an N-terminal arm conserved in the regulatory subunit of fungal acetohydroxy acid synthase is involved in the allosteric regulation by valine. Moreover, sake brewed with strain K7-V7 contained 1.5-fold higher levels of isobutanol and isobutyl acetate than sake brewed with the parental strain. Our findings will contribute to the brewing of distinctive sakes and the development of yeast strains with increased production of valine-derived compounds.


Assuntos
Acetolactato Sintase , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetolactato Sintase/genética , Acetolactato Sintase/análise , Acetolactato Sintase/metabolismo , Bebidas Alcoólicas/microbiologia , Valina/análise , Valina/metabolismo
10.
Arch Microbiol ; 205(8): 290, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468657

RESUMO

Although sake yeast mainly produces the taste of sake, sake brewery-inhabiting (kuratsuki) bacteria affect the taste of sake. Thus, kuratsuki bacteria may alter the metabolism of sake yeast through interactions between kuratsuki bacteria and sake yeast. This study aimed to confirm the effects of the combination of kuratsuki Kocuria TGY1127_2 and different sake yeast strains, AK25, K901, and K1801 on the taste of sake. Although the Brix and acidity during sake production using AK25 differed between sake with and without kuratsuki Kocuria, those using K901 and K1801 did not differ. Thus, sake yeast AK25 interacted with kuratsuki Kocuria and changed its characteristics of ethanol fermentation. In addition, the taste intensity changes, measured with a taste sensor TS-5000Z, showed that the effects of adding kuratsuki Kocuria varied among different sake yeasts. Thus, each sake yeast strain interacted with the kuratsuki bacterium and produced different metabolites, resulting in a change in the taste of sake. The findings of this study can lead to the brewing of sake using different types of kuratsuki bacteria which can affect the taste of sake.


Assuntos
Micrococcaceae , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Bebidas Alcoólicas/microbiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Fermentação , Paladar , Micrococcaceae/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-37534981

RESUMO

A Gram-stain-positive, rod-shaped, endospore-forming, aerobic bacterial strain, designated ZS110521T, was isolated from high-temperature Daqu, a starter for production of Chinese Jiang-flavour Baijiu and was characterised by polyphasic taxonomy. This novel isolate grew in the presence of 0-20 % (w/v) NaCl, at pH 6.0-9.0 and 20-50 °C; optimum growth was observed with 8-10 % (w/v) NaCl, at pH 7.0 and 37 °C. A comparative analysis of the 16S rRNA gene sequence (1460 bp) of ZS110521T revealed that it displayed the highest similarity to Lentibacillus populi WD4L-1T (95.5 %), followed by Lentibacillus garicola SL-MJ1T (95.4 %) and Lentibacillus lacisalsi BH260T (95.2 %). ANI and dDDH values between ZS110521T and other strains of species of the genus Lentibacillus were less than 78 and 28 %, respectively. The predominant cellular fatty acids (> 10 %) of ZS110521T were anteiso-C17 : 0 (37.8 %), anteiso-C15 : 0 (28.1 %) and iso-C16 : 0 (15.5 %). The respiratory quinone was identified as menaquinone-7 (MK-7) and the major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The polyphasic taxonomic data and the results of chemotaxonomic analysis confirmed that ZS110521T represents a novel species, for which the name Lentibacillus daqui sp. nov. is proposed. The type strain of this proposed species is ZS110521T (=CGMCC 1.19456T =JCM 35213T).


Assuntos
Bebidas Alcoólicas , Bacillaceae , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura , Bebidas Alcoólicas/microbiologia , Bacillaceae/classificação , Bacillaceae/isolamento & purificação
12.
Artigo em Inglês | MEDLINE | ID: mdl-37462270

RESUMO

Two pink-pigmented bacterial strains, designated NBU2971T and NBU2972T, were isolated from the pit mud of a Chinese liquor. Phylogenetic analyses based on 16S rRNA gene sequences suggested that strains NBU2971T and NBU2972T formed a distinct lineage within the family Hymenobacteraceae and were closely related to members of the genus Pontibacter. 16S rRNA gene sequences revealed that strain NBU2971T showed highest similarity of 97.9 % to Pontibacter arcticus 2b14T, and strain NBU2972T showed the highest similarity of 96.9 % to Pontibacter deserti JC215T. The 16S rRNA gene sequence similarity, average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the two novel strains were 95.2, 73.8 and 19.6 %, respectively, suggesting that they represent different species. The ANI and dDDH values between two novel strains and related species of genus Pontibacter were well below the threshold limit for prokaryotic species delineation. The genomic DNA G+C contents of strains NBU2971T and NBU2972T were 51.3 and 44.5 mol%, respectively. The major cellular fatty acids of the two novel strains were iso-C15 : 0 and summed feature 4 (iso-C17 : 1 I and/or anteiso-C17 : 1 B). The major polar lipid of both novel strains was phosphatidylethanolamine. The only respiratory quinone was MK-7. Combining results of phenotypic, chemotaxonomic and genotypic data, strains NBU2971T and NBU2972T are considered to be two representatives in the genus Pontibacter, which the name Pontibacter liquoris sp. nov. and Pontibacter vulgaris sp. nov. are proposed. The type strains of the new species are NBU2971T (=KCTC 82916T=MCCC 1K06395T) and NBU2972T (=KCTC 82917T=MCCC 1K06396T), respectively.


Assuntos
Bebidas Alcoólicas , Cytophagaceae , DNA Bacteriano , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Cytophagaceae/genética , Cytophagaceae/isolamento & purificação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2 , China , Bebidas Alcoólicas/microbiologia , Microbiologia da Água
13.
Can J Microbiol ; 69(4): 170-181, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36753729

RESUMO

Daqu is the natural starter for Nong-flavor Baijiu brewing. The effects of Daqu properties on the microbial community succession and their metabolites in fermented grains (FG) during Baijiu brewing were determined. These results showed that the effect of Daqu on the bacterial communities was stronger than that of the fungal communities. Compared with the conventional Daqu (DZ), Taikong (TK), and Qianghua (QH), Daqu significantly enhanced the content of volatile metabolites (especially esters) and ethanol when they were used, respectively, for FG fermentation. In the second round of fermentation, the relative abundance of Lactobacillus decreased, the content of lactic acid decreased, and that of caproic acid increased. In particular, the abundance of Lactobacillus was also reduced by 20% in FGs of the second round when TK Daqu was used than that in the respective first round. Partial least squares structural equation model analysis also showed that physicochemical parameters and Daqu properties significantly affected FG community structure and metabolism. This study provides a theoretical basis for further study on the effect of high-quality Daqu on the quality of fresh Baijiu and lays an important theoretical foundation for the stabilization of the Baijiu fermentation system based on Daqu.


Assuntos
Bebidas Alcoólicas , Microbiota , Fermentação , Bebidas Alcoólicas/microbiologia , Bactérias/metabolismo , Etanol/análise , Etanol/metabolismo , Lactobacillus
14.
Biotechnol Lett ; 45(9): 1183-1197, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37436533

RESUMO

OBJECTIVES: The microbial community structure of the saccharifying starter, Nongxiangxing Daqu(Daqu), is a crucial factor in determining Baijiu's quality. Lactic acid bacteria (LAB), are the dominant microorganisms in the Daqu. The present study investigated the effects of LAB on the microbial community structure and its contribution to microbial community function during the fermentation of Daqu. METHODS: The effect of LAB on the structure and function of the microbial community of Daqu was investigated using high-throughput sequencing technology combined with multivariate statistical analysis. RESULTS: LAB showed a significant stage-specific evolution pattern during Daqu fermentation. The LEfSe analysis and the random forest learning algorithm identified LAB as vital differential microorganisms during Daqu fermentation. The correlation co-occurrence network showed aggregation of LAB and Daqu microorganisms, indicating LAB's significant position in influencing the microbial community structure, and suggests that LAB showed negative correlations with Bacillus, Saccharopolyspora, and Thermoactinomyces but positive correlations with Issatchenkia, Candida, Acetobacter, and Gluconobacter. The predicted genes of LAB enriched 20 functional pathways during Daqu fermentation, including Biosynthesis of amino acids, Alanine, aspartate and glutamate metabolism, Valine, leucine and isoleucine biosynthesis and Starch and sucrose metabolism, which suggested that LAB had the functions of polysaccharide metabolism and amino acid biosynthesis. CONCLUSION: LAB are important in determining the composition and function of Daqu microorganisms, and LAB are closely related to the production of nitrogenous flavor substances in Daqu. The study provides a foundation for further exploring the function of LAB and the regulation of Daqu quality.


Assuntos
Bacillus , Lactobacillales , Microbiota , Lactobacillales/genética , Bactérias/genética , Bactérias/metabolismo , Fermentação , Bebidas Alcoólicas/microbiologia
15.
Food Microbiol ; 111: 104195, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36681399

RESUMO

Understanding bacteria and yeasts communities can reduce unpredictable changes of apple cider. In this study, apple juice inoculated with Saccharomyces cerevisiae WET 136 and fermented spontaneously were compared, the relationships of bacteria, yeasts, organic acids, and volatiles were analyzed. Results showed that microbial diversity affected the fermentation, organic acids and volatiles in apple ciders. In the first four spontaneous fermentation days, LAB (lactic acid bacteria) multiplied and reached 7.89 lg CFU/mL, and then triggered malolactic fermentation (MLF), leading to malic acid decreased by 3880.52 mg/L and lactic acid increased by 4787.55 mg/L. The citric, succinic and fumaric acids content was 2171.14, 701.51 and 8.06 mg/L lower than that in inoculated cider, respectively. Although the yeasts multiplied during spontaneous fermentation, it did not reach 7.50 lg CFU/mL until the 5th day, which led to a long lag period, as well as later and lower production of acetaldehyde and higher alcohols. The inoculated yeast inhibited LAB, acetic acid bacteria, Rahnella, and non-Saccharomyces. Yeasts were the key to produce citric acid, acetaldehyde and 3-methyl-1-butanol in apple cider; while bacteria were closely related to the formation of lactic acid, acetic acid and ethyl acetate. It suggested that low higher alcohols and acetaldehyde can be realized by selecting yeasts, and Leuconostoc pseudomesenteroides can work as candidate to reduce L-malic and citric acids in apple cider.


Assuntos
Malus , Bebidas Alcoólicas/microbiologia , Leveduras , Álcoois , Fermentação , Saccharomyces cerevisiae , Bactérias , Acetaldeído
16.
Food Microbiol ; 112: 104247, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36906311

RESUMO

Pit mud is an essential habitat for diverse anaerobes, however, how pit mud of Jiangxiangxing Baijiu contributes to flavour is still unclear. The correlation between pit mud anaerobes and flavour compounds formation was investigated by analyzing flavour compounds and prokaryotic community of pit mud as well as fermented grains. Then scaling-down fermentation and culture-dependent approach were used to verify the effects of pit mud anaerobes on flavour compound formation. We found that short- and medium-chain fatty acids and alcohols, e.g., propionate, butyrate, caproate, 1-butanol, 1-hexanol, and 1-heptanol, were the vital flavour compounds produced by pit mud anaerobes. Pit mud anaerobes hardly migrated into fermented grains because of the low pH and low moisture of fermented grains. Therefore, the flavour compounds produced by pit mud anaerobes might enter fermented grains via volatilization. Moreover, enrichment culturing proved that raw soil was one of the sources for pit mud anaerobes, e.g., Clostridiumtyrobutyricum, Ruminococcaceae bacterium BL-4 and Caproicibacteriumamylolyticum. These rare short- and medium-chain fatty acid-producing anaerobes in raw soil can be enriched during Jiangxiangxing Baijiu fermentation. These findings clarified the role of pit mud during Jiangxiangxing Baijiu fermentation and revealed the key species involved in short- and medium-chain fatty acid-producing production.


Assuntos
Bebidas Alcoólicas , Bactérias , Bebidas Alcoólicas/microbiologia , Solo , Fermentação , Ácidos Graxos
17.
World J Microbiol Biotechnol ; 39(12): 337, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37814055

RESUMO

Complex microorganisms in Daqu of different temperatures play a vital role in the taste, flavor and quality of Baijiu during fermentation. However, understanding the functional diversity of the whole microbial community between the Daqus of two different temperatures (high temperature Daqu, HD and medium-high temperature Daqu, MD) remains a major challenge. Here, a systematic study of the microbial diversity, functions as well as physiological and biochemical indexes of Daqu are described. The results revealed that the Daqu exhibited unique characteristics. In particular, the diversity of microorganisms in HD and MD was high, with 44 species including 14 novel species (Sphingomonas sp. is the main novel species) detected in all samples. Their profiles of carbohydrate-active enzymes and specific functional components supported the fact that these species were involved in flavor formation. The Daqu microbiome consisted of a high proportion of phage, providing evidence of phage infection/genome integration and horizontal gene transfer from phage to bacteria. Such processes would also regulate Daqu microbiomes and thus flavor quality. These results enrich current knowledge of Daqu and can be used to promote the development of Baijiu fermentation technology.


Assuntos
Bebidas Alcoólicas , Microbiota , Bebidas Alcoólicas/microbiologia , Temperatura , Bactérias/genética , Fermentação
18.
Appl Environ Microbiol ; 88(13): e0048422, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35695571

RESUMO

Pit mud microbial consortia play crucial roles in the formation of Chinese strong-flavor baijiu's key flavor-active compounds, especially butyric and caproic acids. Clostridia, one of the abundant bacterial groups in pit mud, were recognized as important butyric and caproic acid producers. Research on the interactions of the pit mud microbial community mainly depends on correlation analysis at present. Interaction between Clostridium and other microorganisms and its involvement in short/medium-chain fatty acid (S/MCFA) metabolism are still unclear. We previously found coculture of two clostridial strains isolated from pit mud, Clostridium fermenticellae JN500901 (C.901) and Novisyntrophococcus fermenticellae JN500902 (N.902), could enhance S/MCFA accumulation. Here, we investigated their underlying interaction mechanism through the combined analysis of phenotype, genome, and transcriptome. Compared to monocultures, coculture of C.901 and N.902 obviously promoted their growth, including shortening the growth lag phase and increasing biomass, and the accumulation of butyric acid and caproic acid. The slight effects of inoculation ratio and continuous passage on the growth and metabolism of coculture indicated the relative stability of their interaction. Transwell coculture and transcriptome analysis showed the interaction between C.901 and N.902 was accomplished by metabolite exchange, i.e., formic acid produced by C.901 activated the Wood-Ljungdahl pathway of N.902, thereby enhancing its production of acetic acid, which was further converted to butyric acid and caproic acid by C.901 through reverse ß-oxidation. This work demonstrates the potential roles of mutually beneficial interspecies interactions in the accumulation of key flavor compounds in pit mud. IMPORTANCE Microbial interactions played crucial roles in influencing the assembly, stability, and function of the microbial community. The metabolites of pit mud microbiota are the key to flavor formation of Chinese strong-flavor baijiu. So far, researches on the interactions of the pit mud microbial community have been mainly based on the correlation analysis of sequencing data, and more work needs to be performed to unveil the complicated interaction patterns. Here, we identified a material exchange-based mutualistic interaction system involving two fatty acid-producing clostridial strains (Clostridium fermenticellae JN500901 and Novisyntrophococcus fermenticellae JN500902) isolated from pit mud and systematically elucidated their interaction mechanism for promoting the production of butyric acid and caproic acid, the key flavor-active compounds of baijiu. Our findings provide a new perspective for understanding the complicated interactions of pit mud microorganisms.


Assuntos
Butiratos , Caproatos , Bebidas Alcoólicas/microbiologia , Caproatos/metabolismo , Clostridium/genética , Clostridium/metabolismo , Fermentação
19.
Can J Microbiol ; 68(11): 674-686, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36103727

RESUMO

In this study, Illumina MiSeq/NovaSeq high-throughput sequencing technology was used to sequence the terminal DNA fragments of microbial communities in Wuliangye pit mud. The results showed that there were 5 dominant bacterial phyla and 13 dominant bacterial genera in the pit mud, which belonged to 4 phyla, mainly Firmicutes. There were 3 dominant fungal phyla and 5 dominant fungal genera in cellar mud, which belonged to 2 phyla and concentrated in Ascomycota. According to the statistical data, the low pH value cellar pool is more conducive to the enrichment of acid-resistant or acid-biased bacteria, which is the key to flavor formation. In addition, the components of ammonium nitrogen, available phosphorus and available potassium in pit mud need to be replenished in time. In addition, sampling time, fermentation time, temperature, and other external environments also have certain effects on microbial diversity and abundance in the pit. With the use of cellars, various types of microorganisms are constantly evolving to adapt to the environment inside the pits. The succession rule of microbe in pit mud was preliminarily revealed, which provided the basis for improving the quality and technical development of Wuliangye.


Assuntos
Bebidas Alcoólicas , Microbiota , Bebidas Alcoólicas/microbiologia , Microbiota/genética , Sequenciamento de Nucleotídeos em Larga Escala , Bactérias , Fermentação
20.
Food Microbiol ; 104: 103968, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35287797

RESUMO

"Spiritu re fascitrari" is a Sicilian alcoholic beverage obtained through distillation of a decoction of spontaneously fermented honey by-products (FHP). The production process often leads to sensorial defects due to the unstable alcoholic fermentation. The objective of this work was to select Saccharomyces cerevisiae strains from FHP to be used as starter in decoction fermentation. Based on chemical, microbiological and technological data, from a total of 91 strains three S. cerevisae were selected for further testing to produce FHP at laboratory scale level. After FHP distillation, the analysis of volatile organic compounds showed a complex mixture of sensory active molecules, mainly alcohols and aldehydes. Among the alcohols, 3-methyl-1-butanol, 2-methyl-1-butanol, phenylethyl alcohol, hexadecanol and octadecanol were found at the highest concentrations. Among the carboxylic acids, acetic acid was mainly detected in the spontaneously fermented samples. FHP fermented with the three selected strains were not characterized by the presence of off-odors or off-flavours. The results obtained in this work demonstrate that the selected S. cerevisiae strains are promising starters to stabilize the production of distilled alcoholic beverages produced from honey by-products.


Assuntos
Mel , Saccharomyces cerevisiae , Bebidas Alcoólicas/microbiologia , Bebidas , Fermentação , Mel/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA