Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Planta ; 260(4): 94, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269658

RESUMO

MAIN CONCLUSION: Seed-application of the natural products protects sugar beet and wheat plants against infection with plasmodiophorid-transmitted viruses and thus may represent an efficient, environmentally friendly, easy and cost effective biocontrol strategy. In times of intensive agriculture, resource shortening and climate change, alternative, more sustainable and eco-friendly plant protection strategies are required. Here, we tested the potential of the natural plant substances Glycyrrhiza glabra leaf extract (GE) and the rhamnolipid Rhapynal (Rha) applied to seeds to protect against infection of sugar beet and wheat with soil-borne plant viruses. The soil-borne Polymyxa betae- and Polymyxa graminis-transmitted viruses cause extensive crop losses in agriculture and efficient control strategies are missing. We show that GE and Rha both efficiently protect plants against infection with soil-borne viruses in sugar beet and wheat when applied to seeds. Moreover, the antiviral protection effect is independent of the cultivar used. No protection against Polymyxa sp. was observed after seed treatment with the bio-substances at our analysis time points. However, when we applied the bio-substances directly to soil a significant anti-Polymyxa graminis effect was obtained in roots of barley plants grown in the soil as well as in the treated soil. Despite germination can be affected by high concentrations of the substances, a range of antiviral protection conditions with no effect on germination were identified. Seed-treatment with the bio-substances did not negatively affect plant growth and development in virus-containing soil, but was rather beneficial for plant growth. We conclude that seed treatment with GE and Rha may represent an efficient, ecologically friendly, non-toxic, easy to apply and cost efficient biocontrol measure against soil-borne virus infection in plants.


Assuntos
Beta vulgaris , Glycyrrhiza , Doenças das Plantas , Extratos Vegetais , Sementes , Sementes/virologia , Sementes/efeitos dos fármacos , Doenças das Plantas/virologia , Doenças das Plantas/prevenção & controle , Beta vulgaris/virologia , Beta vulgaris/efeitos dos fármacos , Extratos Vegetais/farmacologia , Triticum/virologia , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Glicolipídeos/farmacologia , Vírus de Plantas/fisiologia , Vírus de Plantas/efeitos dos fármacos , Raízes de Plantas/virologia , Raízes de Plantas/efeitos dos fármacos , Solo/química , Microbiologia do Solo , Hordeum/virologia , Hordeum/efeitos dos fármacos , Plasmodioforídeos/fisiologia , Plasmodioforídeos/efeitos dos fármacos
2.
Mol Biol Rep ; 51(1): 681, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796603

RESUMO

BACKGROUND: Silver nanoparticles (AgNPs) have been used in plant tissue culture as growth stimulants, promoting bud initiation, germination, and rooting. In prior studies, AgNPs were synthesized and characterized by green synthesis using extracts from Beta vulgaris var. cicla (BvAgNP), and their functionality as seed disinfectant and antimicrobial was verified. In this study, we evaluated the effect of BvAgNP on the growth and development of Mammillaria bombycina and Selenicereus undatus in vitro, as well as the expression of glyoxalase genes. METHODS: Explants from M. bombycina and S. undatus in vitro were treated with 25, 50, and 100 mg/L of BvAgNP. After 90 days, morphological characteristics were evaluated, and the expression of glyoxalase genes was analyzed by qPCR. RESULTS: All treatments inhibited rooting for M. bombycina and no bud initiation was observed. S. undatus, showed a maximum response in rooting and bud generation at 25 mg/L of BvAgNP. Scanning electron microscopy (SEM) results exhibited a higher number of vacuoles in stem cells treated with BvAgNP compared to the control for both species. Expression of glyoxalase genes in M. bombycina increased in all treatments, whereas it decreased for S. undatus, however, increasing in roots. CONCLUSIONS: This study presents the effects of BvAgNP on the growth and development of M. bombycina and S. undatus, with the aim of proposing treatments that promote in vitro rooting and bud initiation.


Assuntos
Lactoilglutationa Liase , Nanopartículas Metálicas , Prata , Nanopartículas Metálicas/química , Prata/farmacologia , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Beta vulgaris/crescimento & desenvolvimento , Beta vulgaris/efeitos dos fármacos , Beta vulgaris/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tioléster Hidrolases , Cactaceae
3.
J Environ Manage ; 369: 122336, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39243422

RESUMO

Nutrient imbalances, such as high boron (B) stress, occur within, as well as across, agricultural systems worldwide and have become an important abiotic factor that reduces soil fertility and inhibits plant growth. Sugar beet is a B-loving crop and is better suited to be grown in high B environments, but the methods and mechanisms regarding the enhancement of high-B stress tolerance traits are not clear. The main objective of this research was to elucidate the effects of the alone and/or combined foliar spraying of zinc sulfate (ZnSO4) and methyl jasmonate (MeJA) on the growth parameters, tolerance, and photochemical performance of sugar beet under high-B stress. Results demonstrated that the photosynthetic performance was inhibited under high-B stress, with a reduction of 11.33% in the net photosynthetic rate (Pn) and an increase of 25.30% in the tolerance index. The application of ZnSO4, MeJA, and their combination enhanced sugar beet's adaptability to high-B stress, with an increase in Pn of 9.22%, 4.49%, and 2.85%, respectively, whereas the tolerance index was elevated by 15.33%, 8.21%, and 5.19%, respectively. All three ameliorative treatments resulted in increased photochemical efficiency (Fv/Fm) and the photosynthetic performance index (PIABS) of PSII. Additionally, they enhanced the light energy absorption (ABS/RC) and trapping capacity (DIO/RC), reduced the thermal energy dissipation (TRO/RC), and facilitated the QA to QB transfer in the electron transport chain (ETC) of PSII, which collectively improved the photochemical performance. Therefore, spraying both ZnSO4 and MeJA can better alleviate high-B stress and promote the growth of sugar beet, but the combined spraying effect of ZnSO4 and MeJA is lower than that of individual spraying. This study provides a reference basis for enhancing the ability of sugar beet and other plants to tolerate high-B stress and for sugar beet cultivation in high B areas.


Assuntos
Acetatos , Beta vulgaris , Boro , Ciclopentanos , Oxilipinas , Fotossíntese , Folhas de Planta , Zinco , Beta vulgaris/efeitos dos fármacos , Beta vulgaris/crescimento & desenvolvimento , Beta vulgaris/efeitos da radiação , Ciclopentanos/farmacologia , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Acetatos/farmacologia , Estresse Fisiológico
4.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34884427

RESUMO

Little is known about the effect of lead on the activity of the vacuolar K+ channels. Here, the patch-clamp technique was used to compare the impact of lead (PbCl2) on the slow-activating (SV) and fast-activating (FV) vacuolar channels. It was revealed that, under symmetrical 100-mM K+, the macroscopic currents of the SV channels exhibited a typical slow activation and a strong outward rectification of the steady-state currents, while the macroscopic currents of the FV channels displayed instantaneous currents, which, at the positive potentials, were about three-fold greater compared to the one at the negative potentials. When PbCl2 was added to the bath solution at a final concentration of 100 µM, it decreased the macroscopic outward currents of both channels but did not change the inward currents. The single-channel recordings demonstrated that cytosolic lead causes this macroscopic effect by a decrease of the single-channel conductance and decreases the channel open probability. We propose that cytosolic lead reduces the current flowing through the SV and FV channels, which causes a decrease of the K+ fluxes from the cytosol to the vacuole. This finding may, at least in part, explain the mechanism by which cytosolic Pb2+ reduces the growth of plant cells.


Assuntos
Beta vulgaris/crescimento & desenvolvimento , Chumbo/farmacologia , Canais de Potássio/metabolismo , Vacúolos/metabolismo , Beta vulgaris/efeitos dos fármacos , Beta vulgaris/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Técnicas de Patch-Clamp , Proteínas de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Canais de Potássio/efeitos dos fármacos , Vacúolos/efeitos dos fármacos
5.
Adv Exp Med Biol ; 1241: 167-194, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32383121

RESUMO

Sugar beet is used not only in the sugar production, but also in a wide range of industries including the production of bioethanol as a source of renewable energy, extraction of pectin and production of molasses. The red beetroot has attracted much attention as health-promoting and disease-preventing functional food. The negative effects of environmental stresses, including abiotic and biotic ones, significantly decrease the cash crop sugar beet productivity. In this paper, we outline the mechanisms of sugar beet response to biotic and abiotic stresses at the levels of physiological change, the genes' functions, transcription and translation. Regarding the physiological changes, most research has been carried out on salt and drought stress. The functions of genes from sugar beet in response to salt, cold and heavy metal stresses were mainly investigated by transgenic technologies. At the transcriptional level, the transcriptome analysis of sugar beet in response to salt, cold and biotic stresses were conducted by RNA-Seq or SSH methods. At the translational level, more than 800 differentially expressed proteins in response to salt, K+/Na+ ratio, iron deficiency and resupply and heavy metal (zinc) stress were identified by quantitative proteomics techniques. Understanding how sugar beet respond and tolerate biotic and abiotic stresses is important for boosting sugar beet productivity under these challenging conditions. In order to minimize the negative impact of these stresses, studying how the sugar beet has evolved stress coping mechanisms will provide new insights and lead to novel strategies for improving the breeding of stress-resistant sugar beet and other crops.


Assuntos
Beta vulgaris/fisiologia , Estresse Fisiológico , Beta vulgaris/efeitos dos fármacos , Secas , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/fisiologia
6.
Int J Mol Sci ; 21(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138028

RESUMO

Rhizoctonia solani (Rs) is a soil-borne pathogen with a broad host range. This pathogen incites a wide range of disease symptoms. Knowledge regarding its infection process is fragmented, a typical feature for basidiomycetes. In this study, we aimed at identifying potential fungal effectors and their function. From a group of 11 predicted single gene effectors, a rare lipoprotein A (RsRlpA), from a strain attacking sugar beet was analyzed. The RsRlpA gene was highly induced upon early-stage infection of sugar beet seedlings, and heterologous expression in Cercospora beticola demonstrated involvement in virulence. It was also able to suppress the hypersensitive response (HR) induced by the Avr4/Cf4 complex in transgenic Nicotiana benthamiana plants and functioned as an active protease inhibitor able to suppress Reactive Oxygen Species (ROS) burst. This effector contains a double-psi beta-barrel (DPBB) fold domain, and a conserved serine at position 120 in the DPBB fold domain was found to be crucial for HR suppression. Overall, R. solani seems to be capable of inducing an initial biotrophic stage upon infection, suppressing basal immune responses, followed by a switch to necrotrophic growth. However, regulatory mechanisms between the different lifestyles are still unknown.


Assuntos
Beta vulgaris/imunologia , Lipoproteína(a)/farmacologia , Doenças das Plantas/imunologia , Proteínas de Plantas/farmacologia , Inibidores de Proteases/farmacologia , Rhizoctonia/fisiologia , Virulência , Beta vulgaris/efeitos dos fármacos , Beta vulgaris/crescimento & desenvolvimento , Beta vulgaris/microbiologia , Doenças das Plantas/microbiologia , Microbiologia do Solo
7.
Int J Mol Sci ; 21(14)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664260

RESUMO

In contrast to the well-studied effect of auxin on the plasma membrane K+ channel activity, little is known about the role of this hormone in regulating the vacuolar K+ channels. Here, the patch-clamp technique was used to investigate the effect of auxin (IAA) on the fast-activating vacuolar (FV) channels. It was found that the macroscopic currents displayed instantaneous currents, which at the positive potentials were about three-fold greater compared to the one at the negative potentials. When auxin was added to the bath solution at a final concentration of 1 µM, it increased the outward currents by about 60%, but did not change the inward currents. The imposition of a ten-fold vacuole-to-cytosol KCl gradient stimulated the efflux of K+ from the vacuole into the cytosol and reduced the K+ current in the opposite direction. The addition of IAA to the bath solution with the 10/100 KCl gradient decreased the outward current and increased the inward current. Luminal auxin reduced both the outward and inward current by approximately 25% compared to the control. The single channel recordings demonstrated that cytosolic auxin changed the open probability of the FV channels at the positive voltages to a moderate extent, while it significantly increased the amplitudes of the single channel outward currents and the number of open channels. At the positive voltages, auxin did not change the unitary conductance of the single channels. We suggest that auxin regulates the activity of the fast-activating vacuolar (FV) channels, thereby causing changes of the K+ fluxes across the vacuolar membrane. This mechanism might serve to tightly adjust the volume of the vacuole during plant cell expansion.


Assuntos
Beta vulgaris/efeitos dos fármacos , Beta vulgaris/metabolismo , Ácidos Indolacéticos/farmacologia , Canais Iônicos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Transporte Biológico/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Potássio/metabolismo
8.
BMC Plant Biol ; 19(1): 191, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31072335

RESUMO

BACKGROUND: BRASSINAZOLE-RESISTANT (BZR) family genes encode plant-specific transcription factors (TFs) that participate in brassinosteroid signal transduction. BZR TFs have vital roles in plant growth, including cell elongation. However, little is known about BZR genes in sugar beet (Beta vulgaris L.). RESULTS: Therefore, we performed a genome-wide investigation of BvBZR genes in sugar beet. Through an analysis of the BES1_N conserved domain, six BvBZR gene family members were identified in the sugar beet genome, which clustered into three subgroups according to a phylogenetic analysis. Each clade was well defined by the conserved motifs, implying that close genetic relationships could be identified among the members of each subfamily. According to chromosomal distribution mapping, 2, 1, 1, 1, and 1 genes were located on chromosomes 1, 4, 5, 6, and 8, respectively. The cis-acting elements related to taproot growth were randomly distributed in the promoter sequences of the BvBZR genes. Tissue-specific expression analyses indicated that all BvBZR genes were expressed in all three major tissue types (roots, stems, and leaves), with significantly higher expression in leaves. Subcellular localization analysis revealed that Bv1_fxre and Bv6_nyuw are localized in the nuclei, consistent with the prediction of Wolf PSORT. CONCLUSION: These findings offer a basis to predict the functions of BZR genes in sugar beet, and lay a foundation for further research of the biological functions of BZR genes in sugar beet.


Assuntos
Beta vulgaris/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Fatores de Transcrição/genética , Motivos de Aminoácidos , Beta vulgaris/efeitos dos fármacos , Cromossomos de Plantas/genética , Sequência Conservada/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Proteínas de Fluorescência Verde/metabolismo , Motivos de Nucleotídeos/genética , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
9.
Int J Mol Sci ; 20(23)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775274

RESUMO

Soil salinization is a common environmental problem that seriously affects the yield and quality of crops. Sugar beet (Beta vulgaris L.), one of the main sugar crops in the world, shows a strong tolerance to salt stress. To decipher the molecular mechanism of sugar beet under salt stress, we conducted transcriptomic analyses of two contrasting sugar beet genotypes. To the best of our knowledge, this is the first comparison of salt-response transcriptomes in sugar beet with contrasting genotypes. Compared to the salt-sensitive cultivar (S710), the salt-tolerant one (T710MU) showed better growth and exhibited a higher chlorophyll content, higher antioxidant enzyme activity, and increased levels of osmotic adjustment molecules. Based on a high-throughput experimental system, 1714 differentially expressed genes were identified in the leaves of the salt-sensitive genotype, and 2912 in the salt-tolerant one. Many of the differentially expressed genes were involved in stress and defense responses, metabolic processes, signal transduction, transport processes, and cell wall synthesis. Moreover, expression patterns of several genes differed between the two cultivars in response to salt stress, and several key pathways involved in determining the salt tolerance of sugar beet, were identified. Our results revealed the mechanism of salt tolerance in sugar beet and provided potential metabolic pathways and gene markers for growing salt-tolerant cultivars.


Assuntos
Beta vulgaris/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Proteínas de Plantas/genética , Estresse Salino/genética , Tolerância ao Sal/genética , Cloreto de Sódio/farmacologia , Transcriptoma , Beta vulgaris/efeitos dos fármacos , Beta vulgaris/crescimento & desenvolvimento , Genótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento
10.
BMC Plant Biol ; 18(1): 316, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30509181

RESUMO

BACKGROUND: Betanins have become excellent replacers for artificial red-purple food colourants. Red beet (Beta vulgaris L. spp. vulgaris) known as beetroot, is a rich source of betalains, which major forms are betanin (red to purple) and vulgaxanthin (yellow). Betalains and phenolic compounds are secondary metabolites, accumulation of which is often triggered by elicitors during plant stress responses. In the present study, pre-harvest applications of ethephon (an ethylene-releasing compound) and postharvest UV-B radiation were tested as elicitors of betalains and phenolic compounds in two beetroot cultivars. Their effects on quality parameters were investigated, and the expression of biosynthetic betalain genes in response to ethephon was determined. RESULTS: Ethephon was applied as foliar spray during the growth of beetroot, resulting in increased betanin (22.5%) and decreased soluble solids contents (9.4%), without detrimental effects on beetroot yield. The most rapid accumulation rate for betanin and soluble solids was observed between 3 and 6 weeks after sowing in both untreated and ethephon-treated beetroots. Overall, the expression of the betalain biosynthetic genes (CYP76AD1, CYP76AD5, CYP76AD6 and DODA1), determining the formation of both betanin and vulgaxanthin, increased in response to ethephon treatment, as did the expression of the betalain pathway activator BvMYB1. In the postharvest environment, the use of short-term UV-B radiation (1.23 kJ m- 2) followed by storages for 3 and 7 days at 15 °C resulted in increased betanin to vulgaxanthin ratio (51%) and phenolic content (15%). CONCLUSIONS: The results of this study provide novel strategies to improve key profitability traits in betalain production. High betanin concentration and high betanin to vulgaxanthin ratio increase the commercial value of the colourant product. In addition, lowering soluble solids levels facilitates higher concentration of beetroot colour during processing. Moreover, we show that enhanced betanin content in ethephon-treated beetroots is linked to increased expression of betalain biosynthetic genes.


Assuntos
Beta vulgaris/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Raios Ultravioleta , Beta vulgaris/anatomia & histologia , Beta vulgaris/fisiologia , Betalaínas/metabolismo , Produção Agrícola/métodos , Manipulação de Alimentos/métodos , Qualidade dos Alimentos , Expressão Gênica/efeitos dos fármacos , Compostos Organofosforados/administração & dosagem , Fenóis/metabolismo
11.
Ecotoxicol Environ Saf ; 160: 222-230, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-29807295

RESUMO

Most studies have assessed the toxicity of pristine NPs to plants without considering the likely changes that these NPs will undergo during their residence time in the soil. In this study, we assessed the effects of ZnO NPs (3, 20, and 225 mg Zn kg-1 soil) aged for a year in soil and after a previous crop on the Zn availability in soil, leaf accumulation and toxicity to green pea (Pisum sativum L.) and beet root (Beta vulgaris L). The effects were compared to bulk ZnO and ZnSO4 in two agricultural soils with different pH under greenhouse conditions. The Zn concentration in the plant leaf was 6-12-fold higher in acidic than in calcareous soil that could explain the different effects on plants caused by Zn applications depending on soil type. Thus, in acidic soil, ZnO NPs promoted ROS generation in both plant species with increases from 47% to 130%, increased the MDA content in pea up to 58 ±â€¯8% in plant exposed to ZnSO4 at 225 mg Zn kg-1 soil and altered the ratio of photosynthetic pigments in beet between 12% and 41%, suggesting distressed chloroplast constituents. In calcareous soil, the changes seemed to be related to the supply of Zn in Zn deficient soils, whose principal effect was the 20-65% decrease of ROS levels in treated plants. The available and leaf Zn concentrations did not differ among Zn sources. Likewise, ZnO NPs showed comparable toxic or stimulatory effects to ZnO bulk and Zn salt, with some exceptions where Zn ion showed the highest phytotoxicity and effectiveness as a micronutrient. According to our results, we cannot affirm that NPs pose a higher potential environmental risk than their bulk counterparts after one-year of residence time in soil.


Assuntos
Beta vulgaris/efeitos dos fármacos , Nanopartículas/toxicidade , Pisum sativum/efeitos dos fármacos , Poluentes do Solo/toxicidade , Óxido de Zinco/toxicidade , Beta vulgaris/metabolismo , Malondialdeído/metabolismo , Pisum sativum/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Zinco/metabolismo
12.
Int J Mol Sci ; 19(12)2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30518064

RESUMO

Salinity is one of the major abiotic stress factors that limit plant growth and crop yield worldwide. To understand the molecular mechanisms and screen the key proteins in response of sugar beet (Beta vulgaris L.) to salt, in the present study, the proteomics of roots and shoots in three-week-old sugar beet plants exposed to 50 mM NaCl for 72 h was investigated by isobaric Tags for Relative and Absolute Quantitation (iTRAQ) technology. The results showed that 105 and 30 differentially expressed proteins (DEPs) were identified in roots and shoots of salt-treated plants compared with untreated plants, respectively. There were 46 proteins up-regulated and 59 proteins down-regulated in roots; and 13 up-regulated proteins and 17 down-regulated proteins found in shoots, respectively. These DEPs were mainly involved in carbohydrate metabolism, energy metabolism, lipid metabolism, biosynthesis of secondary metabolites, transcription, translation, protein folding, sorting, and degradation as well as transport. It is worth emphasizing that some novel salt-responsive proteins were identified, such as PFK5, MDH, KAT2, ACAD10, CYP51, F3H, TAL, SRPR, ZOG, V-H⁺-ATPase, V-H⁺-PPase, PIPs, TIPs, and tubulin α-2/ß-1 chain. qRT-PCR analysis showed that six of the selected proteins, including BvPIP1-4, BvVP and BvVAP in root and BvTAL, BvURO-D1, and BvZOG in shoot, displayed good correlation between the expression levels of protein and mRNA. These novel proteins provide a good starting point for further research into their functions using genetic or other approaches. These findings should significantly improve the understanding of the molecular mechanisms involved in salt tolerance of sugar beet plants.


Assuntos
Beta vulgaris/fisiologia , Marcação por Isótopo/métodos , Proteômica/métodos , Tolerância ao Sal/fisiologia , Beta vulgaris/efeitos dos fármacos , Beta vulgaris/genética , Análise por Conglomerados , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Genes de Plantas , Estudos de Associação Genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Cloreto de Sódio/farmacologia
13.
J Plant Res ; 130(6): 1079-1093, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28711996

RESUMO

Salinity stress is a major limitation to global crop production. Sugar beet, one of the world's leading sugar crops, has stronger salt tolerant characteristics than other crops. To investigate the response to different levels of salt stress, sugar beet was grown hydroponically under 3 (control), 70, 140, 210 and 280 mM NaCl conditions. We found no differences in dry weight of the aerial part and leaf area between 70 mM NaCl and control conditions, although dry weight of the root and whole plant treated with 70 mM NaCl was lower than control seedlings. As salt concentrations increased, degree of growth arrest became obvious In addition, under salt stress, the highest concentrations of Na+ and Cl- were detected in the tissue of petioles and old leaves. N and K contents in the tissue of leave, petiole and root decreased rapidly with the increase of NaCl concentrations. P content showed an increasing pattern in these tissues. The activities of antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase and glutathione peroxidase showed increasing patterns with increase in salt concentrations. Moreover, osmoprotectants such as free amino acids and betaine increased in concentration as the external salinity increased. Two organic acids (malate and citrate) involved in tricarboxylic acid (TCA)-cycle exhibited increasing contents under salt stress. Lastly, we found that Rubisco activity was inhibited under salt stress. The activity of NADP-malic enzyme, NADP-malate dehydrogenase and phosphoenolpyruvate carboxylase showed a trend that first increased and then decreased. Their activities were highest with salinity at 140 mM NaCl. Our study has contributed to the understanding of the sugar beet physiological and metabolic response mechanisms under different degrees of salt stress.


Assuntos
Antioxidantes/metabolismo , Beta vulgaris/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plântula/fisiologia , Cloreto de Sódio/farmacologia , Ascorbato Peroxidases/metabolismo , Beta vulgaris/efeitos dos fármacos , Beta vulgaris/enzimologia , Catalase/metabolismo , Malato Desidrogenase/metabolismo , Malato Desidrogenase (NADP+)/metabolismo , Nitrogênio/análise , Fosfoenolpiruvato Carboxilase/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Potássio/análise , Salinidade , Plântula/efeitos dos fármacos , Plântula/enzimologia , Estresse Fisiológico , Superóxido Dismutase/metabolismo
14.
J Environ Sci Health B ; 52(11): 812-816, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28857671

RESUMO

The effects of field dodder on physiological and anatomical processes in untreated sugar beet plants and the effects of propyzamide on field dodder were examined under controlled conditions. The experiment included the following variants: N-noninfested sugar beet plants (control); I - infested sugar beet plants (untreated), and infested plants treated with propyzamide (1500 g a.i. ha-1 (T1) and 2000 g a.i. ha-1(T2)). The following parameters were checked: physiological-pigment contents (chlorophyll a, chlorophyll b, total carotenoids); anatomical -leaf parameters: thickness of epidermis, parenchyma and spongy tissue, mesophyll and underside leaf epidermis, and diameter of bundle sheath cells; petiole parameters: diameter of tracheid, petiole hydraulic conductance, xylem surface, phloem cell diameter and phloem area in sugar beet plants. A conventional paraffin wax method was used to prepare the samples for microscopy. Pigment contents were measured spectrophotometrically after methanol extraction. All parameters were measured: prior to herbicide application (0 assessment), then 7, 14, 21, 28 and 35 days after application (DAA). Field dodder was found to affect the pigment contents in untreated sugar beet plants, causing significant reductions. Conversely, reduction in the treated plants decreased 27% to 4% for chlorophyll a, from 21% to 5% for chlorophyll b, and from 28% to 5% for carotenoids (T1). Also, in treatment T2, reduction decreased in infested and treated plants from 19% to 2% for chlorophyll a, from 21% to 2% for chlorophyll b, from 23% to 3% for carotenoids and stimulation of 1% and 2% was observed 28 and 35 DAA, respectively. Plants infested (untreated) by field dodder had lower values of most anatomical parameters, compared to noninfested plants. The measured anatomical parameters of sugar beet leaves and petiole had significantly higher values in noninfested plants and plants treated with propyzamide than in untreated plants. Also, the results showed that propyzamide is an adequate herbicide for control of field dodder at the stage of early infestation.


Assuntos
Benzamidas/farmacologia , Beta vulgaris/fisiologia , Beta vulgaris/parasitologia , Cuscuta , Herbicidas/farmacologia , Animais , Beta vulgaris/anatomia & histologia , Beta vulgaris/efeitos dos fármacos , Clorofila/análogos & derivados , Clorofila/metabolismo , Clorofila A , Fotossíntese , Folhas de Planta/metabolismo
15.
Biochim Biophys Acta ; 1850(4): 602-11, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25484312

RESUMO

BACKGROUND: Allicin (diallylthiosulfinate) is the major volatile- and antimicrobial substance produced by garlic cells upon wounding. We tested the hypothesis that allicin affects membrane function and investigated 1) betanine pigment leakage from beetroot (Beta vulgaris) tissue, 2) the semipermeability of the vacuolar membrane of Rhoeo discolor cells, 3) the electrophysiology of plasmalemma and tonoplast of Chara corallina and 4) electrical conductivity of artificial lipid bilayers. METHODS: Garlic juice and chemically synthesized allicin were used and betanine loss into the medium was monitored spectrophotometrically. Rhoeo cells were studied microscopically and Chara- and artificial membranes were patch clamped. RESULTS: Beet cell membranes were approximately 200-fold more sensitive to allicin on a mol-for-mol basis than to dimethyl sulfoxide (DMSO) and approximately 400-fold more sensitive to allicin than to ethanol. Allicin-treated Rhoeo discolor cells lost the ability to plasmolyse in an osmoticum, confirming that their membranes had lost semipermeability after allicin treatment. Furthermore, allicin and garlic juice diluted in artificial pond water caused an immediate strong depolarization, and a decrease in membrane resistance at the plasmalemma of Chara, and caused pore formation in the tonoplast and artificial lipid bilayers. CONCLUSIONS: Allicin increases the permeability of membranes. GENERAL SIGNIFICANCE: Since garlic is a common foodstuff the physiological effects of its constituents are important. Allicin's ability to permeabilize cell membranes may contribute to its antimicrobial activity independently of its activity as a thiol reagent.


Assuntos
Beta vulgaris/efeitos dos fármacos , Chara/efeitos dos fármacos , Commelinaceae/efeitos dos fármacos , Alho/química , Bicamadas Lipídicas/metabolismo , Ácidos Sulfínicos/farmacologia , Beta vulgaris/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Chara/metabolismo , Commelinaceae/metabolismo , Dimetil Sulfóxido/farmacologia , Dissulfetos , Pigmentos Biológicos/metabolismo , Ácidos Sulfínicos/farmacocinética
16.
New Phytol ; 209(2): 733-45, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26351005

RESUMO

Iron (Fe) is abundant in soils but generally poorly soluble. Plants, with the exception of Graminaceae, take up Fe using an Fe(III)-chelate reductase coupled to an Fe(II) transporter. Whether or not nongraminaceous species can convert scarcely soluble Fe(III) forms into soluble Fe forms has deserved little attention so far. We have used Beta vulgaris, one among the many species whose roots secrete flavins upon Fe deficiency, to study whether or not flavins are involved in Fe acquisition. Flavins secreted by Fe-deficient plants were removed from the nutrient solution, and plants were compared with Fe-sufficient plants and Fe-deficient plants without flavin removal. Solubilization of a scarcely soluble Fe(III)-oxide was assessed in the presence or absence of flavins, NADH (nicotinamide adenine dinucleotide, reduced form) or plant roots, and an Fe(II) trapping agent. The removal of flavins from the nutrient solution aggravated the Fe deficiency-induced leaf chlorosis. Flavins were able to dissolve an Fe(III)-oxide in the presence of NADH. The addition of extracellular flavins enabled roots of Fe-deficient plants to reductively dissolve an Fe(III)-oxide. We concluded that root-secretion of flavins improves Fe nutrition in B. vulgaris. Flavins allow B. vulgaris roots to mine Fe from Fe(III)-oxides via reductive mechanisms.


Assuntos
Beta vulgaris/metabolismo , Compostos Férricos/metabolismo , Flavinas/metabolismo , Ferro/metabolismo , Beta vulgaris/efeitos dos fármacos , Flavinas/farmacologia , Ferro/farmacocinética , Metais/metabolismo , Metais/farmacocinética , NAD/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Solubilidade
17.
J Plant Res ; 129(3): 527-38, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26860314

RESUMO

In this study, sugar beets (Beta vulgaris L.) were grown at different K(+)/Na(+) concentrations: mmol/L, 3/0 (control); 0.03/2.97 (K-Na replacement group; T(rep)); 0.03/0 (K deficiency group; T(def)) in order to investigate the effects of K(+) deficiency and replacement of K(+) by Na(+) on plant proteomics, and to explore the physiological processes influenced by Na(+) to compensate for a lack of K(+). After 22 days, fresh and dry weight as well as the Na(+) and K(+) concentration were measured and changes in proteomics were tested by 2D gel electrophoresis. Interestingly, Na(+) showed stimulation in growth of seedlings and hindrance of K(+) assimilation in T(rep). Significant changes were also observed in 27 protein spots among the treatments. These are proteins involved in photosynthesis, cellular respiration, protein folding and degradation, stress and defense, other metabolisms, transcription related, and protein synthesis. A wide range of physiological processes, including light reaction, CO2 assimilation, glycolysis, and tricaboxylic acid cycle, was impaired owing to K(+) starvation. Compensating for the effect of K(+) starvation, an increase in photosynthesis was also observed in T(rep). However, we also found a limitation of cellular respiration by Na(+). Na(+) is therefore in some ways able to recover damage due to K deficiency at protein level, but cannot functionally replace K as an essential nutrient.


Assuntos
Beta vulgaris/metabolismo , Potássio/farmacologia , Proteômica , Sódio/farmacologia , Beta vulgaris/efeitos dos fármacos , Beta vulgaris/crescimento & desenvolvimento , Biomassa , Respiração Celular/efeitos dos fármacos , Análise por Conglomerados , Eletroforese em Gel Bidimensional , Íons , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
Planta ; 240(4): 679-86, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25034827

RESUMO

MAIN CONCLUSION: By integrating molecular, biochemical, and physiological data, ethylene biosynthesis in sugar beet was shown to be differentially regulated, affecting root elongation in a concentration-dependent manner. There is a close relation between ethylene production and seedling growth of sugar beet (Beta vulgaris L.), yet the exact function of ethylene during this early developmental stage is still unclear. While ethylene is mostly considered to be a root growth inhibitor, we found that external 1-aminocyclopropane-1-carboxylic acid (ACC) regulates root growth in sugar beet in a concentration-dependent manner: low concentrations stimulate root growth while high concentrations inhibit root growth. These results reveal that ethylene action during root elongation is strongly concentration dependent. Furthermore our detailed study of ethylene biosynthesis kinetics revealed a very strict gene regulation pattern of ACC synthase (ACS) and ACC oxidase (ACO), in which ACS is the rate liming step during sugar beet seedling development.


Assuntos
Aminoácidos Cíclicos/farmacologia , Beta vulgaris/crescimento & desenvolvimento , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Aminoácido Oxirredutases/efeitos dos fármacos , Aminoácido Oxirredutases/genética , Beta vulgaris/efeitos dos fármacos , Beta vulgaris/genética , Perfilação da Expressão Gênica , Germinação/efeitos dos fármacos , Liases/efeitos dos fármacos , Liases/genética , Fenótipo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/genética
19.
New Phytol ; 202(3): 920-928, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24506824

RESUMO

Iron (Fe) has an essential role in the biosynthesis of chlorophylls and redox cofactors, and thus chloroplast iron uptake is a process of special importance. The chloroplast ferric chelate oxidoreductase (cFRO) has a crucial role in this process but it is poorly characterized. To study the localization and mechanism of action of cFRO, sugar beet (Beta vulgaris cv Orbis) chloroplast envelope fractions were isolated by gradient ultracentrifugation, and their purity was tested by western blotting against different marker proteins. The ferric chelate reductase (FCR) activity of envelope fractions was studied in the presence of NAD(P)H (reductants) and FAD coenzymes. Reduction of Fe(III)-ethylenediaminetetraacetic acid was monitored spectrophotometrically by the Fe(II)-bathophenanthroline disulfonate complex formation. FCR activity, that is production of free Fe(II) for Fe uptake, showed biphasic saturation kinetics, and was clearly associated only to chloroplast inner envelope (cIE) vesicles. The reaction rate was > 2.5 times higher with NADPH than with NADH, which indicates the natural coenzyme preference of cFRO activity and its dependence on photosynthesis. FCR activity of cIE vesicles isolated from Fe-deficient plants also showed clear biphasic kinetics, where the KM of the low affinity component was elevated, and thus this component was down-regulated.


Assuntos
Beta vulgaris/enzimologia , Cloroplastos/enzimologia , FMN Redutase/metabolismo , Beta vulgaris/efeitos dos fármacos , Beta vulgaris/fisiologia , Cloroplastos/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Ferro/farmacologia , Deficiências de Ferro , Peptídeos/metabolismo , Vesículas Transportadoras/efeitos dos fármacos , Vesículas Transportadoras/metabolismo
20.
Tsitol Genet ; 48(2): 3-11, 2014.
Artigo em Russo | MEDLINE | ID: mdl-24818505

RESUMO

Impact of insect pests makes a significant limitation of the sugar beet crop yield. Integration of cry-genes of Bacillus thuringiensis into plant genome is one of the promising strategies to ensure plant resistance. The aim of this work was to obtain sugar beet lines (based on the MM 1/2 line) transformed with cry2A and cry1Cgenes. We have optimized transformation protocol and direct plant let regeneration protocol from leaf explants using 1 mg/l benzylaminopurine as well as 0,25 mg/l benzylaminopurine and 0,1 mg/l indole-butyric acid. Consequently, transgenic sugar beet lines transformed with vector constructs pRD400-cry1C and pRD400-cry2A have been obtained. PCR analysis revealed integration of cry2A and cry1C into genome of transgenic lines and expression of these genes in leaf tissues was shown by reverse transcription PCR.


Assuntos
Proteínas de Bactérias/genética , Beta vulgaris/genética , Dípteros/patogenicidade , Endotoxinas/genética , Proteínas Hemolisinas/genética , Controle Biológico de Vetores , Doenças das Plantas/genética , Folhas de Planta/genética , Animais , Bacillus thuringiensis/química , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/metabolismo , Compostos de Benzil/farmacologia , Beta vulgaris/efeitos dos fármacos , Beta vulgaris/imunologia , Beta vulgaris/parasitologia , Dípteros/fisiologia , Endotoxinas/metabolismo , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos , Genoma de Planta , Proteínas Hemolisinas/metabolismo , Indóis/farmacologia , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/imunologia , Folhas de Planta/parasitologia , Plantas Geneticamente Modificadas , Purinas/farmacologia , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA