Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(34): 13751-6, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22869731

RESUMO

Original antigenic sin is a phenomenon wherein sequential exposure to closely related influenza virus variants reduces antibody (Ab) response to novel antigenic determinants in the second strain and, consequently, impairs the development of immune memory. This could pose a risk to the development of immune memory in persons previously infected with or vaccinated against influenza. Here, we explored strategies to overcome original antigenic sin responses in mice sequentially exposed to two closely related hemagglutinin 1 neuraminidase 1 (H1N1) influenza strains A/PR/8/34 and A/FM/1/47. We found that dendritic cell-activating adjuvants [Bordetella pertussis toxin (PT) or CpG ODN or a squalene-based oil-in-water nanoemulsion (NE)], upon administration during the second viral exposure, completely protected mice from a lethal challenge and enhanced neutralizing-Ab titers against the second virus. Interestingly, PT and NE adjuvants when administered during the first immunization even prevented original antigenic sin in subsequent immunization without any adjuvants. As an alternative to using adjuvants, we also found that repeated immunization with the second viral strain relieved the effects of original antigenic sin. Taken together, our studies provide at least three ways of overcoming original antigenic sin.


Assuntos
Formação de Anticorpos , Imunização/métodos , Memória Imunológica , Orthomyxoviridae/genética , Animais , Apresentação de Antígeno , Bordetella/metabolismo , Linhagem Celular , Ilhas de CpG , Cães , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Sistema Imunitário , Vírus da Influenza A Subtipo H1N1/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Oligonucleotídeos , Toxina Pertussis/metabolismo
2.
J Environ Sci Health B ; 50(2): 81-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25587777

RESUMO

The main objective of the investigation was to study the biodegradation of endosulfan isomers and its major metabolite endosulfate by two biosurfactant producing bacterial strains of Bordetella petrii. The significance of the study is to evaluate the capability of biosurfactant producing bacterial strains in enhancing the bioavailability of endosulfan. Sixty bacterial strains were isolated from the endosulfan degrading bacterial consortium and were screened for endosulfan degradation and biosurfactant production. Among those, two strains Bordetella petrii I GV 34 (Gene bank Accession No KJ02262) and Bordetella petrii II GV 36 (Gene bank Accession No KJ022625) were capable of degrading endosulfan with simultaneous biosurfactant production. Bordetella petrii I degraded 89% of α and 84% of ß isomers of endosulfan whereas Bordetella petrii II degraded 82% of both the isomers. Both the strains were able to reduce the surface tension up to 19.6% and 21.4% with a minimum observed surface tension of 45 Dynes/cm and 44 Dynes/cm, respectively. The study revealed that the strains have the potential to enhance the degradation endosulfan residues in contaminated sites and water by biosurfactant production.


Assuntos
Biodegradação Ambiental , Bordetella/metabolismo , Endossulfano/metabolismo , Microbiologia do Solo , Poluentes do Solo , Tensoativos/metabolismo
3.
Biodegradation ; 25(3): 447-57, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24179091

RESUMO

Microcystin-LR (MC-LR) and microcystin-RR (MC-RR) are the two most common microcystins (MCs) present in fresh water posing a direct threat to public health because of their hepatotoxicity. A novel MC-degrading bacterium designated MC-LTH1 capable of degrading MC-LR and -RR was isolated, and the degradation rates and mechanisms of MC-LR and -RR for this bacterium were investigated. The bacterium was identified as Bordetella sp. and shown to possess a homologous mlrA gene responsible for degrading MCs. To the best of our knowledge, this is the first report of mlrA gene detection in Bordetella species. MC-LR and -RR were completely degraded separately at rates of 0.31 mg/(L h) and 0.17 mg/(L h). However, the degradation rates of MC-LR and -RR decreased surprisingly to 0.27 mg/(L h) and 0.12 mg/(L h), respectively, when both of them were simultaneously present. Degradation products were identified by high performance liquid chromatography coupled with time-of-flight mass spectrometry. Adda (m/z 332.2215, C20H29NO3) commonly known as a final product of MC degradation by isolated bacteria was detected as an intermediate in this study. Linearized MC-LR (m/z 1013.5638, C49H76N10O13), linearized MC-RR (m/z 1056.4970, C49H77N13O13), and tetrapeptide (m/z 615.3394, C32H46N4O8) were also detected as intermediates. These results indicate that the bacterial strain MC-LTH1 is quite efficient for the detoxification of MC-LR and MC-RR, and possesses significant bioremediation potential.


Assuntos
Toxinas Bacterianas/metabolismo , Bordetella/metabolismo , Genes Bacterianos , Microcistinas/metabolismo , Biodegradação Ambiental , Bordetella/classificação , Bordetella/genética , Bordetella/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Água Doce/química , Água Doce/microbiologia , Cinética , Toxinas Marinhas , Filogenia , RNA Ribossômico 16S/genética
4.
Mol Microbiol ; 86(3): 580-93, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22924881

RESUMO

A putative operon encoding an uncharacterized ferrous iron transport (FtrABCD) system was previously identified in cDNA microarray studies. In growth studies using buffered medium at pH values ranging from pH 6.0 to 7.6, Bordetella pertussis and Bordetella bronchiseptica FtrABCD system mutants showed dramatic reductions in growth yields under iron-restricted conditions at pH 6.0, but had no growth defects at pH 7.6. Supplementation of culture medium with 2 mM ascorbate reductant was inhibitory to alcaligin siderophore-dependent growth at pH 7.6, but had a neglible effect on FtrABCD system-dependent iron assimilation at pH 6.0 consistent with its predicted specificity for ferrous iron. Unlike Bordetella siderophore-dependent and haem iron transport systems, and in agreement with its hypothesized role in transport of inorganic iron from periplasm to cytoplasm, FtrABCD system function did not require the TonB energy transduction complex. Gene fusion analysis revealed that ftrABCD promoter activity was maximal under iron-restricted growth conditions at acidic pH. The pH of human airway surface fluids ranges from pH 5.5 to 7.9, and the FtrABCD system may supply ferrous iron necessary for Bordetella growth in acidic host microenvironments in which siderophores are ineffective for iron retrieval.


Assuntos
Proteínas de Bactérias/metabolismo , Bordetella/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Compostos Ferrosos/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Bordetella/genética , Bordetella/crescimento & desenvolvimento , Proteínas de Transporte de Cátions/genética , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio
5.
Avian Dis ; 57(2): 307-10, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24689192

RESUMO

Bordetella hinzii infects primarily poultry and immunocompromised humans. It is closely related to the etiologic agent of turkey coryza, Bordetella avium. Distinguishing between B. avium and B. hinzii is difficult, and there is no method for identification of B. hinzii suitable for use by diagnostic laboratories. This report details the development of a B. hinzii-specific PCR targeting the ompA gene. Assay sensitivity is 100% based on analysis of 48 B. hinzii isolates from diverse geographic locations representing all known ribotypes. Evaluation of 71 isolates of B. avium and 20 other bacterial isolates from poultry, comprising gram-negative and gram-positive commensals and pathogens of nine genera, demonstrated an assay specificity of 100%. The ompA PCR is a rapid, reliable, and accurate method for identification of B. hinzii and provides a valuable new tool for veterinary diagnostic laboratories investigating poultry respiratory disease outbreaks.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Infecções por Bordetella/veterinária , Bordetella/genética , Reação em Cadeia da Polimerase/métodos , Doenças das Aves Domésticas/diagnóstico , Perus , Animais , Proteínas da Membrana Bacteriana Externa/metabolismo , Bordetella/isolamento & purificação , Bordetella/metabolismo , Infecções por Bordetella/diagnóstico , Infecções por Bordetella/microbiologia , Reação em Cadeia da Polimerase/veterinária , Doenças das Aves Domésticas/microbiologia
6.
Nat Genet ; 35(1): 32-40, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12910271

RESUMO

Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica are closely related Gram-negative beta-proteobacteria that colonize the respiratory tracts of mammals. B. pertussis is a strict human pathogen of recent evolutionary origin and is the primary etiologic agent of whooping cough. B. parapertussis can also cause whooping cough, and B. bronchiseptica causes chronic respiratory infections in a wide range of animals. We sequenced the genomes of B. bronchiseptica RB50 (5,338,400 bp; 5,007 predicted genes), B. parapertussis 12822 (4,773,551 bp; 4,404 genes) and B. pertussis Tohama I (4,086,186 bp; 3,816 genes). Our analysis indicates that B. parapertussis and B. pertussis are independent derivatives of B. bronchiseptica-like ancestors. During the evolution of these two host-restricted species there was large-scale gene loss and inactivation; host adaptation seems to be a consequence of loss, not gain, of function, and differences in virulence may be related to loss of regulatory or control functions.


Assuntos
Bordetella bronchiseptica/genética , Bordetella pertussis/genética , Bordetella/genética , Genoma Bacteriano , Sequência de Bases , Bordetella/metabolismo , Bordetella/patogenicidade , Bordetella bronchiseptica/metabolismo , Bordetella bronchiseptica/patogenicidade , Bordetella pertussis/metabolismo , Bordetella pertussis/patogenicidade , DNA Bacteriano , Dados de Sequência Molecular , Análise de Sequência de DNA , Especificidade da Espécie
7.
J Bacteriol ; 194(2): 233-42, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22056934

RESUMO

Bordetella bacteria are Gram-negative respiratory pathogens of animals, birds, and humans. A hallmark feature of some Bordetella species is their ability to efficiently survive in the respiratory tract even after vaccination. Bordetella bronchiseptica and Bordetella pertussis form biofilms on abiotic surfaces and in the mouse respiratory tract. The Bps exopolysaccharide is one of the critical determinants for biofilm formation and the survival of Bordetella in the murine respiratory tract. In order to gain a better understanding of regulation of biofilm formation, we sought to study the mechanism by which Bps expression is controlled in Bordetella. Expression of bpsABCD (bpsA-D) is elevated in biofilms compared with levels in planktonically grown cells. We found that bpsA-D is expressed independently of BvgAS. Subsequently, we identified an open reading frame (ORF), BB1771 (designated here bpsR), that is located upstream of and in the opposite orientation to the bpsA-D locus. BpsR is homologous to the MarR family of transcriptional regulators. Measurement of bpsA and bpsD transcripts and the Bps polysaccharide levels from the wild-type and the ΔbpsR strains suggested that BpsR functions as a repressor. Consistent with enhanced production of Bps, the bpsR mutant displayed considerably more structured biofilms. We mapped the bpsA-D promoter region and showed that purified BpsR protein specifically bound to the bpsA-D promoter. Our results provide mechanistic insights into the regulatory strategy employed by Bordetella for control of the production of the Bps polysaccharide and biofilm formation.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Bordetella/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Polissacarídeos/metabolismo , Animais , Proteínas de Bactérias/genética , Sequência de Bases , Bordetella/genética , Bordetella/metabolismo , Regulação para Baixo , Deleção de Genes , Humanos , Óperon , Polissacarídeos/genética , Regiões Promotoras Genéticas , Transcrição Gênica
8.
Appl Microbiol Biotechnol ; 93(5): 2135-45, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21983709

RESUMO

Two heterotrophic As(III)-oxidizing bacteria, SPB-24 and SPB-31 were isolated from garden soil. Based on 16S rRNA gene sequence analysis, strain SPB-24 was closely related to genus Bordetella, and strain SPB-31 was most closely related to genus Achromobacter. Both strains exhibited high As(III) (15 mM for SPB-24 and 40 mM for SPB-31) and As(V) (>300 mM for both strains) resistance. Both strains oxidized 5 mM As(III) in minimal medium with oxidation rate of 554 and 558 µM h(-1) for SPB-24 and SPB-31, respectively. Washed cells of both strains oxidized As(III) over broad pH and temperature range with optimum pH 6 and temperature 42°C for both strains. The As(III) oxidation kinetic by washed cells showed K (m) and V (max) values of 41.7 µM and 1,166 µM h(-1) for SPB-24, 52 µM and 1,186 µM h(-1) for SPB-31. In the presence of minimal amount of carbon source, the strains showed high As(III) oxidation rate and high specific arsenite oxidase activity. The ability of strains to resist high concentration of arsenic and oxidize As(III) with highest rates reported so far makes them potential candidates for bioremediation of arsenic-contaminated environment.


Assuntos
Achromobacter/metabolismo , Arsenitos/metabolismo , Bordetella/metabolismo , Microbiologia do Solo , Achromobacter/classificação , Achromobacter/genética , Achromobacter/isolamento & purificação , Arsenitos/toxicidade , Biotransformação , Bordetella/classificação , Bordetella/genética , Bordetella/isolamento & purificação , Carbono/metabolismo , Análise por Conglomerados , Meios de Cultura/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura
9.
Res Microbiol ; 173(4-5): 103937, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35248703

RESUMO

Current vaccines against Bordetella pertussis do not prevent colonization and transmission of the bacteria, and vaccine-induced immunity wanes rapidly. Besides, efficacy of vaccines for Bordetella bronchiseptica remains unclear. Novel vaccines could be based on outer-membrane vesicles (OMVs), but vesiculation of bordetellae needs to be increased for cost-effective vaccine production. Here, we focused on increasing OMV production by reducing the anchoring of the outer membrane to the peptidoglycan layer. Inactivation of rmpM, tolR, and pal failed, presumably because their products are essential in bordetellae. Conditional pal mutants were constructed, which were hypervesiculating under Pal-depletion conditions. SDS-PAGE and Western blot analyses showed that the protein composition of OMVs produced under Pal-depletion conditions resembled that of the outer membrane but differed from that of OMVs released by the wild type. Pal depletion affected the cell morphology and appeared to increase the amounts of cell-surface-exposed phospholipids, possibly reflecting a role for the Tol-Pal system in retrograde phospholipid transport. We also identified additional lipoproteins in bordetellae with a putative peptidoglycan-anchoring domain. However, their inactivation did not influence OMV production. We conclude that the conditional pal mutants could be valuable for the development of OMV-based vaccines.


Assuntos
Bordetella , Peptidoglicano , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Bordetella/metabolismo , Lipoproteínas/genética , Lipídeos de Membrana
10.
Microbiol Spectr ; 10(5): e0144322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36040173

RESUMO

Bordetella bronchiseptica injects virulence proteins called effectors into host cells via a type III secretion system (T3SS) conserved among many Gram-negative bacteria. Small proteins called chaperones are required to stabilize some T3SS components or localize them to the T3SS machinery. In a previous study, we identified a chaperone-like protein named Bcr4 that regulates T3SS activity in B. bronchiseptica. Bcr4 does not show strong sequence similarity to well-studied T3SS proteins of other bacteria, and its function remains to be elucidated. Here, we investigated the mechanism by which Bcr4 controls T3SS activity. A pulldown assay revealed that Bcr4 interacts with BscI, based on its homology to other bacterial proteins, to be an inner rod protein of the T3SS machinery. An additional pulldown assay using truncated Bcr4 derivatives and secretion profiles of B. bronchiseptica producing truncated Bcr4 derivatives showed that the Bcr4 C-terminal region is necessary for the interaction with BscI and activation of the T3SS. Moreover, the deletion of BscI abolished the secretion of type III secreted proteins from B. bronchiseptica and the translocation of a cytotoxic effector into cultured mammalian cells. Finally, we show that BscI is unstable in the absence of Bcr4. These results suggest that Bcr4 supports the construction of the T3SS machinery by stabilizing BscI. This is the first demonstration of a chaperone for the T3SS inner rod protein among the virulence bacteria possessing the T3SS. IMPORTANCE The type III secretion system (T3SS) is a needle-like complex that projects outward from bacterial cells. Bordetella bronchiseptica uses the T3SS to inject virulence proteins into host cells. Our previous study reported that a protein named Bcr4 is essential for the secretion of virulence proteins from B. bronchiseptica bacterial cells and delivery through the T3SS. Because other bacteria lack a Bcr4 homologue, the function of Bcr4 has not been elucidated. In this study, we discovered that Bcr4 interacts with BscI, a component of the T3SS machinery. We show that a B. bronchiseptica BscI-deficient strain was unable to secrete type III secreted proteins. Furthermore, in a B. bronchiseptica strain that overproduces T3SS component proteins, Bcr4 is required to maintain BscI in bacterial cells. These results suggest that Bcr4 stabilizes BscI to allow construction of the T3SS in B. bronchiseptica.


Assuntos
Bordetella bronchiseptica , Bordetella , Animais , Sistemas de Secreção Tipo III/metabolismo , Bordetella/metabolismo , Bordetella bronchiseptica/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mamíferos/metabolismo
11.
Microbiol Immunol ; 55(3): 154-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21204952

RESUMO

Bordetella dermonecrotic toxin (DNT) affects the biological function of host cells by activating intracellular Rho GTPases. The toxin binds to unidentified receptor(s) via 54 N-terminal amino acids, undergoes intramolecular cleavage on the C-terminal side of Arg(44) by furin or furin-like protease, and eventually enters the cytoplasm where the Rho GTPases reside. The binding to the receptor(s) and intramolecular cleavage are essential for DNT to intoxicate cells, and the 54 amino-acid binding domain encompasses the cleavage site, however, it is unclear whether these two events are related. In this study, we could narrow down the cell-binding domain to the N-terminal amino acids 2-30. The region does not contain the furin-recognition site, indicating that the cell binding and the intramolecular cleavage are independent events.


Assuntos
Aminoácidos/metabolismo , Bordetella/metabolismo , Peptídeos/metabolismo , Transglutaminases/metabolismo , Fatores de Virulência de Bordetella/metabolismo , Sequência de Aminoácidos , Aminoácidos/química , Animais , Sítios de Ligação , Bordetella/genética , Células COS , Linhagem Celular , Chlorocebus aethiops , Genes Reporter/genética , Humanos , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Luciferases/metabolismo , Camundongos , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transglutaminases/química , Transglutaminases/genética , Fatores de Virulência de Bordetella/química , Fatores de Virulência de Bordetella/genética , Proteínas rho de Ligação ao GTP/metabolismo
12.
BMC Microbiol ; 10: 247, 2010 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-20868510

RESUMO

BACKGROUND: Bordetella dermonecrotic toxin (DNT) causes the turbinate atrophy in swine atrophic rhinitis, caused by a Bordetella bronchiseptica infection of pigs, by inhibiting osteoblastic differentiation. The toxin is not actively secreted from the bacteria, and is presumed to be present in only small amounts in infected areas. How such small amounts can affect target tissues is unknown. RESULTS: Fluorescence microscopy revealed that DNT associated with a fibrillar structure developed on cultured cells. A cellular component cross-linked with DNT conjugated with a cross-linker was identified as fibronectin by mass spectrometry. Colocalization of the fibronectin network on the cells with DNT was also observed by fluorescence microscope. Several lines of evidence suggested that DNT interacts with fibronectin not directly, but through another cellular component that remains to be identified. The colocalization was observed in not only DNT-sensitive cells but also insensitive cells, indicating that the fibronectin network neither serves as a receptor for the toxin nor is involved in the intoxicating procedures. The fibronectin network-associated toxin was easily liberated when the concentration of toxin in the local environment decreased, and was still active. CONCLUSIONS: Components in the extracellular matrix are known to regulate activities of various growth factors by binding and liberating them in response to alterations in the extracellular environment. Similarly, the fibronectin-based extracellular matrix may function as a temporary storage system for DNT, enabling small amounts of the toxin to efficiently affect target tissues or cells.


Assuntos
Bordetella/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Transglutaminases/metabolismo , Fatores de Virulência de Bordetella/metabolismo , Animais , Infecções por Bordetella/metabolismo , Infecções por Bordetella/microbiologia , Infecções por Bordetella/patologia , Linhagem Celular , Fibronectinas/metabolismo , Humanos , Camundongos , Rinite Atrófica/metabolismo , Rinite Atrófica/microbiologia , Rinite Atrófica/patologia
13.
Cell Microbiol ; 11(12): 1735-49, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19650828

RESUMO

The Bordetella type III secretion system (T3SS) effector protein BteA is necessary and sufficient for rapid cytotoxicity in a wide range of mammalian cells. We show that BteA is highly conserved and functionally interchangeable between Bordetella bronchiseptica, Bordetella pertussis and Bordetella parapertussis. The identification of BteA sequences required for cytotoxicity allowed the construction of non-cytotoxic mutants for localization studies. BteA derivatives were targeted to lipid rafts and showed clear colocalization with cortical actin, ezrin and the lipid raft marker GM1. We hypothesized that BteA associates with the cytoplasmic face of lipid rafts to locally modulate host cell responses to Bordetella attachment. B. bronchiseptica adhered to host cells almost exclusively to GM1-enriched lipid raft microdomains and BteA colocalized to these same sites following T3SS-mediated translocation. Disruption of lipid rafts with methyl-beta-cyclodextrin protected cells from T3SS-induced cytotoxicity. Localization to lipid rafts was mediated by a 130-amino-acid lipid raft targeting domain at the N-terminus of BteA, and homologous domains were identified in virulence factors from other bacterial species. Lipid raft targeting sequences from a T3SS effector (Plu4750) and an RTX-type toxin (Plu3217) from Photorhabdus luminescens directed fusion proteins to lipid rafts in a manner identical to the N-terminus of BteA.


Assuntos
Motivos de Aminoácidos , Proteínas de Bactérias/química , Infecções por Bordetella/metabolismo , Bordetella/metabolismo , Microdomínios da Membrana/metabolismo , Via Secretória , Fatores de Virulência de Bordetella/metabolismo , Sequência de Aminoácidos , Animais , Aderência Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bordetella/efeitos dos fármacos , Bordetella/genética , Infecções por Bordetella/microbiologia , Linhagem Celular , Proteínas do Citoesqueleto/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Microdomínios da Membrana/efeitos dos fármacos , Camundongos , Dados de Sequência Molecular , Ratos , beta-Ciclodextrinas/farmacologia
14.
Bioprocess Biosyst Eng ; 33(9): 1131-8, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20535619

RESUMO

The applicability of Bordetella sp. Sulf-8 to degrade Hydrogen Sulfide (H(2)S) gas in a biotrickling system was investigated. The isolate is a heterotrophic gram-negative, catalase- and oxidase-positive, rod-shaped bacterium which can metabolize thiosulfate or sulfide into sulfate. The mesophilic Bordetella sp. Sulf-8 can grow within a wide pH range using yeast as carbon source, with or without the presence of sulfur. In batch experiments, kinetic constants such as maximum specific growth rate (µ (max) = 0.12 1/h), saturation constant (K (S) = 0.017 g/L), and specific sulfur removal rate (88 mg S/g cells h) were obtained. In biotrickling experiments removal efficiencies were satisfactory, but the system performance was observed to be more influenced by empty bed residence time than by H(2)S feed gas concentration. Critical and maximum elimination capacities were 78.0 and 94.5 g H(2)S/m(3) day, respectively. Macrokinetic analysis of the biotrickling system revealed maximum H(2)S removal rate V (max) = 15.97 g S/kg media-day and half saturation constant K (S') = 12.45 ppm(v).


Assuntos
Bordetella/metabolismo , Sulfeto de Hidrogênio/química , Biofilmes , Biotecnologia/métodos , Cromatografia/métodos , Desenho de Equipamento , Gases , Concentração de Íons de Hidrogênio , Microbiologia Industrial/métodos , Cinética , Microscopia Eletrônica de Varredura/métodos , Modelos Estatísticos , Proteobactérias/metabolismo , Enxofre/química , Temperatura
15.
Biometals ; 22(1): 33-41, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19130264

RESUMO

The bacterial respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica employ multiple alternative iron acquisition pathways to adapt to changes in the mammalian host environment during infection. The alcaligin, enterobactin, and heme utilization pathways are differentially expressed in response to the cognate iron source availability by a mechanism involving substrate-inducible positive regulators. As inducers, the iron sources function as chemical signals termed ferrimones. Ferrimone-sensing allows the pathogen to adapt and exploit early and late events in the infection process.


Assuntos
Proteínas de Bactérias/metabolismo , Bordetella/metabolismo , Ferro/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteínas de Bactérias/genética , Bordetella/genética , Bordetella/patogenicidade , Infecções por Bordetella/metabolismo , Enterobactina/química , Enterobactina/metabolismo , Regulação Bacteriana da Expressão Gênica , Heme/genética , Heme/metabolismo , Humanos , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/metabolismo , Sideróforos/química , Sideróforos/metabolismo
16.
Biodegradation ; 20(2): 199-207, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18704698

RESUMO

Bacterial strains were isolated from endosulfan treated soil to study the microbial degradation of this pesticide in broth medium and soil microcosm. The isolates were grown in minimal medium and screened for endosulfan degradation. The strain, which utilized endosulfan and showed maximum growth, was selected for detail studies. Maximum degrading capability in shake flask culture was shown by Bordetella sp. B9 which degraded 80% of alpha endosulfan and 86% of beta endosulfan in 18 days. Soil microcosm study was also carried out using this strain in six different treatments. Endosulfan ether and endosulfan lactone were the main metabolites in broth culture, while in soil microcosm endosulfan sulfate was also found along with endosulfan ether and endosulfan lactone. This bacterial strain has a potential to be used for bioremediation of the contaminated sites.


Assuntos
Bordetella/metabolismo , Endossulfano/metabolismo , Microbiologia do Solo , Sequência de Bases , Carbono/metabolismo , Cromatografia Gasosa , Meios de Cultura , Primers do DNA
17.
Biochimie ; 159: 81-92, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30578925

RESUMO

A dozen species of human and animal pathogens have been described to date in the Bordetella genus, with the majority being respiratory tract pathogens. Bordetella avium lipopolysaccharides have been shown to be important virulence factors for this bird pathogen. B. hinzii is closely related to the B. avium species, but has also been isolated from humans. B. trematum is associated to ear and blood infections in humans. Its lipid A structure, the biological active moiety of LPS, was found to be closely related to those of B. avium and B. hinzii. It is important to unveil the subtle structural modifications orchestrated during the LPS biosynthetic pathway to better understand host adaptation. The present data are also important in the context of deciphering the virulence pathways of this important genus containing the major pathogens B. pertussis and B. parapertussis, responsible for whooping cough. We recently reported the isolated lipid A structures of the three presented species, following the previously identified O-chain structures. In the present study, we provide details on the free and O-chain-linked core oligosaccharides which were required to characterize the complete LPS structures. Data are presented here in relation to relevant biosynthesis genes. The present characterization of the three species is well illustrated by Matrix Assisted Laser Desorption Mass Spectrometry experiments, and data were obtained mainly on native LPS molecules for the first time.


Assuntos
Bordetella , Loci Gênicos , Lipopolissacarídeos , Fatores de Virulência , Bordetella/química , Bordetella/genética , Bordetella/metabolismo , Humanos , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/química , Lipopolissacarídeos/genética , Estrutura Molecular , Fatores de Virulência/biossíntese , Fatores de Virulência/química , Fatores de Virulência/genética
18.
Microbiol Spectr ; 7(2)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30927348

RESUMO

Bacteria use a variety of mechanisms to translocate proteins from the cytoplasm, where they are synthesized, to the cell surface or extracellular environment or directly into other cells, where they perform their ultimate functions. Type V secretion systems (T5SS) use ß-barrel transporter domains to export passenger domains across the outer membranes of Gram-negative bacteria. Distinct among T5SS are type Vb or two-partner secretion (TPS) systems in which the transporter and passenger are separate proteins, necessitating a mechanism for passenger-translocator recognition in the periplasm and providing the potential for reuse of the translocator. This review describes current knowledge of the TPS translocation mechanism, using Bordetella filamentous hemagglutinin (FHA) and its transporter FhaC as a model. We present the hypothesis that the TPS pathway may be a general mechanism for contact-dependent delivery of toxins to target cells.


Assuntos
Bordetella/metabolismo , Hemaglutininas/metabolismo , Via Secretória/fisiologia , Adesinas Bacterianas/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Bordetella/patogenicidade , Bordetella pertussis/metabolismo , Bordetella pertussis/patogenicidade , Bactérias Gram-Negativas , Proteínas de Membrana Transportadoras , Modelos Moleculares , Sistemas de Secreção Tipo V/metabolismo , Virulência , Fatores de Virulência de Bordetella/metabolismo , Coqueluche/microbiologia
19.
Infect Immun ; 76(7): 2966-77, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18426869

RESUMO

We describe the serendipitous discovery of BatB, a classical-type Bordetella autotransporter (AT) protein with an approximately 180-kDa passenger domain that remains noncovalently associated with the outer membrane. Like genes encoding all characterized protein virulence factors in Bordetella species, batB transcription is positively regulated by the master virulence regulatory system BvgAS. BatB is predicted to share similarity with immunoglobulin A (IgA) proteases, and we showed that BatB binds Ig in vitro. In vivo, a Bordetella bronchiseptica DeltabatB mutant was unable to overcome innate immune defenses and was cleared from the lower respiratory tracts of mice more rapidly than wild-type B. bronchiseptica. This defect was abrogated in SCID mice, suggesting that BatB functions to resist clearance during the first week postinoculation in a manner dependent on B- and T-cell-mediated activities. Taken together with the previous demonstration that polymorphonuclear neutrophils (PMN) are critical for the control of B. bronchiseptica in mice, our data support the hypothesis that BatB prevents nonspecific antibodies from facilitating PMN-mediated clearance during the first few days postinoculation. Neither of the strictly human-adapted Bordetella subspecies produces a fully functional BatB protein; nucleotide differences within the putative promoter region prevent batB transcription in Bordetella pertussis, and although expressed, the batB gene of human-derived Bordetella parapertussis (B. parapertussis(hu)) contains a large in-frame deletion relative to batB of B. bronchiseptica. Taken together, our data suggest that BatB played an important role in the evolution of virulence and host specificity among the mammalian-adapted bordetellae.


Assuntos
Proteínas de Bactérias/metabolismo , Bordetella/classificação , Bordetella/metabolismo , Imunoglobulina G/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Animais , Proteínas de Bactérias/genética , Sequência de Bases , Bordetella/genética , Bordetella/patogenicidade , Infecções por Bordetella/imunologia , Infecções por Bordetella/microbiologia , Feminino , Regulação Bacteriana da Expressão Gênica , Cobaias , Humanos , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Dados de Sequência Molecular , Coelhos , Ratos , Ratos Wistar , Fatores de Transcrição/metabolismo
20.
BMC Genomics ; 9: 449, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18826580

RESUMO

BACKGROUND: Bordetella petrii is the only environmental species hitherto found among the otherwise host-restricted and pathogenic members of the genus Bordetella. Phylogenetically, it connects the pathogenic Bordetellae and environmental bacteria of the genera Achromobacter and Alcaligenes, which are opportunistic pathogens. B. petrii strains have been isolated from very different environmental niches, including river sediment, polluted soil, marine sponges and a grass root. Recently, clinical isolates associated with bone degenerative disease or cystic fibrosis have also been described. RESULTS: In this manuscript we present the results of the analysis of the completely annotated genome sequence of the B. petrii strain DSMZ12804. B. petrii has a mosaic genome of 5,287,950 bp harboring numerous mobile genetic elements, including seven large genomic islands. Four of them are highly related to the clc element of Pseudomonas knackmussii B13, which encodes genes involved in the degradation of aromatics. Though being an environmental isolate, the sequenced B. petrii strain also encodes proteins related to virulence factors of the pathogenic Bordetellae, including the filamentous hemagglutinin, which is a major colonization factor of B. pertussis, and the master virulence regulator BvgAS. However, it lacks all known toxins of the pathogenic Bordetellae. CONCLUSION: The genomic analysis suggests that B. petrii represents an evolutionary link between free-living environmental bacteria and the host-restricted obligate pathogenic Bordetellae. Its remarkable metabolic versatility may enable B. petrii to thrive in very different ecological niches.


Assuntos
Bordetella/genética , Bordetella/metabolismo , Bordetella/patogenicidade , Genoma Bacteriano , Proteínas de Bactérias/genética , Composição de Bases , Evolução Biológica , Bordetella bronchiseptica/genética , Bordetella parapertussis/genética , Bordetella pertussis/genética , Cromossomos Bacterianos , Genes Bacterianos , Biblioteca Genômica , Sequências Repetitivas Dispersas , Dados de Sequência Molecular , Sintenia , Virulência/genética , Fatores de Virulência de Bordetella/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA