Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 362
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Microb Pathog ; 189: 106596, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395317

RESUMO

Botulism is a severe disease caused by potent botulinum neurotoxins (BoNTs) produced by Clostridium botulinum. This disease is associated with high-lethality outbreaks in cattle, which have been linked to the ingestion of preformed BoNT serotypes C and D, emphasizing the need for effective vaccines. The potency of current commercial toxoids (formaldehyde-inactivated BoNTs) is assured through tests in guinea pigs according to government regulatory guidelines, but their short-term immunity raises concerns. Recombinant vaccines containing the receptor-binding domain have demonstrated potential for eliciting robust protective immunity. Previous studies have demonstrated the safety and effectiveness of recombinant E. coli bacterin, eliciting high titers of neutralizing antibodies against C. botulinum and C. perfringens in target animal species. In this study, neutralizing antibody titers in cattle and the long-term immune response against BoNT/C and D were used to assess the efficacy of the oil-based adjuvant compared with that of the aluminum hydroxide adjuvant in cattle. The vaccine formulation containing Montanide™ ISA 50 yielded significantly higher titers of neutralizing antibody against BoNT/C and D (8.64 IU/mL and 9.6 IU/mL, respectively) and induced an immune response that lasted longer than the response induced by aluminum, extending between 30 and 60 days. This approach represents a straightforward, cost-effective strategy for recombinant E. coli bacterin, enhancing both the magnitude and duration of the immune response to botulism.


Assuntos
Toxinas Botulínicas , Botulismo , Clostridium botulinum , Bovinos , Animais , Cobaias , Botulismo/prevenção & controle , Botulismo/veterinária , Hidróxido de Alumínio , Escherichia coli/genética , Vacinas Bacterianas/genética , Toxinas Botulínicas/genética , Clostridium botulinum/genética , Adjuvantes Imunológicos , Anticorpos Neutralizantes , Imunidade , Anticorpos Antibacterianos
2.
Anaerobe ; 89: 102895, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39122140

RESUMO

INTRODUCTION: Producing commercial bacterins/toxoids against Clostridium spp. is laborious and hazardous. Conversely, developing prototype vaccines using purified recombinant toxoids, though safe and effective, is both laborious and costly for application in production animals. OBJECTIVE: Considering that inactivated recombinant Escherichiacoli (bacterin) is a simple, cost-effective, and to be safe solution, we evaluated, for the first time, a pentavalent formulation of recombinant bacterins containing the alpha, beta, and epsilon toxins of Clostridiumperfringens and C and D neurotoxins of Clostridiumbotulinum in sheep. METHODS: Subcutaneously, 18 Texel sheep received two doses (200 µg of each antigen) of recombinant bacterin (n = 7) or purified recombinant antigens (n = 6) on days 0 and 28, while the control group (n = 5) did not receive an immunization. Sera samples from days 0 (before the 1st dose), 28 (before the 2nd dose), and 56, 84, and 112 were used for measuring IgG (indirect ELISA) and neutralizing antibodies (mouse serum neutralization). RESULTS: Both formulations induced significant levels of IgG against all five toxins (p < 0.05) up to day 112, with peaks at days 28 and 56 post-immunization. The expected booster effect occurred only for the botulinum toxins. The neutralizing antibody titers were satisfactory against ETX (≥2 IU/ml for both formulations) and BoNT-D [5 IU/ml (bacterin) and 10 IU/ml (purified)]. CONCLUSION: While adjustments are required, the recombinant bacterin platform holds great potential for polyvalent vaccines due to its straightforward, safe, and cost-effective production, establishing it as a user-friendly technology for the veterinary immunobiological industry.


Assuntos
Anticorpos Antibacterianos , Anticorpos Neutralizantes , Vacinas Bacterianas , Botulismo , Enterotoxemia , Animais , Botulismo/prevenção & controle , Botulismo/veterinária , Botulismo/imunologia , Ovinos , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Anticorpos Antibacterianos/sangue , Enterotoxemia/prevenção & controle , Enterotoxemia/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Doenças dos Ovinos/prevenção & controle , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/microbiologia , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Imunoglobulina G/sangue , Escherichia coli/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Feminino
3.
Appl Microbiol Biotechnol ; 107(10): 3205-3216, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37058230

RESUMO

Botulinum neurotoxin (BoNTs; serotypes A, B, E, and F) cause botulism disease in humans, which could be effectively treated using antitoxins. Herein, we established a novel receptor-binding domain (RBD)-based antitoxin using recombinant C terminal heavy chain (Hc) domains of BoNTs as immunogens. Immunization of horses with these recombinant Hc domains allowed the purification and digestion of IgGs from hyper-immune sera to produce high-quality and high-efficiency monovalent botulism antitoxin F(ab')2 against each BoNT (M-BATs). However, these M-BATs could not bind or neutralize other serotypes of BoNTs, and that there were no cross-protective effects among these M-BATs. This suggested the need to prepare tetravalent antitoxins to neutralize the four BoNTs simultaneously. Thus, these M-BATs were formulated into a novel tetravalent botulism antitoxin (T-BAT), in which a 10-ml volume contained 10000 IU of BoNT/A and 5000 IU of BoNT/B, BoNT/E, and BoNT/F antitoxins. The novel antitoxin preparation could prevent and treat the four mixed botulinum neurotoxins simultaneously in vivo, representing strong efficacy in an animal poisoning model. Moreover, these antibodies in T-BAT could bind the RBD, whereas conventional antitoxins based on inactivated toxins mainly bind the light chain or heavy chain translocation domain (HN) and weakly bind the important RBD in current experimental conditions. The high levels of RBD-specific novel antitoxins can efficiently bind the RBD and neutralize natural or recombinant toxins containing this RBD. The findings of the present study experimentally support the use of RBD-specific antitoxins to treat BoNT serotype A, B, E, and F-mediated botulism. This study demonstrated the concept of developing potent novel multivalent antitoxins against all BoNTs or other toxins, using the RBD of these toxins as an alternative antigen to inactivated toxins. KEY POINTS: • Antitoxins based on the receptor-binding domains of botulinum neurotoxins were made. • Novel antitoxin binds RBD; traditional antitoxin mainly binds light chain or HN domain. • A tetravalent antitoxin could prevent and treat the four mixed neurotoxins in vivo.


Assuntos
Antitoxinas , Toxinas Botulínicas Tipo A , Botulismo , Humanos , Animais , Cavalos , Antitoxina Botulínica , Botulismo/prevenção & controle , Neurotoxinas , Imunização
4.
Appl Microbiol Biotechnol ; 106(4): 1531-1542, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35141866

RESUMO

The potential use of biological agents has become a major public health concern worldwide. According to the CDC classification, Bacillus anthracis and Clostridium botulinum, the bacterial pathogens that cause anthrax and botulism, respectively, are considered to be the most dangerous potential biological agents. Currently, there is no licensed vaccine that is well suited for mass immunization in the event of an anthrax or botulism epidemic. In the present study, we developed a dual-expression system-based multipathogen DNA vaccine that encodes the PA-D4 gene of B. anthracis and the HCt gene of C. botulinum. When the multipathogen DNA vaccine was administered to mice and guinea pigs, high level antibody responses were elicited against both PA-D4 and HCt. Analysis of the serum IgG subtype implied a combined Th1/Th2 response to both antigens, but one that was Th2 skewed. In addition, immunization with the multipathogen DNA vaccine induced effective neutralizing antibody activity against both PA-D4 and HCt. Finally, the protection efficiency of the multipathogen DNA vaccine was determined by sequential challenge with 10 LD50 of B. anthracis spores and 10 LD50 of botulinum toxin, or vice versa, and the multipathogen DNA vaccine provided higher than 50% protection against lethal challenge with both high-risk biothreat agents. Our studies suggest the strategy used for this anthrax-botulinum multipathogen DNA vaccine as a prospective approach for developing emergency vaccines that can be immediately distributed on a massive scale in response to a biothreat emergency or infectious disease outbreak. Key points • A novel multipathogen DNA vaccine was constructed against anthrax and botulism. • Robust immune responses were induced following vaccination. • Suggests a potential vaccine development strategy against biothreat agents.


Assuntos
Vacinas contra Antraz , Antraz , Bacillus anthracis , Botulismo , Vacinas de DNA , Animais , Antraz/prevenção & controle , Anticorpos Antibacterianos , Antígenos de Bactérias/genética , Bacillus anthracis/genética , Armas Biológicas , Botulismo/prevenção & controle , Cobaias , Imunidade , Camundongos , Vacinas de DNA/genética
5.
Vet Clin North Am Equine Pract ; 38(2): 269-282, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35953145

RESUMO

Botulism and tetanus are the 2 primary manifestations of neurologic disease caused by clostridial toxins. Only a small dose of clostridial toxin is required to induce severe, and often fatal, disease. Consequently, definitive diagnosis of either disease is nearly impossible to achieve antemortem or postmortem; presumptive diagnosis is usually made based on physical and neurologic examination findings. Because the severity of clinical signs can worsen rapidly, prognosis worsens when therapeutic intervention is delayed. Highly effective vaccines are available against both botulism and tetanus and are critical in preventative approaches to control.


Assuntos
Toxinas Botulínicas , Botulismo , Doenças dos Cavalos , Tétano , Animais , Toxinas Botulínicas/uso terapêutico , Botulismo/diagnóstico , Botulismo/prevenção & controle , Botulismo/veterinária , Cavalos , Tétano/diagnóstico , Tétano/prevenção & controle , Tétano/veterinária , Toxina Tetânica
6.
Biotechnol Lett ; 43(5): 1019-1036, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33629143

RESUMO

OBJECTIVES: To identify immunogenic proteins of C. botulinum type B secretome by immunoproteomic analysis. RESULTS: In the present study, an attempt was made to elucidate the vaccine candidates/diagnostic molecules against botulism using immuno proteomic approach. C. botulinum type B secretome was elucidated when it was grown in TPGY as well as CMM media. Predominant 51 proteins were identified in both the media using 2-DE and mass spectrometry analysis. 2D gels (CMM & TPGY) were probed with respected proteins mice antiserum and obtained 17 and 10 immunogenic proteins in TPGY as well as CMM media respectively. Hypothetical protein CLOSPO_00563, ornithine carbamoyl transferase, FlaA, molecular chaperone GroEL and secreted protease proteins were found as the common immuno dominant proteins in both media. Polyclonal Antibodies raised against C. botulinum types A and E showed cross-reactivity with secretome C. botulinum type B at the lowest dilution (1:1000) but did not show cross reactivity with highest dilution (1:30,000) with C. botulinum type B secretome. Polyclonal antibodies against C. botulinum type F secretome did not show cross reactivity with C. botulinum type B secretome. CONCLUSIONS: Identified immunogenic proteins can be used as vaccine candidates and diagnostic markers for the infant and wound botulism but common immunogenic proteins may be the best vaccine candidate molecule for development of vaccine as well as diagnostic system against the infant and wound botulism.


Assuntos
Proteínas de Bactérias/imunologia , Clostridium botulinum tipo B/imunologia , Animais , Proteínas de Bactérias/metabolismo , Botulismo/diagnóstico , Botulismo/imunologia , Botulismo/prevenção & controle , Clostridium botulinum/classificação , Clostridium botulinum/imunologia , Clostridium botulinum tipo B/isolamento & purificação , Clostridium botulinum tipo B/metabolismo , Reações Cruzadas , Meios de Cultura/metabolismo , Soros Imunes/imunologia , Camundongos , Proteômica
7.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218099

RESUMO

Botulinum neurotoxins (BoNTs) are highly potent, neuroparalytic protein toxins that block the release of acetylcholine from motor neurons and autonomic synapses. The unparalleled toxicity of BoNTs results from the highly specific and localized cleavage of presynaptic proteins required for nerve transmission. Currently, the only pharmacotherapy for botulism is prophylaxis with antitoxin, which becomes progressively less effective as symptoms develop. Treatment for symptomatic botulism is limited to supportive care and artificial ventilation until respiratory function spontaneously recovers, which can take weeks or longer. Mechanistic insights into intracellular toxin behavior have progressed significantly since it was shown that toxins exploit synaptic endocytosis for entry into the nerve terminal, but fundamental questions about host-toxin interactions remain unanswered. Chief among these are mechanisms by which BoNT is internalized into neurons and trafficked to sites of molecular toxicity. Elucidating how receptor-bound toxin is internalized and conditions under which the toxin light chain engages with target SNARE proteins is critical for understanding the dynamics of intoxication and identifying novel therapeutics. Here, we discuss the implications of newly discovered modes of synaptic vesicle recycling on BoNT uptake and intraneuronal trafficking.


Assuntos
Toxinas Botulínicas/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Neurônios Motores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Antitoxinas/farmacologia , Botulismo/metabolismo , Botulismo/prevenção & controle , Humanos , Neurônios Motores/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
8.
Harm Reduct J ; 15(1): 36, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29996865

RESUMO

BACKGROUND: People who inject drugs (PWID) are at an increased risk of wound botulism, a potentially fatal acute paralytic illness. During the first 6 months of 2015, a large outbreak of wound botulism was confirmed among PWID in Scotland, which resulted in the largest outbreak in Europe to date. METHODS: A multidisciplinary Incident Management Team (IMT) was convened to conduct an outbreak investigation, which consisted of enhanced surveillance of cases in order to characterise risk factors and identify potential sources of infection. RESULTS: Between the 24th of December 2014 and the 30th of May 2015, a total of 40 cases were reported across six regions in Scotland. The majority of the cases were male, over 30 and residents in Glasgow. All epidemiological evidence suggested a contaminated batch of heroin or cutting agent as the source of the outbreak. There are significant challenges associated with managing an outbreak among PWID, given their vulnerability and complex addiction needs. Thus, a pragmatic harm reduction approach was adopted which focused on reducing the risk of infection for those who continued to inject and limited consequences for those who got infected. CONCLUSIONS: The management of this outbreak highlighted the importance and need for pragmatic harm reduction interventions which support the addiction needs of PWID during an outbreak of spore-forming bacteria. Given the scale of this outbreak, the experimental learning gained during this and similar outbreaks involving spore-forming bacteria in the UK was collated into national guidance to improve the management and investigation of future outbreaks among PWID.


Assuntos
Botulismo/prevenção & controle , Surtos de Doenças/prevenção & controle , Redução do Dano , Dependência de Heroína/epidemiologia , Infecção dos Ferimentos/prevenção & controle , Adulto , Analgésicos Opioides/química , Botulismo/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Contaminação de Medicamentos , Feminino , Heroína/química , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Gestão de Riscos , Escócia/epidemiologia , Infecção dos Ferimentos/epidemiologia , Adulto Jovem
10.
J Infect Dis ; 213(10): 1606-14, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26936913

RESUMO

BACKGROUND: Only Clostridium botulinum strain IBCA10-7060 produces the recently described novel botulinum neurotoxin type H (BoNT/H). BoNT/H (N-terminal two-thirds most homologous to BoNT/F and C-terminal one-third most homologous to BoNT/A) requires antitoxin to toxin ratios ≥1190:1 for neutralization by existing antitoxins. Hence, more potent and safer antitoxins against BoNT/H are needed. METHODS: We therefore evaluated our existing monoclonal antibodies (mAbs) to BoNT/A and BoNT/F for BoNT/H binding, created yeast-displayed mutants to select for higher-affinity-binding mAbs by using flow cytometry, and evaluated the mAbs' ability to neutralize BoNT/H in the standard mouse bioassay. RESULTS: Anti-BoNT/A HCC-binding mAbs RAZ1 and CR2 bound BoNT/H with high affinity. However, only 1 of 6 BoNT/F mAbs (4E17.2A) bound BoNT/H but with an affinity >800-fold lower (equilibrium dissociation binding constant [KD] = 7.56 × 10(-8)M) than its BoNT/F affinity (KD= 9.1 × 10(-11)M), indicating that the N-terminal two-thirds of BoNT/H is immunologically unique. The affinity of 4E17.2A for BoNT/H was increased >500-fold to KD= 1.48 × 10(-10)M (mAb 4E17.2D). A combination of mAbs RAZ1, CR2, and 4E17.2D completely protected mice challenged with 280 mouse median lethal doses of BoNT/H at a mAb dose as low as 5 µg of total antibody. CONCLUSIONS: This 3-mAb combination potently neutralized BoNT/H and represents a potential human antitoxin that could be developed for the prevention and treatment of type H botulism.


Assuntos
Anticorpos Monoclonais/imunologia , Antitoxinas/imunologia , Toxinas Botulínicas/imunologia , Botulismo/imunologia , Clostridium botulinum/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Toxinas Botulínicas/química , Botulismo/tratamento farmacológico , Botulismo/prevenção & controle , Modelos Animais de Doenças , Cabras , Cavalos , Humanos , Camundongos
11.
Appl Environ Microbiol ; 82(20): 6091-6101, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27496774

RESUMO

Clostridium botulinum and Bacillus anthracis produce potent toxins that cause severe disease in humans. New and improved vaccines are needed for both of these pathogens. For mucosal vaccine delivery using lactic acid bacteria, chromosomal expression of antigens is preferred over plasmid-based expression systems, as chromosomal expression circumvents plasmid instability and the need for antibiotic pressure. In this study, we constructed three strains of Lactobacillus acidophilus NCFM expressing from the chromosome (i) the nontoxic host receptor-binding domain of the heavy chain of Clostridium botulinum serotype A neurotoxin (BoNT/A-Hc), (ii) the anthrax protective antigen (PA), and (iii) both the BoNT/A-Hc and the PA. The BoNT/A-Hc vaccine cassette was engineered to contain the signal peptide from the S-layer protein A from L. acidophilus and a dendritic-cell-targeting peptide. A chromosomal region downstream of lba0889 carrying a highly expressed enolase gene was selected for insertion of the vaccine cassettes. Western blot analysis confirmed the heterologous expression of the two antigens from plasmid and chromosome locations. Stability assays demonstrated loss of the vaccine cassettes from expression plasmids without antibiotic maintenance. RNA sequencing showed high expression of each antigen and that insertion of the vaccine cassettes had little to no effect on the transcription of other genes in the chromosome. This study demonstrated that chromosomal integrative recombinant strains are promising vaccine delivery vehicles when targeted into high-expression chromosomal regions. Levels of expression match high-copy-number plasmids and eliminate the requirement for antibiotic selective maintenance of recombinant plasmids. IMPORTANCE: Clostridium botulinum and Bacillus anthracis produce potent neurotoxins that pose a biochemical warfare concern; therefore, effective vaccines against these bacteria are required. Chromosomal expression of antigens is preferred over plasmid-based expression systems since expressing antigens from a chromosomal location confers an advantage to the vaccine strains by eliminating the antibiotic maintenance required for plasmids and negates issues with plasmid instability that would result in loss of the antigen. Lactic acid bacteria, including Lactobacillus acidophilus, have shown potential for mucosal vaccine delivery, as L. acidophilus is bile and acid tolerant, allowing transit through the gastrointestinal tract where cells interact with host epithelial and immune cells, including dendritic cells. In this study, we successfully expressed C. botulinum and B. anthracis antigens in the probiotic L. acidophilus strain NCFM. Both antigens were highly expressed individually or in tandem from the chromosome of L. acidophilus.


Assuntos
Antraz/microbiologia , Bacillus anthracis/genética , Toxinas Botulínicas Tipo A/genética , Botulismo/microbiologia , Clostridium botulinum/genética , Expressão Gênica , Lactobacillus acidophilus/genética , Antraz/prevenção & controle , Bacillus anthracis/metabolismo , Vacinas Bacterianas/genética , Vacinas Bacterianas/metabolismo , Toxinas Botulínicas Tipo A/metabolismo , Botulismo/prevenção & controle , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Clostridium botulinum/metabolismo , Lactobacillus acidophilus/metabolismo
12.
Anaerobe ; 42: 182-187, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27989928

RESUMO

The aim of the present study was to compare the potency and safety of vaccines against Clostridium botulinum (C. botulinum) type C and D formulated with chitosan as controlled release matrix and vaccines formulated in conventional manner using aluminum hydroxide. Parameters were established for the development of chitosan microspheres, using simple coacervation to standardize the use of this polymer in protein encapsulation for vaccine formulation. To formulate a single shot vaccine inactivated antigens of C. botulinum type C and D were used with original toxin titles equal to 5.2 and 6.2 log LD50/ml, respectively. For each antigen a chitosan based solution of 50 mL was prepared. Control vaccines were formulated by mixing toxoid type C and D with aluminum hydroxide [25% Al(OH)3, pH 6.3]. The toxoid sterility, innocuity and potency of vaccines were evaluated as stipulated by MAPA-BRASIL according to ministerial directive no. 23. Encapsulation efficiency of BSA in chitosan was 32.5-40.37%, while that the encapsulation efficiency to toxoid type C was 41,03% (1.94 mg/mL) and of the toxoid type D was 32.30% (1.82 mg/mL). The single shot vaccine formulated using chitosan for protein encapsulation through simple coacervation showed potency and safety similar to conventional vaccine currently used in Brazilian livestock (10 and 2 IU/mL against C. botulinum type C and D, respectively). The present work suggests that our single shot vaccine would be a good option as a cattle vaccine against these C. botulinum type C and D.


Assuntos
Vacinas Bacterianas/administração & dosagem , Botulismo/prevenção & controle , Quitosana , Animais , Anticorpos Antibacterianos/imunologia , Vacinas Bacterianas/efeitos adversos , Vacinas Bacterianas/química , Vacinas Bacterianas/imunologia , Clostridium botulinum/imunologia , Preparações de Ação Retardada , Cobaias , Veículos Farmacêuticos , Potência de Vacina
13.
Anaerobe ; 40: 58-62, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27236078

RESUMO

Botulinum neurotoxin (BoNT) serotypes C and D are responsible for cattle botulism, a fatal paralytic disease that results in great economic losses in livestock production. Vaccination is the main approach to prevent cattle botulism. However, production of commercially available vaccines (toxoids) involves high risk and presents variation of BoNT production between batches. Such limitations can be attenuated by the development of novel nontoxic recombinant vaccines through a simple and reproducible process. The aim of this study was to evaluate the protective potential of recombinant non-purified botulinum neurotoxin serotypes C and D. Bivalent vaccines containing 200 µg rHCC and rHCD each were formulated in three different ways: (1) purified antigens; (2) recombinant Escherichia coli bacterins; (3) recombinant E. coli cell lysates (supernatant and inclusion bodies). Guinea pigs immunized subcutaneously with recombinant formulations developed a protective immune response against the respective BoNTs as determined by a mouse neutralization bioassay with pooled sera. Purified recombinant antigens were capable of inducing 13 IU/mL antitoxin C and 21 IU/mL antitoxin D. Similarly, both the recombinant bacterins and the cell lysate formulations were capable of inducing 12 IU/mL antitoxin C and 20 IU/mL antitoxin D. These values are two times as high as compared to values induced by the commercial toxoid used as control, and two to ten times as high as the minimum amount required by the Brazilian Ministry of Agriculture, Livestock and Food Supply (MAPA), respectively. Therefore, we used a practical, industry-friendly, and efficient vaccine production process that resulted in formulations capable of inducing protective immune response (neutralizing antitoxins) against botulism serotypes C and D.


Assuntos
Anticorpos Antibacterianos/sangue , Antitoxinas/sangue , Vacinas Bacterianas/administração & dosagem , Toxinas Botulínicas Tipo A/administração & dosagem , Toxinas Botulínicas/administração & dosagem , Botulismo/prevenção & controle , Animais , Anticorpos Antibacterianos/biossíntese , Antitoxinas/biossíntese , Vacinas Bacterianas/biossíntese , Vacinas Bacterianas/imunologia , Toxinas Botulínicas/biossíntese , Toxinas Botulínicas/imunologia , Toxinas Botulínicas Tipo A/biossíntese , Toxinas Botulínicas Tipo A/imunologia , Botulismo/sangue , Botulismo/imunologia , Clostridium botulinum/efeitos dos fármacos , Clostridium botulinum/genética , Clostridium botulinum/imunologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cobaias , Imunidade Humoral/efeitos dos fármacos , Camundongos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Vacinação , Vacinas Sintéticas
14.
Protein Expr Purif ; 110: 122-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25727047

RESUMO

The receptor-binding domain of botulinum neurotoxins (the HC fragment) is a promising vaccine candidate. Among the HC fragments of the seven BoNT serotypes, the expression of HC/B in Escherichia coli is considered especially challenging due to its accumulation as a non-soluble protein aggregate. In this study, the effects of different parameters on the expression of soluble HC/B were evaluated using a screening assay that included growing the bacterium at a small scale, a chemical cell lysis step, and a specific ELISA. The highest soluble HC/B expression levels were obtained when the bacterium E. coli BL21(DE3)+pET-9a-HC/B was grown in terrific broth media at 18°C without induction. Under these conditions, the yield was an order of magnitude higher than previously reported. Standard purification of the protein using a nickel column resulted in a low purity of HC/B. However, the addition of an acidic wash step prior to protein elution released a major protein contaminant and significantly increased the purity level. Mass spectrometry analysis identified the contaminant as ArnA, an E. coli protein that often contaminates recombinant His-tagged protein preparations. The purified HC/B was highly immunogenic, protecting mice from a 10(6) LD50 challenge after a single vaccination and generating a neutralizing titer of 50IU/ml after three immunizations. Moreover, the functionality of the protein was preserved, as it inhibited BoNT/B intoxication in vivo, presumably due to blockade of the neurotoxin protein receptor synaptotagmin.


Assuntos
Anticorpos Antibacterianos/biossíntese , Proteínas de Bactérias/genética , Vacinas Bacterianas/imunologia , Toxinas Botulínicas Tipo A/genética , Botulismo/prevenção & controle , Plasmídeos/metabolismo , Animais , Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Toxinas Botulínicas Tipo A/administração & dosagem , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/isolamento & purificação , Botulismo/imunologia , Botulismo/microbiologia , Botulismo/mortalidade , Carboxiliases/genética , Carboxiliases/isolamento & purificação , Clonagem Molecular , Clostridium botulinum/química , Clostridium botulinum/imunologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Histidina/química , Histidina/genética , Camundongos , Modelos Moleculares , Oligopeptídeos/química , Oligopeptídeos/genética , Plasmídeos/química , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Análise de Sobrevida , Vacinação
16.
Anaerobe ; 28: 130-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24930432

RESUMO

Botulism is a paralytic disease caused by intoxication with neurotoxins produced by Clostridium botulinum. Despite their similar mechanism of action, the botulinum neurotoxins (BoNT) are classified in eight serotypes (A to H). As to veterinary medicine, the impact of this disease is essentially economic, since different species of production animals can be affected, especially by BoNT/C and D. In human health, botulism is feared in a possible biological warfare, what would involve mainly the BoNT/A, B, E and F. In both cases, the most effective way to deal with botulism is through prevention, which involves vaccination. However, the current vaccines against this disease have several drawbacks on their process of production and, besides this, can be dangerous to producers since it requires certain level of biosafety. This way, recombinant vaccines have been shown to be a great alternative for the development of vaccines against both animal and human botulism. All BoNTs have a 50-kDa light chain (LC) and a 100-kDa heavy chain (HC). The latter one presents two domains of 50 kDa, called the N-terminal (HN) and C-terminal (HC) halves. Among these regions, the HC alone seem to confer the proper immune response against intoxication. Since innumerous studies describe the expression of these distinct regions using different systems, strategies, and protocols, it is difficult to define the best option for a viable vaccine production. Thereby, the present review describes the problematic of botulism and discusses the main advances for the viable production of vaccines for both human and veterinary medicine using recombinant antigens.


Assuntos
Antígenos de Bactérias/imunologia , Toxinas Botulínicas/imunologia , Clostridium botulinum/imunologia , Expressão Gênica , Animais , Antígenos de Bactérias/genética , Toxinas Botulínicas/genética , Botulismo/prevenção & controle , Botulismo/veterinária , Clostridium botulinum/genética , Vetores Genéticos , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
17.
J Sci Food Agric ; 94(4): 707-12, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23873138

RESUMO

BACKGROUND: Specific screening methods for complex food matrices are needed that enable unambiguous and sensitive detection of bio threat agents (BTAs) such as Bacillus anthracis spores and microbial toxins (e.g. staphylococcal enterotoxin B (SEB) and clostridial botulinum neurotoxins (BoNTs)). The present study describes an image-based 96-well Meso Scale Discovery (MSD) electrochemiluminescence (ECL) assay for simultaneous detection of BTAs in dairy milk products. RESULTS: The limit of detection of this ECL assay is 40 pg mL⁻¹ for BoNT/A complex, 10 pg mL⁻¹ for SEB and 40000 CFU mL⁻¹ for Bacillus anthracis spores in dairy milk products. The ECL assay was successfully applied to screen type A Clostridium botulinum outbreak strains. CONCLUSION: The results of the study indicate that this ECL assay is very sensitive, rapid (<6 h) and multiplex in nature. The ECL assay has potential for use as an in vitro screening method for BTAs over other comparable immunoassays.


Assuntos
Toxinas Bacterianas/análise , Clostridium botulinum tipo A/isolamento & purificação , Laticínios/análise , Contaminação de Alimentos , Inspeção de Alimentos/métodos , Doenças Transmitidas por Alimentos/prevenção & controle , Luminescência , Antígenos de Bactérias/análise , Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Bacillus anthracis/crescimento & desenvolvimento , Bacillus anthracis/isolamento & purificação , Bacillus anthracis/fisiologia , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Toxinas Botulínicas Tipo A/análise , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/metabolismo , Botulismo/epidemiologia , Botulismo/microbiologia , Botulismo/prevenção & controle , Clostridium botulinum tipo A/crescimento & desenvolvimento , Clostridium botulinum tipo A/metabolismo , Contagem de Colônia Microbiana , Laticínios/efeitos adversos , Laticínios/microbiologia , Surtos de Doenças/prevenção & controle , Técnicas Eletroquímicas , Enterotoxinas/análise , Enterotoxinas/química , Enterotoxinas/metabolismo , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/etiologia , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Limite de Detecção , Medições Luminescentes , Esporos Bacterianos/isolamento & purificação , Estados Unidos , United States Food and Drug Administration
18.
World J Microbiol Biotechnol ; 30(6): 1861-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24469548

RESUMO

Botulinum neurotoxin type E heavy chain consists of two domains: N-terminal half as a translocation domain and C-terminal half (Hcc) as a binding domain. In this research a synthetic gene fragment encoding the binding domain of botulinum neurotoxin type E (BoNT/E-Hcc) was highly expressed in Escherichia coli by pGEX4T-1 vector. After purification, the recombinant BoNT/E-Hcc was evaluated by SDS-PAGE and western blot (immunoblot) analysis. Average yields obtained in this research were 3.7 mg recombinant BoNT/E-Hcc per liter of bacterial culture. The recombinant protein was injected in mice for study of its protection ability against botulinum neurotoxin type E challenges. The challenge studies showed that, vaccinated mice were fully protected against 104 × minimum lethal dose of botulinum neurotoxin type E.


Assuntos
Toxinas Botulínicas/imunologia , Botulismo/prevenção & controle , Animais , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/isolamento & purificação , Toxinas Botulínicas/genética , Toxinas Botulínicas/isolamento & purificação , Botulismo/imunologia , Botulismo/microbiologia , Clostridium botulinum/genética , Clostridium botulinum/imunologia , Clostridium botulinum/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação
19.
Hum Vaccin Immunother ; 20(1): 2329446, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38525945

RESUMO

Botulism is a fatal neurologic disease caused by the botulinum toxin (BoNT) produced by Clostridium botulinum. It is a rare but highly toxic disease with symptoms, such as cramps, nausea, vomiting, diarrhea, dysphagia, respiratory failure, muscle weakness, and even death. Currently, two types of antitoxin are used: equine-derived heptavalent antitoxin and human-derived immunoglobulin (BabyBIG®). However, heptavalent treatment may result in hypersensitivity, whereas BabyBIG®, has a low yield. The present study focused on the development of three anti-BoNT monoclonal antibodies (mAbs), 1B18, C25, and M2, in Nicotiana benthamiana. The plant-expressed mAbs were purified and examined for size, purity and integrity by SDS-PAGE, western blotting and size-exclusion chromatography. Analysis showed that plant-produced anti-BoNT mAbs can fully assemble in plants, can be purified in a single purification step, and mostly remain as monomeric proteins. The efficiency of anti-BoNT mAbs binding to BoNT/A and B was then tested. Plant-produced 1B18 retained its ability to recognize both mBoNT/A1 and ciBoNT/B1. At the same time, the binding specificities of two other mAbs were determined: C25 for mBoNT/A1 and M2 for ciBoNT/B1. In conclusion, our results confirm the use of plants as an alternative platform for the production of anti-BoNT mAbs. This plant-based technology will serve as a versatile system for the development botulism immunotherapeutics.


Assuntos
Antitoxinas , Toxinas Botulínicas Tipo A , Botulismo , Animais , Cavalos , Humanos , Botulismo/prevenção & controle , Nicotiana , Anticorpos Monoclonais
20.
J Drug Target ; 32(2): 213-222, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38164940

RESUMO

Botulinum toxin is a protein toxin secreted by Clostridium botulinum that is strongly neurotoxic. Due to its characteristics of being super toxic, quick acting, and difficult to prevent, the currently reported antiviral studies focusing on monoclonal antibodies have limited effectiveness. Therefore, for the sake of effectively prevention and treatment of botulism and to maintain country biosecurity as well as the health of the population, in this study, we intend to establish a single chain antibody (scFv) targeting the carboxyl terminal binding functional domain of the botulinum neurotoxin heavy chain (BONT/AHc) of botulinum neurotoxin type A, and explore the value of a new passive immune method in antiviral research which based on adeno-associated virus (AAV) mediated vector immunoprophylaxis (VIP) strategy. The scFv small-molecular single-chain antibody sequenced, designed, constructed, expressed and purified by hybridoma has high neutralising activity and affinity level, which can lay a good foundation for the modification and development of antibody engineering drugs. In vivo experiments, AAV-mediated scFv engineering drug has good anti-BONT/A toxin neutralisation ability, has advantages of simple operation, stable expression and good efficacy, and may be one of the effective treatment strategies for long-term prevention and protection of BONT/A botulinum neurotoxin.


Assuntos
Toxinas Botulínicas Tipo A , Botulismo , Clostridium botulinum , Humanos , Toxinas Botulínicas Tipo A/metabolismo , Toxinas Botulínicas Tipo A/uso terapêutico , Botulismo/tratamento farmacológico , Botulismo/prevenção & controle , Clostridium botulinum/metabolismo , Anticorpos Monoclonais , Antivirais/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA