Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
BMC Vet Res ; 15(1): 133, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064357

RESUMO

BACKGROUND: Burkholderia mallei is a Gram-negative bacterium that causes glanders, a zoonotic disease, especially in equine populations (e.g. horses, donkeys, and mules). B. mallei usually grows slowly on most culture media, and this property makes it difficult to isolate from clinical specimens. One of the problems is that B. mallei is easily overgrown by other bacteria, especially in animal specimens collected from non-sterile sites. The aim of this study was to develop a new selective agar for the laboratory diagnosis of glanders. We formulated a new agar, named BM agar, to enrich B. mallei growth, but inhibit the growth of other bacteria and fungi based on their antimicrobial profiles. We compared the growth of B. mallei on BM with Xie's and PC agars, the two previously described selective agars for B. mallei. RESULTS: BM agar could sufficiently grow almost all of the tested B. mallei strains within 72 h: only one out of the 38 strains grew scantly after 72 h of incubation. BM agar was further tested with other Burkholderia species and various bacterial species commonly found in the nasal cavities and on the skin of horses. We have found that other Burkholderia species including B. pseudomallei and B. thailandensis can grow on BM agar, but non-Burkholderia species cannot. Furthermore, the specificities of the three selective agars were tested with or without spiking B. mallei culture into clinical specimens of non-sterile sites collected from healthy horses. The results showed that BM agar inhibited growths of fungi and other bacterial species better than PC and Xie's agars. We have also found that growth of B. mallei on BM agar was equivalent to that on 5% horse blood agar and was significantly greater than those on the other two agars (P < 0.05). CONCLUSIONS: We believe that BM agar can be used to efficiently isolate B. mallei from mixed samples such as those typically collected from horses and other contaminated environments.


Assuntos
Burkholderia mallei/isolamento & purificação , Meios de Cultura/química , Mormo/diagnóstico , Mormo/microbiologia , Ágar , Animais , Burkholderia mallei/crescimento & desenvolvimento , Cavalos
2.
BMC Microbiol ; 18(1): 218, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30563467

RESUMO

BACKGROUND: For Yersinia pestis, Burkholderia pseudomallei, and Burkholderia mallei, conventional broth microdilution (BMD) is considered the gold standard for antimicrobial susceptibility testing (AST) and, depending on the species, requires an incubation period of 16-20 h, or 24-48 h according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. After a diagnosis of plague, melioidosis or glanders during an outbreak or after an exposure event, the timely distribution of appropriate antibiotics for treatment or post-exposure prophylaxis of affected populations could reduce mortality rates. RESULTS: Herein, we developed and evaluated a rapid, automated susceptibility test for these Gram-negative bacterial pathogens based on time-lapse imaging of cells incubating in BMD microtitre drug panels using an optical screening instrument (oCelloScope). In real-time, the instrument screened each inoculated well containing broth with various concentrations of antibiotics published by CLSI for primary testing: ciprofloxacin (CIP), doxycycline (DOX) and gentamicin (GEN) for Y. pestis; imipenem (IPM), ceftazidime (CAZ) and DOX for B. mallei; and IPM, DOX, CAZ, amoxicillin-clavulanic acid (AMC) and trimethoprim-sulfamethoxazole (SXT) for B. pseudomallei. Based on automated growth kinetic data, the time required to accurately determine susceptibility decreased by ≥70% for Y. pestis and ≥ 50% for B. mallei and B. pseudomallei compared to the times required for conventional BMD testing. Susceptibility to GEN, IPM and DOX could be determined in as early as three to six hours. In the presence of CAZ, susceptibility based on instrument-derived growth values could not be determined for the majority of B. pseudomallei and B. mallei strains tested. Time-lapse video imaging of these cultures revealed that the formation of filaments in the presence of this cephalosporin at inhibitory concentrations was detected as growth. Other ß-lactam-induced cell morphology changes, such as the formation of spheroplasts and rapid cell lysis, were also observed and appear to be strain- and antibiotic concentration-dependent. CONCLUSIONS: A rapid, functional AST was developed and real-time video footage captured ß-lactam-induced morphologies of wild-type B. mallei and B. pseudomallei strains in broth. Optical screening reduced the time to results required for AST of three Gram-negative biothreat pathogens using clinically relevant, first-line antibiotics compared to conventional BMD.


Assuntos
Antibacterianos/farmacologia , Burkholderia mallei/efeitos dos fármacos , Burkholderia pseudomallei/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Imagem com Lapso de Tempo/métodos , Yersinia pestis/efeitos dos fármacos , beta-Lactamas/farmacologia , Burkholderia mallei/citologia , Burkholderia mallei/crescimento & desenvolvimento , Burkholderia mallei/fisiologia , Burkholderia pseudomallei/crescimento & desenvolvimento , Burkholderia pseudomallei/fisiologia , Ciprofloxacina/farmacologia , Doxiciclina/farmacologia , Mormo/microbiologia , Humanos , Imipenem/farmacologia , Melioidose/microbiologia , Peste/microbiologia , Yersinia pestis/citologia , Yersinia pestis/crescimento & desenvolvimento , Yersinia pestis/fisiologia
3.
Infect Immun ; 85(8)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28507073

RESUMO

Burkholderia mallei, a facultative intracellular bacterium and tier 1 biothreat, causes the fatal zoonotic disease glanders. The organism possesses multiple genes encoding autotransporter proteins, which represent important virulence factors and targets for developing countermeasures in pathogenic Gram-negative bacteria. In the present study, we investigated one of these autotransporters, BatA, and demonstrate that it displays lipolytic activity, aids in intracellular survival, is expressed in vivo, elicits production of antibodies during infection, and contributes to pathogenicity in a mouse aerosol challenge model. A mutation in the batA gene of wild-type strain ATCC 23344 was found to be particularly attenuating, as BALB/c mice infected with the equivalent of 80 median lethal doses cleared the organism. This finding prompted us to test the hypothesis that vaccination with the batA mutant strain elicits protective immunity against subsequent infection with wild-type bacteria. We discovered that not only does vaccination provide high levels of protection against lethal aerosol challenge with B. mallei ATCC 23344, it also protects against infection with multiple isolates of the closely related organism and causative agent of melioidosis, Burkholderia pseudomallei Passive-transfer experiments also revealed that the protective immunity afforded by vaccination with the batA mutant strain is predominantly mediated by IgG antibodies binding to antigens expressed exclusively in vivo Collectively, our data demonstrate that BatA is a target for developing medical countermeasures and that vaccination with a mutant lacking expression of the protein provides a platform to gain insights regarding mechanisms of protective immunity against B. mallei and B. pseudomallei, including antigen discovery.


Assuntos
Anticorpos Antibacterianos/imunologia , Burkholderia mallei/imunologia , Burkholderia pseudomallei/imunologia , Melioidose/prevenção & controle , Animais , Proteínas de Bactérias/genética , Burkholderia mallei/genética , Burkholderia mallei/crescimento & desenvolvimento , Burkholderia mallei/patogenicidade , Burkholderia pseudomallei/patogenicidade , Modelos Animais de Doenças , Mormo/imunologia , Mormo/microbiologia , Mormo/prevenção & controle , Imunoglobulina G/imunologia , Melioidose/imunologia , Melioidose/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Vacinação , Fatores de Virulência/genética
4.
Drug Resist Updat ; 28: 82-90, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27620956

RESUMO

The genus Burkholderia comprises metabolically diverse and adaptable Gram-negative bacteria, which thrive in often adversarial environments. A few members of the genus are prominent opportunistic pathogens. These include Burkholderia mallei and Burkholderia pseudomallei of the B. pseudomallei complex, which cause glanders and melioidosis, respectively. Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia vietnamiensis belong to the Burkholderia cepacia complex and affect mostly cystic fibrosis patients. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. The first line of defense against antimicrobials in Burkholderia species is the outer membrane penetration barrier. Most Burkholderia contain a modified lipopolysaccharide that causes intrinsic polymyxin resistance. Contributing to reduced drug penetration are restrictive porin proteins. Efflux pumps of the resistance nodulation cell division family are major players in Burkholderia multidrug resistance. Third and fourth generation ß-lactam antibiotics are seminal for treatment of Burkholderia infections, but therapeutic efficacy is compromised by expression of several ß-lactamases and ceftazidime target mutations. Altered DNA gyrase and dihydrofolate reductase targets cause fluoroquinolone and trimethoprim resistance, respectively. Although antibiotic resistance hampers therapy of Burkholderia infections, the characterization of resistance mechanisms lags behind other non-enteric Gram-negative pathogens, especially ESKAPE bacteria such as Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa.


Assuntos
Antibacterianos/farmacologia , Burkholderia mallei/efeitos dos fármacos , Burkholderia pseudomallei/efeitos dos fármacos , Burkholderia/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Regulação Bacteriana da Expressão Gênica , Genes MDR , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia/genética , Burkholderia/crescimento & desenvolvimento , Burkholderia/patogenicidade , Infecções por Burkholderia/tratamento farmacológico , Infecções por Burkholderia/microbiologia , Infecções por Burkholderia/patologia , Burkholderia mallei/genética , Burkholderia mallei/crescimento & desenvolvimento , Burkholderia mallei/patogenicidade , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/crescimento & desenvolvimento , Burkholderia pseudomallei/patogenicidade , DNA Girase/genética , DNA Girase/metabolismo , Mormo/tratamento farmacológico , Mormo/microbiologia , Mormo/patologia , Cavalos , Humanos , Melioidose/tratamento farmacológico , Melioidose/microbiologia , Melioidose/patologia , Porinas/antagonistas & inibidores , Porinas/genética , Porinas/metabolismo , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
5.
Infect Immun ; 81(5): 1471-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23429539

RESUMO

Many Proteobacteria use acyl-homoserine lactone-mediated quorum-sensing (QS) to activate specific sets of genes as a function of cell density. QS often controls the virulence of pathogenic species, and in fact a previous study indicated that QS was important for Burkholderia mallei mouse lung infections. To gain in-depth information on the role of QS in B. mallei virulence, we constructed and characterized a mutant of B. mallei strain GB8 that was unable to make acyl-homoserine lactones. The QS mutant showed virulence equal to that of its wild-type parent in an aerosol mouse infection model, and growth in macrophages was indistinguishable from that of the parent strain. Furthermore, we assessed the role of QS in B. mallei ATCC 23344 by constructing and characterizing a mutant strain producing AiiA, a lactonase enzyme that degrades acyl-homoserine lactones. Although acyl-homoserine lactone levels in cultures of this strain are very low, it showed full virulence. Contrary to the previous report, we conclude that QS is not required for acute B. mallei infections of mice. QS may be involved in some stage of chronic infections in the natural host of horses, or the QS genes may be remnants of the QS network in B. pseudomallei from which this host-adapted pathogen evolved.


Assuntos
Infecções por Burkholderia/microbiologia , Burkholderia mallei/patogenicidade , Percepção de Quorum/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Infecções por Burkholderia/genética , Burkholderia mallei/genética , Burkholderia mallei/crescimento & desenvolvimento , Células Cultivadas , Modelos Animais de Doenças , Feminino , Regulação Bacteriana da Expressão Gênica , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Virulência/genética
6.
PLoS Pathog ; 6(5): e1000922, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20523904

RESUMO

The equine-associated obligate pathogen Burkholderia mallei was developed by reductive evolution involving a substantial portion of the genome from Burkholderia pseudomallei, a free-living opportunistic pathogen. With its short history of divergence (approximately 3.5 myr), B. mallei provides an excellent resource to study the early steps in bacterial genome reductive evolution in the host. By examining 20 genomes of B. mallei and B. pseudomallei, we found that stepwise massive expansion of IS (insertion sequence) elements ISBma1, ISBma2, and IS407A occurred during the evolution of B. mallei. Each element proliferated through the sites where its target selection preference was met. Then, ISBma1 and ISBma2 contributed to the further spread of IS407A by providing secondary insertion sites. This spread increased genomic deletions and rearrangements, which were predominantly mediated by IS407A. There were also nucleotide-level disruptions in a large number of genes. However, no significant signs of erosion were yet noted in these genes. Intriguingly, all these genomic modifications did not seriously alter the gene expression patterns inherited from B. pseudomallei. This efficient and elaborate genomic transition was enabled largely through the formation of the highly flexible IS-blended genome and the guidance by selective forces in the host. The detailed IS intervention, unveiled for the first time in this study, may represent the key component of a general mechanism for early bacterial evolution in the host.


Assuntos
Burkholderia mallei/crescimento & desenvolvimento , Burkholderia mallei/genética , Evolução Molecular , Genoma Bacteriano , Mormo/microbiologia , Animais , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/crescimento & desenvolvimento , Elementos de DNA Transponíveis/genética , DNA Bacteriano/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Rearranjo Gênico/genética , Variação Genética , Cavalos , Humanos , Camundongos , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia
7.
J Proteome Res ; 10(5): 2417-24, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21391724

RESUMO

Burkholderia mallei and Burkholderia pseudomallei are closely related, aerosol-infective human pathogens that cause life-threatening diseases. Biochemical analyses requiring large-scale growth and manipulation at biosafety level 3 under select agent regulations are cumbersome and hazardous. We developed a simple, safe, and rapid method to prepare highly purified outer membrane (OM) fragments from these pathogens. Shotgun proteomic analyses of OMs by trypsin shaving and mass spectrometry identified >155 proteins, the majority of which are clearly outer membrane proteins (OMPs). These included: 13 porins, 4 secretins for virulence factor export, 11 efflux pumps, multiple components of a Type VI secreton, metal transport receptors, polysaccharide exporters, and hypothetical OMPs of unknown function. We also identified 20 OMPs in each pathogen that are abundant under a wide variety of conditions, including in serum and with macrophages, suggesting these are fundamental for growth and survival and may represent prime drug or vaccine targets. Comparison of the OM proteomes of B. mallei and B. pseudomallei showed many similarities but also revealed a few differences, perhaps reflecting evolution of B. mallei away from environmental survival toward host-adaptation.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Burkholderia mallei/química , Burkholderia pseudomallei/química , Proteoma/metabolismo , Burkholderia mallei/crescimento & desenvolvimento , Burkholderia pseudomallei/crescimento & desenvolvimento , Cromatografia Líquida , Biologia Computacional/métodos , Espectrometria de Massas em Tandem , Tripsina
8.
Infect Immun ; 78(1): 88-99, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19884331

RESUMO

Burkholderia mallei is a facultative intracellular pathogen that causes severe disease in animals and humans. Recent studies have shown that the cluster 1 type VI secretion system (T6SS-1) expressed by this organism is essential for survival in a hamster model of glanders. To better understand the role of T6SS-1 in the pathogenesis of disease, studies were initiated to examine the interactions of B. mallei tssE mutants with RAW 264.7 murine macrophages. Results obtained by utilizing modified gentamicin protection assays indicated that although the tssE mutants were able to survive within RAW 264.7 cells, significant growth defects were observed in comparison to controls. In addition, analysis of infected monolayers by differential interference contrast and fluorescence microscopy demonstrated that the tssE mutants lacked the ability to induce multinucleated giant cell formation. Via the use of fluorescence microscopy, tssE mutants were shown to undergo escape from lysosome-associated membrane protein 1-positive vacuoles. Curiously, however, following entry into the cytosol, the mutants exhibited actin polymerization defects resulting in inefficient intra- and intercellular spread characteristics. Importantly, all mutant phenotypes observed in this study could be restored by complementation. Based upon these findings, it appears that T6SS-1 plays a critical role in growth and actin-based motility following uptake of B. mallei by RAW 264.7 cells.


Assuntos
Actinas/metabolismo , Burkholderia mallei/crescimento & desenvolvimento , Burkholderia mallei/genética , Macrófagos/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia mallei/citologia , Linhagem Celular , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Membrana Lisossomal/metabolismo , Camundongos , Mutação , Vacúolos/metabolismo , Vacúolos/microbiologia
9.
BMC Genomics ; 7: 228, 2006 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-16953889

RESUMO

BACKGROUND: More than 12,000 simple sequence repeats (SSRs) have been identified in the genome of Burkholderia mallei ATCC 23344. As a demonstrated mechanism of phase variation in other pathogenic bacteria, these may function as mutable loci leading to altered protein expression or structure variation. To determine if such alterations are occurring in vivo, the genomes of various single-colony passaged B. mallei ATCC 23344 isolates, one from each source, were sequenced from culture, a mouse, a horse, and two isolates from a single human patient, and the sequence compared to the published B. mallei ATCC 23344 genome sequence. RESULTS: Forty-nine insertions and deletions (indels) were detected at SSRs in the five passaged strains, a majority of which (67.3%) were located within noncoding areas, suggesting that such regions are more tolerant of sequence alterations. Expression profiling of the two human passaged isolates compared to the strain before passage revealed alterations in the mRNA levels of multiple genes when grown in culture. CONCLUSION: These data support the notion that genome variability upon passage is a feature of B. mallei ATCC23344, and that within a host B. mallei generates a diverse population of clones that accumulate genome sequence variation at SSR and other loci.


Assuntos
Burkholderia mallei/genética , Mormo/microbiologia , Mutação/genética , Animais , Burkholderia mallei/crescimento & desenvolvimento , Deleção de Genes , Perfilação da Expressão Gênica , Genoma Bacteriano/genética , Cavalos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Repetições Minissatélites/genética , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos
10.
J Med Microbiol ; 64(6): 646-653, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25850696

RESUMO

Burkholderia mallei is a Gram-negative bacillus that causes a pneumonic disease known as glanders in equids and humans, and a lymphatic infection known as farcy, primarily in equids. With the potential to infect humans by the respiratory route, aerosol exposure can result in severe, occasionally fatal, pneumonia. Today, glanders infections in humans are rare, likely due to less frequent contact with infected equids than in the past. Acutely ill humans often have non-specific clinical signs and in order to diagnose cases, especially in scenarios of multiple cases in an unexpected setting, rapid diagnostics for B. mallei may be critical. The pathogenesis of acute glanders in the rhesus macaque (Macaca mulatta) was studied as an initial effort to improve diagnostic methods. In the study described here, the diagnostic techniques of PCR, culture and histopathology were compared. The results indicated that PCR may provide rapid, non-invasive diagnosis of glanders in some cases. As expected, PCR results were positive in lung tissue in 11/12 acutely infected rhesus macaques, but more importantly in terms of diagnostic algorithm development, PCR results were frequently positive in non-invasive samples such as broncho-alveolar lavage or nasal swabs (7/12) and occasionally in blood (3/12). However, conventional bacterial culture failed to recover bacteria in many of these samples. The study showed that the clinical presentation of aerosol-exposed rhesus macaques is similar to descriptions of human glanders and that PCR has potential for rapid diagnosis of outbreaks, if not individual cases.


Assuntos
Aerossóis/administração & dosagem , Burkholderia mallei/crescimento & desenvolvimento , Mormo/diagnóstico , Mormo/patologia , Administração por Inalação , Animais , Técnicas Bacteriológicas/métodos , Modelos Animais de Doenças , Histocitoquímica/métodos , Macaca mulatta , Técnicas de Diagnóstico Molecular/métodos , Patologia/métodos , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade , Fatores de Tempo
11.
PLoS One ; 8(10): e76767, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24146925

RESUMO

Burkholderia mallei is a facultative intracellular pathogen that causes glanders in humans and animals. Previous studies have demonstrated that the cluster 1 type VI secretion system (T6SS-1) expressed by this organism is essential for virulence in hamsters and is positively regulated by the VirAG two-component system. Recently, we have shown that T6SS-1 gene expression is up-regulated following internalization of this pathogen into phagocytic cells and that this system promotes multinucleated giant cell formation in infected tissue culture monolayers. In the present study, we further investigated the complex regulation of this important virulence factor. To assess T6SS-1 expression, B. mallei strains were cultured in various media conditions and Hcp1 production was analyzed by Western immunoblotting. Transcript levels of several VirAG-regulated genes (bimA, tssA, hcp1 and tssM) were also determined using quantitative real time PCR. Consistent with previous observations, T6SS-1 was not expressed during growth of B. mallei in rich media. Curiously, growth of the organism in minimal media (M9G) or minimal media plus casamino acids (M9CG) facilitated robust expression of T6SS-1 genes whereas growth in minimal media plus tryptone (M9TG) did not. Investigation of this phenomenon confirmed a regulatory role for VirAG in this process. Additionally, T6SS-1 gene expression was significantly down-regulated by the addition of iron and zinc to M9CG. Other genes under the control of VirAG did not appear to be as tightly regulated by these divalent metals. Similar results were observed for B. pseudomallei, but not for B. thailandensis. Collectively, our findings indicate that in addition to being positively regulated by VirAG, B. mallei and B. pseudomallei T6SS-1 gene expression is negatively regulated by iron and zinc.


Assuntos
Sistemas de Secreção Bacterianos/genética , Burkholderia mallei/genética , Burkholderia pseudomallei/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Ferro/farmacologia , Zinco/farmacologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/efeitos dos fármacos , Burkholderia mallei/efeitos dos fármacos , Burkholderia mallei/crescimento & desenvolvimento , Burkholderia pseudomallei/efeitos dos fármacos , Burkholderia pseudomallei/crescimento & desenvolvimento , Cátions Bivalentes/farmacologia , Meios de Cultura/farmacologia , Família Multigênica , Mapeamento Físico do Cromossomo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
Carbohydr Res ; 349: 90-4, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22221792

RESUMO

Capsular polysaccharides (CPSs) were isolated from O-polysaccharide deficient strains of Burkholderia mallei and Burkholderia pseudomallei using a modified hot phenol/water extraction procedure. Glycosyl composition, methylation, MALDI-TOF MS analyses as well as (1)H NMR spectroscopy including COSY, TOCSY, NOESY, HMBC and HSQC experiments identified the presence of two distinct CPS antigens in the samples exhibiting the following structures: This study confirms the ability of B. mallei to express a 6-deoxy-heptan CPS and represents the first report of a mannan CPS being expressed by these bacterial pathogens.


Assuntos
Cápsulas Bacterianas/genética , Burkholderia mallei/genética , Burkholderia pseudomallei/genética , Polissacarídeos/química , Polissacarídeos/genética , Cápsulas Bacterianas/química , Burkholderia mallei/crescimento & desenvolvimento , Burkholderia pseudomallei/crescimento & desenvolvimento , Configuração de Carboidratos , Ressonância Magnética Nuclear Biomolecular , Polissacarídeos/isolamento & purificação
13.
Trans R Soc Trop Med Hyg ; 102 Suppl 1: S127-33, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19121674

RESUMO

Burkholderia mallei, the aetiological agent of glanders disease, is a Gram-negative facultative intracellular bacterium. Despite numerous studies, the detailed mechanism of its pathogenesis is almost unknown. The presence of a type III secretion system (TTSS) is one of the known mechanisms associated with virulence. An intact TTSS indicates that B. mallei is able to secrete proteins in response to different environmental conditions, which could play an important role in pathogenesis. Therefore, characterization of the TTSS and identification of the secreted proteins associated with bacterial pathogenesis could provide crucial information for the development of a candidate vaccine. In the current study, we used an enzymatic reporter system to establish some of the conditions enabling TTS. Construction of the TTSS bopA mutant revealed that BopA is important for B. mallei invasion and intracellular survival. Overall, our study elucidates how BopA can aid in the optimization of TTS and defines the function of TTS effectors in bacterial intracellular survival and invasion.


Assuntos
Proteínas de Bactérias/fisiologia , Burkholderia mallei/patogenicidade , Genes Bacterianos/fisiologia , Genoma Bacteriano/genética , Mormo/microbiologia , Animais , Proteínas de Bactérias/genética , Bioterrorismo , Burkholderia mallei/enzimologia , Burkholderia mallei/crescimento & desenvolvimento , Linhagem Celular , Sobrevivência Celular , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/patogenicidade , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano/imunologia , Mormo/imunologia , Humanos , Macrófagos/microbiologia , Plasmídeos/genética
14.
Infect Immun ; 72(11): 6589-96, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15501791

RESUMO

Numerous gram-negative bacterial pathogens regulate virulence factor expression by using a cell density mechanism termed quorum sensing (QS). An in silico analysis of the Burkholderia mallei ATCC 23344 genome revealed that it encodes at least two luxI and four luxR homologues. Using mass spectrometry, we showed that wild-type B. mallei produces the signaling molecules N-octanoyl-homoserine lactone and N-decanoyl-homoserine lactone. To determine if QS is involved in the virulence of B. mallei, we generated mutations in each putative luxIR homologue and tested the pathogenicities of the derivative strains in aerosol BALB/c mouse and intraperitoneal hamster models. Disruption of the B. mallei QS alleles, especially in RJ16 (bmaII) and RJ17 (bmaI3), which are luxI mutants, significantly reduced virulence, as indicated by the survival of mice who were aerosolized with 10(4) CFU (10 50% lethal doses [LD50s]). For the B. mallei transcriptional regulator mutants (luxR homologues), mutation of the bmaR5 allele resulted in the most pronounced decrease in virulence, with 100% of the challenged animals surviving a dose of 10 LD50s. Using a Syrian hamster intraperitoneal model of infection, we determined the LD50s for wild-type B. mallei and each QS mutant. An increase in the relative LD50 was found for RJ16 (bmaI1) (>967 CFU), RJ17 (bmaI3) (115 CFU), and RJ20 (bmaR5) (151 CFU) compared to wild-type B. mallei (<13 CFU). These findings demonstrate that B. mallei carries multiple luxIR homologues that either directly or indirectly regulate the biosynthesis of an essential virulence factor(s) that contributes to the pathogenicity of B. mallei in vivo.


Assuntos
4-Butirolactona/análogos & derivados , Burkholderia mallei/crescimento & desenvolvimento , Burkholderia mallei/patogenicidade , Regulação Bacteriana da Expressão Gênica , Homosserina/análogos & derivados , Transdução de Sinais , Fatores de Virulência/metabolismo , 4-Butirolactona/química , 4-Butirolactona/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cricetinae , Infecções por Bactérias Gram-Negativas/microbiologia , Homosserina/metabolismo , Humanos , Lactonas/metabolismo , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA