Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100477, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33640457

RESUMO

Sialic acid (Sia)-binding immunoglobulin-like lectin 7 (Siglec-7) is an inhibitory receptor primarily expressed on natural killer (NK) cells and monocytes. Siglec-7 is known to negatively regulate the innate immune system through Sia binding to distinguish self and nonself; however, a counter-receptor bearing its natural ligand remains largely unclear. Here, we identified a counter-receptor of Siglec-7 using K562 hematopoietic carcinoma cells presenting cell surface ligands for Siglec-7. We affinity-purified the ligands using Fc-ligated recombinant Siglec-7 and diSia-dextran polymer, a strong inhibitor for Siglec-7. We then confirmed the counter-receptor for Siglec-7 as leukosialin (CD43) through mass spectrometry, immunoprecipitation, and proximity labeling. Additionally, we demonstrated that the cytotoxicity of NK cells toward K562 cells was suppressed by overexpression of leukosialin in a Siglec-7-dependent manner. Taken together, our data suggest that leukosialin on K562 is a counter-receptor for Siglec-7 on NK cells and that a cluster of the Sia-containing glycan epitope on leukosialin is key as trans-ligand for unmasking the cis-ligand.


Assuntos
Antígenos de Diferenciação Mielomonocítica/metabolismo , Células K562/metabolismo , Lectinas/metabolismo , Leucossialina/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Linhagem Celular Tumoral , Cromatografia de Afinidade/métodos , Humanos , Células Matadoras Naturais/metabolismo , Lectinas/genética , Leucossialina/imunologia , Ligantes , Proteínas de Membrana/metabolismo , Monócitos/metabolismo , Polissacarídeos/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
2.
Cell Biol Int ; 45(5): 1111-1121, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33501756

RESUMO

Although the identification of tyrosine kinase inhibitors (TKIs) has changed the treatment paradigm of many cancer types including chronic myeloid leukemia (CML), still adjustment of neoplastic cells to cytotoxic effects of anticancer drugs is a serious challenge. In the area of drug resistance, epigenetic alterations are at the center of attention and the present study aimed to evaluate whether blockage of epigenetics mechanisms using a pan-histone deacetylase (HDAC) inhibitor induces cell death in CML-derived K562 cells. We found that the abrogation of HDACs using panobinostat resulted in a reduction in survival of the K562 cell line through p27-mediated cell cycle arrest. Noteworthy, the results of the synergistic experiments revealed that HDAC suppression could be recruited as a way to potentiate cytotoxicity of Imatinib and to enhance the therapeutic efficacy of CML. Here, we proposed for the first time that the inhibitory effect of panobinostat was overshadowed, at least partially, through the aberrant activation of the phosphoinositide 3-kinase (PI3K)/c-Myc axis. Meanwhile, we found that upon blockage of autophagy and the proteasome pathway, as the main axis involved in the activation of autophagy, the anti-leukemic property of the HDAC inhibitor was potentiated. Taken together, our study suggests the beneficial application of HDAC inhibition in the treatment strategies of CML; however, further in vivo studies are needed to determine the efficacy of this inhibitor, either as a single agent or in combination with small molecule inhibitors of PI3K and/or c-Myc in this malignancy.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Inibidores de Histona Desacetilases/metabolismo , Histona Desacetilases/metabolismo , Humanos , Mesilato de Imatinib/farmacologia , Células K562/efeitos dos fármacos , Células K562/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Panobinostat/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo
3.
Mol Biol Rep ; 48(6): 5045-5055, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34143396

RESUMO

The results we obtained from this study gave information about the determination of alpha 7 nicotinic acetylcholine receptor (α7-nACh) expression in human erythroleukemia cells, as well as whether it has a role in calcium release and cell proliferation in the presence of nicotinic agonist, antagonists. Determining the roles of α7 nicotinic receptors in erythroleukemia cells will also contribute to leukemia-related signal transduction studies. This study is primarily to determine the role of nicotinic agonists and antagonists in cell proliferation, α7 nicotinic acetylcholine receptor expression, and calcium release. The aim of this study, which is a continuation and an important part of our previous studies on the cholinergic system, has contributed to the literature on the human erythroleukemia cell signaling mechanism. Cell viability was evaluated by the trypan blue exclusion test and Bromodeoxyuridine/5-Bromo-2'-deoxyuridine (BrdU) labeling. Acetylcholine, nicotinic alpha 7 receptor antagonist methyllycaconitine citrate, and cholinergic antagonist atropine were used to determine the role of α7-nACh in K562 cell proliferation. In our experiments, the fluorescence spectrophotometer was used in Ca2+ measurements. The expression of nicotinic alpha 7 receptor was evaluated by western blot. The stimulating effect of acetylcholine in K562 cell proliferation was reversed by both the α7 nicotinic antagonist methyllycaconitine citrate and the cholinergic antagonist, atropine. Methyllycaconitine citrate inhibited K562 cell proliferation partially explained the roles of nicotinic receptors in signal transduction. While ACh caused an increase in intracellular Ca2+, methyllycaconitine citrate decreased intracellular Ca2+ level in K562 cell. The effects of nicotinic agonists and/or antagonists on erythroleukemic cells on proliferation, calcium level contributed to the interaction of nicotinic receptors with different signaling pathways. Proliferation mechanisms in erythroleukemic cells are under the control of the α7 nicotinic acetylcholine receptor via calcium influx and different signalling pathway.


Assuntos
Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Aconitina/análogos & derivados , Aconitina/farmacologia , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/genética , Expressão Gênica/genética , Humanos , Células K562/metabolismo , Leucemia/metabolismo , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Receptor Nicotínico de Acetilcolina alfa7/fisiologia
4.
Phytother Res ; 35(3): 1658-1668, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33141989

RESUMO

Puerarin is an isoflavone isolated from Pueraria lobata (Willd.) Ohwi. In the present study, reversal effect and underlying mechanisms of puerarin on multidrug resistance (MDR) were investigated in K562/ADR cells. K562/ADR cells exhibited adriamycin (ADR) resistance and higher levels of MDR1 expression compared with K562 cells. Puerarin enhanced the chemosensitivity of K562/ADR cells and increased the ADR accumulation in K562/ADR cells. The expression levels of MDR1 were down-regulated by puerarin in K562/ADR cells. Luciferase reporter assay further demonstrated the inhibitory effect of puerarin on TNF-α-induced NF-κB activation. The phosphorylation of IκB-α was significantly suppressed by puerarin. In silico docking analyses suggested that puerarin well matched with the active sites of IκB-α. Moreover, a large number of autophagosomes were found in the cytoplasm of K562/ADR cells after puerarin treatment. The significant increase in LC3-II and beclin-1 was also observed, indicating autophagy induction by puerarin in K562/ADR cells. Puerarin induced cell cycle arrest and apoptosis in K562/ADR cells. Finally, puerarin inhibited phosphorylation of Akt and JNK. In conclusion, puerarin-sensitized K562/ADR cells by downregulating MDR1 expression via inhibition of NF-κB pathway and autophagy induction via Akt inhibition.


Assuntos
Autofagia/efeitos dos fármacos , Isoflavonas/uso terapêutico , Células K562/metabolismo , NF-kappa B/metabolismo , Vasodilatadores/uso terapêutico , Humanos , Isoflavonas/farmacologia , Transfecção , Vasodilatadores/farmacologia
5.
Immunol Rev ; 257(1): 191-209, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24329798

RESUMO

Adoptive T-cell therapy, where anti-tumor T cells are first prepared in vitro, is attractive since it facilitates the delivery of essential signals to selected subsets of anti-tumor T cells without unfavorable immunoregulatory issues that exist in tumor-bearing hosts. Recent clinical trials have demonstrated that anti-tumor adoptive T-cell therapy, i.e. infusion of tumor-specific T cells, can induce clinically relevant and sustained responses in patients with advanced cancer. The goal of adoptive cell therapy is to establish anti-tumor immunologic memory, which can result in life-long rejection of tumor cells in patients. To achieve this goal, during the process of in vitro expansion, T-cell grafts used in adoptive T-cell therapy must be appropriately educated and equipped with the capacity to accomplish multiple, essential tasks. Adoptively transferred T cells must be endowed, prior to infusion, with the ability to efficiently engraft, expand, persist, and traffic to tumor in vivo. As a strategy to consistently generate T-cell grafts with these capabilities, artificial antigen-presenting cells have been developed to deliver the proper signals necessary to T cells to enable optimal adoptive cell therapy.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Engenharia Genética , Imunoterapia Adotiva , Neoplasias/imunologia , Neoplasias/terapia , Animais , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/metabolismo , Técnicas de Cultura de Células , Ensaios Clínicos como Assunto , Terapia Combinada , Citocinas/metabolismo , Citocinas/farmacologia , Humanos , Memória Imunológica , Imunoterapia Adotiva/métodos , Células K562/imunologia , Células K562/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Fenótipo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
6.
Bioconjug Chem ; 25(12): 2134-43, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25350362

RESUMO

A rational design strategy has been developed for the construction of stable peptide-based anchors for the efficient modification of cell surfaces. Six types of peptide composed of five residues with divalent hydrophobic groups have been designed using this new strategy. Among them, a peptide with a sequence of NBD-Lys-Lys(X)-Lys-Lys-Lys(X)-NH2 (NBD: fluorophore, Lys(X): N-ε-palmitoyl-l-lysine) was found to show the highest modification efficacy and longevity in culture medium. The good performance of this peptide was attributed to (1) its high aqueous solubility, which allowed it to partition from the medium to the cell surface, and (2) the high binding affinity of the saturated palmitoyl groups to the cell membrane. We found that the distribution of the peptide was affected by recycling endosome, which enabled the representation of the peptide following its endocytotic disappearance from the cell membrane. Biotin was also presented on the cell surface using this peptide-based anchor to examine its recognition by streptavidin. The efficacy of the recognition process increased as the length of the oligoethylene glycol spacer increased, indicating that it was necessary for the biotin tag to move away from the membrane glycoproteins on the cell surface to facilitate its efficient recognition by streptavidin.


Assuntos
Motivos de Aminoácidos , Peptídeos/química , Peptídeos/metabolismo , Sítios de Ligação , Biotina/química , Biotina/metabolismo , Membrana Celular/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células K562/efeitos dos fármacos , Células K562/metabolismo , Ligantes , Peptídeos/farmacologia , Engenharia de Proteínas/métodos , Estreptavidina/química
7.
J Pathol ; 231(3): 378-87, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24308033

RESUMO

Deregulated NOTCH1 has been reported in lymphoid leukaemia, although its role in chronic myeloid leukaemia (CML) is not well established. We previously reported BCR-ABL down-regulation of a novel haematopoietic regulator, CCN3, in CML; CCN3 is a non-canonical NOTCH1 ligand. This study characterizes the NOTCH1­CCN3 signalling axis in CML. In K562 cells, BCR-ABL silencing reduced full-length NOTCH1 (NOTCH1-FL) and inhibited the cleavage of NOTCH1 intracellular domain (NOTCH1-ICD), resulting in decreased expression of the NOTCH1 targets c-MYC and HES1. K562 cells stably overexpressing CCN3 (K562/CCN3) or treated with recombinant CCN3(rCCN3) showed a significant reduction in NOTCH1 signalling (> 50% reduction in NOTCH1-ICD, p < 0.05).Gamma secretase inhibitor (GSI), which blocks NOTCH1 signalling, reduced K562/CCN3 colony formation but increased that of K562/control cells. GSI combined with either rCCN3 or imatinib reduced K562 colony formation with enhanced reduction of NOTCH1 signalling observed with combination treatments. We demonstrate an oncogenic role for NOTCH1 in CML and suggest that BCR-ABL disruption of NOTCH1­CCN3 signalling contributes to the pathogenesis of CML.


Assuntos
Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Citometria de Fluxo , Proteínas de Fusão bcr-abl/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mesilato de Imatinib , Células K562/efeitos dos fármacos , Células K562/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Transfecção
8.
Ann Hematol ; 92(1): 53-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23161389

RESUMO

Hereditary persistence of fetal hemoglobin (HPFH) is a rare hereditary condition resulting in elevated levels of fetal hemoglobin (HbF) in adults. Typical HPFH is associated with promoter mutations or large deletions affecting the human fetal globin (HBG1 and HBG2) genes, while genetic defects in other genes involved in human erythropoiesis, e.g. KLF1, also result in atypical HPFH. Here, we report the first KLF1 gene promoter mutation (KLF1:g.-148G > A) that is associated with increased HbF level. This mutation was shown to result in drastically reduced CAT reporter gene expression in K562 cells, compared to the wild-type sequence (p = 0.009) and also in reduced KLF1 gene expression in vivo. Furthermore, consistent with in silico analysis, electrophoretic mobility shift analysis showed that the KLF1:g.-148G > A mutation resides in a Sp1 binding site and further that this mutation leads to the ablation of Sp1 binding in vitro. These data suggest that the KLF1:g-148G > A mutation could play a role in increasing HbF levels in adults and further underlines the role of KLF1 as one of the key transcription factors involved in human fetal globin gene switching.


Assuntos
Hemoglobina Fetal/biossíntese , Hemoglobinopatias/genética , Fatores de Transcrição Kruppel-Like/genética , Mutação , Regiões Promotoras Genéticas/genética , Adulto , Sítios de Ligação/genética , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Hemoglobina Fetal/genética , Regulação da Expressão Gênica , Genes Reporter , Humanos , Células K562/metabolismo , Fatores de Transcrição Kruppel-Like/fisiologia , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Sérvia , Fator de Transcrição Sp1/metabolismo , Transcrição Gênica
9.
Ann Hematol ; 92(2): 151-62, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23053176

RESUMO

Signal transducers and activators of transcription (STAT) proteins are latent cytoplasmic transcription factors that affect several cellular processes including cell growth, proliferation, differentiation, and survival. Following phosphorylation, STATs are activated, and their upregulated expressions increase in malignancies with playing a role in the development of leukemia. In this study, transfection of K-562 cells with either unmodified or chemically modified anti-STAT3, -STAT5A, -STAT5B siRNAs for duration of 12 days, determining gene silencing at mRNA and protein levels, evaluating apoptosis rate, and detecting JAK/STAT pathway members' gene expression profiles via array method were aimed. Quantitative RT-PCR and Western blot assays indicated that STAT expressions were downregulated both at mRNA and protein levels, and TUNEL assay showed that leukemic cell apoptosis was induced due to inhibition of STATs. Array analysis resulted with decreases in signal transducer, phosphorylation inducer, and oncogene expressions, whereas increased expressions in STAT inhibitor and apoptosis inducer genes were observed. These results point out that siRNA application could constitute a new and alternative curative method for supporting therapy of CML-diagnosed patients in the future.


Assuntos
Apoptose/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT5/antagonistas & inibidores , Proteínas Supressoras de Tumor/antagonistas & inibidores , Apoptose/genética , Western Blotting , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células K562/efeitos dos fármacos , Células K562/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , RNA Interferente Pequeno/síntese química , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT3/biossíntese , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT5/biossíntese , Fator de Transcrição STAT5/genética , Transdução de Sinais/efeitos dos fármacos , Transfecção , Proteínas Supressoras de Tumor/biossíntese , Proteínas Supressoras de Tumor/genética
10.
Int J Oncol ; 60(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34958111

RESUMO

Runt­related transcription factor 1 (RUNX1), which is also known as acute myeloid leukemia 1 (AML1), has been frequently found with genomic aberrations in human leukemia. RUNX1 encodes a transcription factor that can regulate the expression of hematopoietic genes. In addition, tumor necrosis factor­related apoptosis­inducing ligand (TRAIL) performs an important function for malignant tumors in immune surveillance. However, the regulatory mechanism of TRAIL expression remain to be fully elucidated. In the present study, tetradecanoylphorbol 13­acetate­treated megakaryocytic differentiated K562 cells was used to examine the effect of RUNX1 on TRAIL expression. Luciferase assay series of TRAIL promoters for the cells co­transfected with RUNX1 and core­binding factor ß (CBFß) expression vectors were performed to evaluate the nature of TRAIL transcriptional regulation. Electrophoresis mobility shift assay of the RUNX1 consensus sequence of the TRAIL promoter with recombinant RUNX1 and CBFß proteins was also performed. BloodSpot database analysis for TRAIL expression in patients with acute myeloid leukemia were performed. The expression of TRAIL, its receptor Death receptor 4 and 5 and RUNX1 in K562 cells transfected with the RUNX1 expression vector and RUNX1 siRNA were evaluated by reverse transcription­quantitative PCR (RT­qPCR). TRAIL and RUNX1­ETO expression was also measured in Kasumi­1 cells transfected with RUNX1­ETO siRNA and in KG­1 cells transfected with RUNX1­ETO expression plasmid, both by RT­qPCR. Cell counting, lactate dehydrogenase assay and cell cycle analysis by flow cytometry were performed on Kasumi­1, KG­1, SKNO­1 and K562 cells treated with TRAIL and HDAC inhibitors sodium butyrate or valproic acid. The present study demonstrated that RUNX1 is a transcriptional regulator of TRAIL. It was initially found that the induction of TRAIL expression following the megakaryocytic differentiation of human leukemia cells was RUNX1­dependent. Subsequently, overexpression of RUNX1 was found to increase TRAIL mRNA expression by activating its promoter activity. Additional analyses revealed that RUNX1 regulated the expression of TRAIL in an indirect manner, because RUNX1 retained its ability to activate this promoter following the mutation of all possible RUNX1 consensus sites. Furthermore, TRAIL expression was reduced in leukemia cells carrying the t(8;21) translocation, where the RUNX1­ETO chimeric protein interfere with normal RUNX1 function. Exogenous treatment of recombinant TRAIL proteins was found to induce leukemia cell death. To conclude, the present study provided a novel mechanism, whereby TRAIL is a target gene of RUNX1 and TRAIL expression was inhibited by RUNX1­ETO. These results suggest that TRAIL is a promising agent for the clinical treatment of t(8;21) AML.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/efeitos dos fármacos , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Modelos Animais de Doenças , Humanos , Células K562/efeitos dos fármacos , Células K562/metabolismo , Camundongos , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transcrição Gênica/genética
11.
Ann Hematol ; 90(7): 837-42, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21225261

RESUMO

We measured intracellular accumulation of N-desmethyl imatinib (CGP 74588), the main pharmacologically active metabolite of imatinib (Gleevec or STI-571), in Bcr--Abl-positive cells. Using a sensitive and robust non-radioactive in vitro assay, we observed that CGP74588 accumulates in significantly higher amount than imatinib in sensitive K562 cells. In contrast, the intracellular level of CGP74588 was significantly lower than that of imatinib in K562/Dox cells, which represent a multidrug-resistant variant of K562 cells due to the P-glycoprotein (P-gp, ABCB1, MDR1) overexpression. An in vitro enzyme-based assay provided evidence that CGP74588 might serve as an excellent substrate for P-gp. Accordingly, we found that CGP74588 up to 20 µM concentration neither induced apoptosis nor inhibited substantially cell proliferation in resistant K562/Dox cells. In contrast, CGP74588 was capable to inhibit cell proliferation and induced apoptosis in sensitive K562 cells, although its effect was approximately three to four times lower than that of imatinib in the same cell line. Our results indicate that CGP74588 could hardly positively contribute to the treatment of chronic myeloid leukemia (CML) where ABCB1 gene overexpression represents a possible mechanism of resistance to imatinib in vivo.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Piperazinas/metabolismo , Pirimidinas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Benzamidas , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Mesilato de Imatinib , Células K562/efeitos dos fármacos , Células K562/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/fisiopatologia , Masculino , Pessoa de Meia-Idade , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Resultado do Tratamento
12.
Clin Lymphoma Myeloma Leuk ; 21(5): 328-337.e1, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33610500

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) accounts for approximately 20% of pediatric leukemia cases; 30% of these patients experience relapse. The antileukemia properties of natural killer (NK) cells and their safety profile have been reported in AML therapy. We proposed a phase 2, open, prospective, multicenter, nonrandomized clinical trial for the adoptive infusion of haploidentical K562-mb15-41BBL-activated and expanded NK (NKAE) cells as a consolidation strategy for children with favorable and intermediate risk AML in first complete remission after chemotherapy (NCT02763475). PATIENTS AND METHODS: Before the NKAE cell infusion, patients underwent a lymphodepleting regimen. After the NKAE cell infusion, patients were administered low doses (1 × 106/IU/m2) of subcutaneous interleukin-2. The primary study endpoint was AML relapse-free survival. We needed to include 35 patients to demonstrate a 50% reduction in relapses. RESULTS: Seven patients (median age, 7.4 years; range, 0.78-15.98 years) were administered 13 infusions of NKAE cells, with a median of 36.44 × 106 cells/kg (range, 6.92 × 106 to 193.2 × 106 cells/kg). We observed chimerism in 4 patients (median chimerism, 0.065%; range, 0.05-0.27%). After a median follow-up of 33 months, the disease of 6 patients (85.7%) remained in complete remission. The 3-year overall survival was 83.3% (95% confidence interval, 68.1-98.5), and the cumulative 3-year relapse rate was 28.6% (95% confidence interval, 11.5-45.7). The study was terminated early because of low patient recruitment. CONCLUSION: This study emphasizes the difficulties in recruiting patients for cell therapy trials, though NKAE cell infusion is safe and feasible. However, we cannot draw any conclusions regarding efficacy because of the small number of included patients and insufficient biological markers.


Assuntos
Quimioterapia de Consolidação/métodos , Células K562/metabolismo , Células Matadoras Naturais/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Estudos Prospectivos
13.
Blood Cells Mol Dis ; 45(4): 269-75, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20926322

RESUMO

The search for novel therapeutic candidates targeting fetal hemoglobin (HbF) activation to reduce the imbalance of globin genes is regarded as a promising approach for the clinical management of sickle cell disease and ß-thalassemia. For the first time, we identified cucurbitacin D (CuD), an oxygenated tetracyclic triterpenoid, as a molecular entity inducing γ-globin gene expression and HbF synthesis in K562 cells and human hematopoietic progenitors from a ß-thalassemia patient. CuD demonstrated a higher potency in HbF induction when compared with hydroxyurea, which was revealed by the evidence that CuD results in a higher fetal cell percentage and greater HbF content in K562 cells, in addition, to being less cytotoxic. Moreover, CuD also promotes higher HbF expression in primary erythroid cells. In the study to elucidate the molecular mechanisms of CuD's action, our data indicated that CuD-stimulated HbF synthesis was mediated by p38 pathway activation. At the post-transcriptional level, CuD treatment led to a significant elongation of the γ-globin mRNA half-life in K562 cells. Taken together, the results suggest that CuD may be a potential therapeutic agent for ß-hemoglobinopathies, including sickle cell anemia and ß-thalassemia.


Assuntos
Hemoglobina Fetal/biossíntese , Células-Tronco Hematopoéticas/metabolismo , Células K562/metabolismo , Triterpenos/farmacologia , gama-Globinas/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Hemoglobinopatias/tratamento farmacológico , Humanos , Estabilidade de RNA , RNA Mensageiro/metabolismo
14.
Eur J Clin Invest ; 40(6): 561-5, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20456483

RESUMO

BACKGROUND: Friedreich's ataxia (FRDA) is a neurodegenerative disorder caused by decreased expression of the mitochondrial protein frataxin. Recently we showed in a clinical pilot study in Friedreich's ataxia patients that recombinant human erythropoietin (rhuEPO) significantly increases frataxin-expression. In this in vitro study, we investigated the role of the erythropoietin receptor (EPO-R) in the frataxin increasing effect of rhuEPO and if nonerythropoietic carbamylated erythropoietin (CEPO), which cannot bind to the classical EPO-R increases frataxin expression. MATERIALS AND METHODS: In our experiments human erythroleukaemic K562 cells (+ EPO-R), human monocytic leukemia THP-1 cells (- EPO-R) and isolated primary lymphocytes from healthy control and FRDA patients were incubated with different concentrations of rhuEPO or CEPO. Frataxin-expression was detected by an electrochemical luminescence immunoassay (based on the principle of an ELISA). RESULTS: We show that rhuEPO increases frataxin-expression in K562 cells (expressing EPO-R) as well as in THP-1 cells (without EPO-R expression). These results were confirmed by the finding that CEPO, which cannot bind to the classical EPO-R increased frataxin expression in the same concentration range as rhuEPO. In addition, we show that both EPO derivatives significantly increase frataxin-expression in vitro in control and Friedreich's ataxia patients primary lymphocytes. CONCLUSION: Our results provide a scientific basis for further studies examining the effectiveness of nonerythropoietic derivatives of erythropoietin for the treatment of Friedreich's ataxia patients.


Assuntos
Eritropoetina/farmacologia , Ataxia de Friedreich/tratamento farmacológico , Proteínas de Ligação ao Ferro/análise , Proteínas Recombinantes/farmacologia , Linhagem Celular , Células Cultivadas , Ensaio de Imunoadsorção Enzimática/métodos , Eritropoetina/análogos & derivados , Humanos , Células K562/efeitos dos fármacos , Células K562/metabolismo , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Frataxina
15.
J Microbiol Biotechnol ; 30(12): 1810-1818, 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-32958733

RESUMO

Inhibitor K562 (IK) protein was first isolated from the culture medium of K562 cells, a leukemia cell line, and is an inhibitory regulator of interferon-γ-induced major histocompatibility complex class II expression. Recently, exogenous truncated IK (tIK) protein showed potential as a therapeutic agent for inflammation-related diseases. In this study, we designed a novel putative anti-inflammatory peptide derived from tIK protein based on homology modeling of the human interleukin-10 (hIL-10) structure, and investigated whether the peptide exerted inhibitory effects against proinflammatory cytokines such as IL-17 and tumor necrosis factor-α (TNF-α). The peptide contains key residues involved in binding hIL-10 to the IL-10 receptor, and exerted strong inhibitory effects on IL- 17 (43.8%) and TNF-α (50.7%). In addition, we used circular dichroism spectroscopy to confirm that the peptide is usually present in a random coil configuration in aqueous solution. In terms of toxicity, the peptide was found to be biologically safe. The mechanisms by which the short peptide derived from human tIK protein exerts inhibitory effects against IL-17 and TNF-α should be explored further. We also evaluated the feasibility of using this novel peptide in skincare products.


Assuntos
Citocinas/metabolismo , Interleucina-17/metabolismo , Células K562/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Anti-Inflamatórios/farmacologia , Diferenciação Celular , Humanos , Interferon gama , Interleucina-10 , Estrutura Secundária de Proteína , Receptores de Interleucina-10 , Alinhamento de Sequência , Células Th17
16.
Blood Cells Mol Dis ; 42(2): 144-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19153051

RESUMO

BCL11A on chromosome 2p16 was recently shown to be a major quantitative trait locus for Hb F level and F-cell number in several populations with or without beta-hemoglobinopathy. We now show that BCL11A isoforms are expressed in K562 cells. Butyrate induction of HBG globin production in K562 is associated with reduced BCL11A. Conversely, augmented expression of BCL11A in K562 cells through transfection of BCL11A expression vector results in more than 50% reduction of HBG promoter transcription activity. This transcription repression can be abrogated by sodium butyrate. BCL11A binds to GGCCGG motif in nucleotide -56 to -51 on the HBG proximal promoter. Together, these data are consistent with BCL11A being able to bind to a core motif in the HBG proximal promoter, recruit and interact with partners to form a repression complex, leading to deacetylation of histones and down-regulation of the HBG transcription.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas Nucleares/fisiologia , Proteínas Repressoras/fisiologia , gama-Globinas/biossíntese , Sítios de Ligação , Butiratos/farmacologia , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Diferenciação Celular/efeitos dos fármacos , Dosagem de Genes , Humanos , Ácidos Hidroxâmicos/farmacologia , Células K562/efeitos dos fármacos , Células K562/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , RNA Mensageiro/biossíntese , Proteínas Recombinantes de Fusão/fisiologia , Proteínas Repressoras/genética , Transcrição Gênica/efeitos dos fármacos , gama-Globinas/genética
17.
J Biol Inorg Chem ; 14(8): 1243-51, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19603199

RESUMO

Our present study provided new evidence for diterbium transferrin (Tb(2)Tf) as a potential multi-photon-excited microscopy probe. It indicated that the Tb(2)Tf complex can be transported into human leukemia K562 cells via a process mediated by transferrin (Tf) receptors as an intact entity and with no obvious cellular toxicity. The supporting evidence includes the following. First, the transport kinetic behavior of Tb was compared with that of the Tf moiety. The Tb was determined by inductively coupled plasma mass spectrometry and Tf was determined by fluorescence activated cell sorting analysis. The kinetic synchronization of internalization of both Tb and Tf into human leukemia K562 cells demonstrated the Tb(2)Tf complex was transported into cells as a whole. Second, using confocal laser scanning microscopy, we observed the localization of Tb(2)Tf in the cell. This showed that the internalized Tb(2)Tf was mostly situated in the same perinuclear region as diferric transferrin (Fe(2)Tf). In addition, pretreatment with pronase largely abolished the transport process of Tb(2)Tf. The relative fluorescence intensities representing the uptake of Tf into the cells decreased to about 16% and the cytosolic Tb content decreased to almost the same percentage as for Tf. Furthermore, the addition of Fe(2)Tf can effectively inhibit transport of Tb(2)Tf into K562 cells. Third, no significant decrease of cell viability was observed in the presence of Tb(2)Tf even for 24 or 48 h by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Moreover, prospects for the use of Tb(2)Tf as a multi-photon-excited microscopy probe in a living system are discussed.


Assuntos
Corantes Fluorescentes/metabolismo , Células K562/metabolismo , Fótons , Receptores da Transferrina/metabolismo , Térbio/metabolismo , Transferrina/metabolismo , Animais , Bovinos , Fluoresceína-5-Isotiocianato/metabolismo , Corantes Fluorescentes/química , Humanos , Microscopia Confocal/métodos , Térbio/química , Transferrina/química
18.
Int J Nanomedicine ; 14: 6843-6854, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31692567

RESUMO

PURPOSE: Progression of chronic myeloid leukemia (CML) is frequently associated with increased angiogenesis at the bone marrow mediated by exosomes. The capability of gold nanoparticles (AuNPs) functionalized with antiangiogenic peptides to hinder the formation of new blood vessels has been demonstrated in a chorioallantoic membrane (CAM) model. METHODS: Exosomes of K562 CML cell line were isolated and their angiogenic effect assessed in a CAM model. AuNPs functionalized with antiangiogenic peptides were used to block the angiogenic effect of CML-derived exosomes, assessed by evaluation of expression levels of key modulators involved in angiogenic pathways - VEGFA, VEGFR1 (also known as FLT1) and IL8. RESULTS: Exosomes isolated from K562 cells promoted the doubling of newly formed vessels associated with the increase of VEGFR1 expression. This is a concentration and time-dependent effect. The AuNPs functionalized with antiangiogenic peptides were capable to block the angiogenic effect by modulating VEGFR1 associated pathway. CONCLUSION: Exosomes derived from blast cells are capable to trigger (neo)-angiogenesis, a key factor for the progression and spreading of cancer, in particular in CML. AuNPs functionalized with specific antiangiogenic peptides are capable to block the effect of the exosomes produced by malignant cells via modulation of the intrinsic VEGFR pathway. Together, these data highlight the potential of nanomedicine-based strategies against cancer proliferation.


Assuntos
Inibidores da Angiogênese/farmacologia , Exossomos/patologia , Ouro/farmacologia , Nanopartículas Metálicas/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Inibidores da Angiogênese/química , Animais , Embrião de Galinha , Membrana Corioalantoide/efeitos dos fármacos , Exossomos/metabolismo , Ouro/química , Humanos , Interleucina-8/metabolismo , Células K562/metabolismo , Nanopartículas Metálicas/química , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
19.
Biomed Res Int ; 2019: 6502793, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31828114

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2) is involved in tumor drug resistance, but its role in imatinib resistance of chronic myeloid leukemia (CML) remains elusive. We aimed to investigate the effects of Nrf2 on drug sensitivity, thioredoxin reductase (TrxR) expression, reactive oxygen species (ROS) production, and apoptosis induction in imatinib-resistant CML K562/G01 cells and explored their potential mechanisms. Stable K562/G01 cells with knockdown of Nrf2 were established by infection of siRNA-expressing lentivirus. The mRNA and protein expression levels of Nrf2 and TrxR were determined by real-time quantitative polymerase chain reaction and western blot, respectively. ROS generation and apoptosis were assayed by flow cytometry, while drug sensitivity was measured by the Cell Counting Kit-8 assay. Imatinib-resistant K562/G01 cells had higher levels of Nrf2 expression than the parental K562 cells at both mRNA and protein levels. Expression levels of Nrf2 and TrxR were positively correlated in K562/G01 cells. Knockdown of Nrf2 in K562/G01 cells enhanced the intracellular ROS level, suppressed cell proliferation, and increased apoptosis in response to imatinib treatments. Nrf2 expression contributes to the imatinib resistance of K562/G01 cells and is positively correlated with TrxR expression. Targeted inhibition of the Nrf2-TrxR axis represents a potential therapeutic approach for imatinib-resistant CML.


Assuntos
Antineoplásicos/farmacologia , Mesilato de Imatinib/farmacologia , Células K562 , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Células K562/efeitos dos fármacos , Células K562/metabolismo , Fator 2 Relacionado a NF-E2/análise , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Tiorredoxina Dissulfeto Redutase/análise , Tiorredoxina Dissulfeto Redutase/metabolismo
20.
Oncogene ; 26(44): 6372-85, 2007 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-17533378

RESUMO

Indirubin-3'-monoxime is a derivative of the bis-indole alkaloid indirubin, an active ingredient of a traditional Chinese medical preparation that exhibits anti-inflammatory and anti-leukemic activities. Indirubin-3'-monoxime is mainly recognized as an inhibitor of cyclin-dependent kinases (CDKs) and glycogen synthase kinase-3. It inhibits proliferation of cultured cells, mainly through arresting the cells in the G1/S or G2/M phase of the cell cycle. Here, we report that indirubin-3'-monoxime is able to inhibit proliferation of NIH/3T3 cells by specifically inhibiting autophosphorylation of fibroblast growth factor receptor 1 (FGFR1), blocking in this way the receptor-mediated cell signaling. Indirubin-3'-monoxime inhibits the activity of FGFR1 at a concentration lower than that required for inhibition of phosphorylation of CDK2 and retinoblastoma protein and cell proliferation stimulated by fetal calf serum. The ability of indirubin-3'-monoxime to inhibit FGFR1 signaling was similar to that of the FGFR1 inhibitor SU5402. In addition, we found that indirubin-3'-monoxime activates long-term p38 mitogen-activated protein kinase activity, which stimulates extracellular signal-regulated kinase 1/2 in a way unrelated to the activity of FGFR1. Furthermore, we show that indirubin-3'-monoxime can inhibit proliferation of the myeloid leukemia cell line KG-1a through inhibition of the activity of the FGFR1 tyrosine kinase. The data presented here demonstrate previously unknown activities of indirubin-3'-monoxime that may have clinical implications.


Assuntos
Indóis/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Oximas/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/metabolismo , Endocitose , Receptores ErbB/metabolismo , Fator 1 de Crescimento de Fibroblastos/metabolismo , Humanos , Células K562/efeitos dos fármacos , Células K562/metabolismo , Leucemia Mieloide/tratamento farmacológico , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Camundongos , Células NIH 3T3/efeitos dos fármacos , Células NIH 3T3/metabolismo , Fosforilação , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA