Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.568
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 25(8): 1422-1431, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38961274

RESUMO

The differentiation of naive and memory B cells into antibody-secreting cells (ASCs) is a key feature of adaptive immunity. The requirement for phosphoinositide 3-kinase-delta (PI3Kδ) to support B cell biology has been investigated intensively; however, specific functions of the related phosphoinositide 3-kinase-gamma (PI3Kγ) complex in B lineage cells have not. In the present study, we report that PI3Kγ promotes robust antibody responses induced by T cell-dependent antigens. The inborn error of immunity caused by human deficiency in PI3Kγ results in broad humoral defects, prompting our investigation of roles for this kinase in antibody responses. Using mouse immunization models, we found that PI3Kγ functions cell intrinsically within activated B cells in a kinase activity-dependent manner to transduce signals required for the transcriptional program supporting differentiation of ASCs. Furthermore, ASC fate choice coincides with upregulation of PIK3CG expression and is impaired in the context of PI3Kγ disruption in naive B cells on in vitro CD40-/cytokine-driven activation, in memory B cells on toll-like receptor activation, or in human tonsillar organoids. Taken together, our study uncovers a fundamental role for PI3Kγ in supporting humoral immunity by integrating signals instructing commitment to the ASC fate.


Assuntos
Formação de Anticorpos , Linfócitos B , Diferenciação Celular , Classe Ib de Fosfatidilinositol 3-Quinase , Animais , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/imunologia , Camundongos , Diferenciação Celular/imunologia , Humanos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Formação de Anticorpos/imunologia , Camundongos Knockout , Células Produtoras de Anticorpos/imunologia , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia , Células B de Memória/imunologia , Células B de Memória/metabolismo
2.
Immunity ; 57(9): 2191-2201.e5, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39168129

RESUMO

Memory B cells (MBCs) formed over the individual's lifetime constitute nearly half of the circulating B cell repertoire in humans. These pre-existing MBCs dominate recall responses to their cognate antigens, but how they respond to recognition of novel antigens is not well understood. Here, we tracked the origin and followed the differentiation paths of MBCs in the early anti-spike (S) response to mRNA vaccination in SARS-CoV-2-naive individuals on single-cell and monoclonal antibody levels. Pre-existing, highly mutated MBCs showed no signs of germinal center re-entry and rapidly developed into mature antibody-secreting cells (ASCs). By contrast, and despite similar levels of S reactivity, naive B cells showed strong signs of antibody affinity maturation before differentiating into MBCs and ASCs. Thus, pre-existing human MBCs differentiate into ASCs in response to novel antigens, but the quality of the humoral and cellular anti-S response improved through the clonal selection and affinity maturation of naive precursors.


Assuntos
Anticorpos Antivirais , Células Produtoras de Anticorpos , Vacinas contra COVID-19 , COVID-19 , Células B de Memória , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/imunologia , Células B de Memória/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Anticorpos Antivirais/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Células Produtoras de Anticorpos/imunologia , Vacinas contra COVID-19/imunologia , Vacinação , Afinidade de Anticorpos/imunologia , Diferenciação Celular/imunologia , Centro Germinativo/imunologia , Memória Imunológica/imunologia , Anticorpos Monoclonais/imunologia , Adulto , Feminino
3.
Immunity ; 50(3): 616-628.e6, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30850343

RESUMO

Humoral immunity depends on efficient activation of B cells and their subsequent differentiation into antibody-secreting cells (ASCs). The transcription factor NFκB cRel is critical for B cell proliferation, but incorporating its known regulatory interactions into a mathematical model of the ASC differentiation circuit prevented ASC generation in simulations. Indeed, experimental ectopic cRel expression blocked ASC differentiation by inhibiting the transcription factor Blimp1, and in wild-type (WT) cells cRel was dynamically repressed during ASC differentiation by Blimp1 binding the Rel locus. Including this bi-stable circuit of mutual cRel-Blimp1 antagonism into a multi-scale model revealed that dynamic repression of cRel controls the switch from B cell proliferation to ASC generation phases and hence the respective cell population dynamics. Our studies provide a mechanistic explanation of how dysregulation of this bi-stable circuit might result in pathologic B cell population phenotypes and thus offer new avenues for diagnostic stratification and treatment.


Assuntos
Linfócitos B/imunologia , Diferenciação Celular/imunologia , Proliferação de Células/fisiologia , NF-kappa B/imunologia , Animais , Células Produtoras de Anticorpos/imunologia , Linhagem Celular , Feminino , Regulação da Expressão Gênica/imunologia , Células HEK293 , Humanos , Imunidade Humoral/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL
4.
Immunity ; 50(5): 1172-1187.e7, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31076359

RESUMO

Although viral infections elicit robust interferon-γ (IFN-γ) and long-lived antibody-secreting cell (ASC) responses, the roles for IFN-γ and IFN-γ-induced transcription factors (TFs) in ASC development are unclear. We showed that B cell intrinsic expression of IFN-γR and the IFN-γ-induced TF T-bet were required for T-helper 1 cell-induced differentiation of B cells into ASCs. IFN-γR signaling induced Blimp1 expression in B cells but also initiated an inflammatory gene program that, if not restrained, prevented ASC formation. T-bet did not affect Blimp1 upregulation in IFN-γ-activated B cells but instead regulated chromatin accessibility within the Ifng and Ifngr2 loci and repressed the IFN-γ-induced inflammatory gene program. Consistent with this, B cell intrinsic T-bet was required for formation of long-lived ASCs and secondary ASCs following viral, but not nematode, infection. Therefore, T-bet facilitates differentiation of IFN-γ-activated inflammatory effector B cells into ASCs in the setting of IFN-γ-, but not IL-4-, induced inflammatory responses.


Assuntos
Linfócitos B/imunologia , Interferon gama/imunologia , Receptores de Interferon/metabolismo , Proteínas com Domínio T/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Células Produtoras de Anticorpos/imunologia , Linfócitos B/citologia , Diferenciação Celular/imunologia , Células Cultivadas , Cromatina/metabolismo , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nematospiroides dubius/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/biossíntese , Infecções por Strongylida/imunologia , Infecções por Strongylida/parasitologia , Proteínas com Domínio T/genética , Receptor de Interferon gama
5.
Nat Immunol ; 16(7): 755-65, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26006014

RESUMO

Acute systemic lupus erythematosus (SLE) courses with surges of antibody-secreting cells (ASCs) whose origin, diversity and contribution to serum autoantibodies remain unknown. Here, deep sequencing, proteomic profiling of autoantibodies and single-cell analysis demonstrated highly diversified ASCs punctuated by clones expressing the variable heavy-chain region VH4-34 that produced dominant serum autoantibodies. A fraction of ASC clones contained autoantibodies without mutation, a finding consistent with differentiation outside the germinal centers. A substantial ASC segment was derived from a distinct subset of newly activated naive cells of considerable clonality that persisted in the circulation for several months. Thus, selection of SLE autoreactivities occurred during polyclonal activation, with prolonged recruitment of recently activated naive B cells. Our findings shed light on the pathogenesis of SLE, help explain the benefit of agents that target B cells and should facilitate the design of future therapies.


Assuntos
Diversidade de Anticorpos/imunologia , Células Produtoras de Anticorpos/imunologia , Autoanticorpos/imunologia , Proliferação de Células , Lúpus Eritematoso Sistêmico/imunologia , Doença Aguda , Sequência de Aminoácidos , Diversidade de Anticorpos/genética , Células Produtoras de Anticorpos/metabolismo , Autoanticorpos/genética , Autoanticorpos/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Sequência de Bases , Células Clonais/imunologia , Células Clonais/metabolismo , Citometria de Fluxo , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/metabolismo , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/metabolismo , Vacinas contra Influenza/imunologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Dados de Sequência Molecular , Proteoma/análise , Proteoma/imunologia , Proteômica/métodos , Homologia de Sequência de Aminoácidos , Análise de Célula Única/métodos , Espectrometria de Massas em Tandem , Toxoide Tetânico/imunologia
6.
Proc Natl Acad Sci U S A ; 121(29): e2404309121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38990948

RESUMO

Antibody-producing plasma cells fuel humoral immune responses. They also contribute to autoimmune diseases such as systemic lupus erythematosus or IgA nephropathy. Interleukin-6 and the tumor necrosis factor (TNF) family ligands BAFF (B cell-activating factor) and APRIL (a proliferation-inducing ligand) participate in plasma cell survival. BAFF binds to three receptors, BAFFR (BAFF receptor), TACI (transmembrane activator and CAML interactor), and BCMA (B cell maturation antigen), while APRIL binds to TACI, BCMA, and proteoglycans. However, which ligand-receptor pair(s) are required to maintain plasma cells in different body locations remains unknown. Here, by combining mouse genetic and pharmacological approaches, we found that plasma cells required BCMA and/or TACI but not BAFFR. BCMA responded exclusively to APRIL, while TACI responded to both BAFF and APRIL, identifying three self-sufficient ligand-receptor pairs for plasma cell maintenance: BAFF-TACI, APRIL-TACI, and APRIL-BCMA. Together, these actors accounted for 90% of circulating antibodies. In BAFF-ko mice, the reduction of plasma cells upon APRIL inhibition indicated that APRIL could function in the absence of BAFF-APRIL heteromers. No evidence was found that in the absence of BCMA and TACI, binding of APRIL to proteoglycans would help maintain plasma cells. IL-6, alone or together with BAFF and APRIL, supported mainly splenic plasmablasts and plasma cells and contributed to circulating IgG but not IgA levels. In conclusion, survival factors for plasma cells can vary with body location and with the antibody isotype that plasma cells produce. To efficiently target plasma cells, in particular IgA-producing ones, dual inhibition of BAFF and APRIL is required.


Assuntos
Fator Ativador de Células B , Receptor do Fator Ativador de Células B , Antígeno de Maturação de Linfócitos B , Interleucina-6 , Proteína Transmembrana Ativadora e Interagente do CAML , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Animais , Fator Ativador de Células B/imunologia , Fator Ativador de Células B/metabolismo , Fator Ativador de Células B/genética , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/imunologia , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Antígeno de Maturação de Linfócitos B/imunologia , Antígeno de Maturação de Linfócitos B/metabolismo , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Proteína Transmembrana Ativadora e Interagente do CAML/imunologia , Interleucina-6/metabolismo , Interleucina-6/imunologia , Camundongos , Receptor do Fator Ativador de Células B/metabolismo , Receptor do Fator Ativador de Células B/imunologia , Receptor do Fator Ativador de Células B/genética , Plasmócitos/imunologia , Plasmócitos/metabolismo , Camundongos Knockout , Células Produtoras de Anticorpos/imunologia , Células Produtoras de Anticorpos/metabolismo , Camundongos Endogâmicos C57BL
7.
Immunity ; 45(1): 60-73, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27396958

RESUMO

Durable antibody production after vaccination or infection is mediated by long-lived plasma cells (LLPCs). Pathways that specifically allow LLPCs to persist remain unknown. Through bioenergetic profiling, we found that human and mouse LLPCs could robustly engage pyruvate-dependent respiration, whereas their short-lived counterparts could not. LLPCs took up more glucose than did short-lived plasma cells (SLPCs) in vivo, and this glucose was essential for the generation of pyruvate. Glucose was primarily used to glycosylate antibodies, but glycolysis could be promoted by stimuli such as low ATP levels and the resultant pyruvate used for respiration by LLPCs. Deletion of Mpc2, which encodes an essential component of the mitochondrial pyruvate carrier, led to a progressive loss of LLPCs and of vaccine-specific antibodies in vivo. Thus, glucose uptake and mitochondrial pyruvate import prevent bioenergetic crises and allow LLPCs to persist. Immunizations that maximize these plasma cell metabolic properties might thus provide enduring antibody-mediated immunity.


Assuntos
Células Produtoras de Anticorpos/imunologia , Glucose/metabolismo , Mitocôndrias/metabolismo , Plasmócitos/imunologia , Ácido Pirúvico/metabolismo , Animais , Transporte Biológico Ativo , Respiração Celular , Células Cultivadas , Glicosilação , Humanos , Imunoglobulinas/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pró-Proteína Convertase 2/genética , Pró-Proteína Convertase 2/metabolismo , Estresse Fisiológico/imunologia
8.
Immunology ; 173(2): 339-359, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38934051

RESUMO

Maintaining intracellular redox balance is essential for the survival, antibody secretion, and mucosal immune homeostasis of immunoglobulin A (IgA) antibody-secreting cells (ASCs). However, the relationship between mitochondrial metabolic enzymes and the redox balance in ASCs has yet to be comprehensively studied. Our study unveils the pivotal role of mitochondrial enzyme PCK2 in regulating ASCs' redox balance and intestinal homeostasis. We discover that PCK2 loss, whether globally or in B cells, exacerbates dextran sodium sulphate (DSS)-induced colitis due to increased IgA ASC cell death and diminished antibody production. Mechanistically, the absence of PCK2 diverts glutamine into the TCA cycle, leading to heightened TCA flux and excessive mitochondrial reactive oxygen species (mtROS) production. In addition, PCK2 loss reduces glutamine availability for glutathione (GSH) synthesis, resulting in a decrease of total glutathione level. The elevated mtROS and reduced GSH expose ASCs to overwhelming oxidative stress, culminating in cell apoptosis. Crucially, we found that the mitochondria-targeted antioxidant Mitoquinone (Mito-Q) can mitigate the detrimental effects of PCK2 deficiency in IgA ASCs, thereby alleviating colitis in mice. Our findings highlight PCK2 as a key player in IgA ASC survival and provide a potential new target for colitis treatment.


Assuntos
Colite , Homeostase , Mitocôndrias , Estresse Oxidativo , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colite/imunologia , Camundongos , Mitocôndrias/metabolismo , Imunoglobulina A/metabolismo , Sulfato de Dextrana , Camundongos Knockout , Células Produtoras de Anticorpos/imunologia , Células Produtoras de Anticorpos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Glutationa/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Intestinos/imunologia , Apoptose , Modelos Animais de Doenças
9.
Brain Behav Immun ; 120: 181-186, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38825049

RESUMO

BACKGROUND: The pathogenicity of NR1-IgGs in N-methyl-D-aspartate receptor (NMDAR)-antibody encephalitis is known, but the immunobiological mechanisms underlying their production remain unclear. METHODS: For the first time, we explore the origin of NR1-IgGs and evaluate the contribution of B-cells to serum NR1-IgGs levels. Peripheral blood mononuclear cells (PBMCs) were obtained from patients and healthy controls (HCs). Naïve, unswitched memory (USM), switched memory B cells (SM), antibody-secreting cells (ASCs), and PBMC depleted of ASCs were obtained by fluorescence-activated cell sorting and cultured in vitro. RESULTS: For some patients, PBMCs spontaneously produced NR1-IgGs. Compared to the patients in PBMC negative group, the positive group had higher NR1-IgG titers in cerebrospinal fluid and Modified Rankin scale scores. The proportions of NR1-IgG positive wells in PBMCs cultures were correlated with NR1-IgGs titers in serum and CSF. The purified ASCs, SM, USM B cells produced NR1-IgGs in vitro. Compared to the patients in ASCs negative group, the positive group exhibited a worse response to second-line IT at 3-month follow-up. Naïve B cells also produce NR1-IgGs, implicating that NR1-IgGs originate from naïve B cells and a pre-germinal centres defect in B cell tolerance checkpoint in some patients. For HCs, no NR1-IgG from cultures was observed. PBMC depleted of ASCs almost eliminated the production of NR1-IgGs. CONCLUSIONS: These collective findings suggested that ASCs might mainly contribute to the production of peripheral NR1-IgG in patients with NMDAR-antibody encephalitis in the acute phase. Our study reveals the pathogenesis and helps develop tailored treatments (eg, anti-CD38) for NMDAR-antibody encephalitis.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato , Células Produtoras de Anticorpos , Imunoglobulina G , Leucócitos Mononucleares , Receptores de N-Metil-D-Aspartato , Humanos , Receptores de N-Metil-D-Aspartato/imunologia , Receptores de N-Metil-D-Aspartato/metabolismo , Encefalite Antirreceptor de N-Metil-D-Aspartato/imunologia , Encefalite Antirreceptor de N-Metil-D-Aspartato/metabolismo , Masculino , Feminino , Células Produtoras de Anticorpos/imunologia , Células Produtoras de Anticorpos/metabolismo , Adulto , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , Autoanticorpos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Criança
10.
PLoS Pathog ; 17(2): e1009352, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33635919

RESUMO

Serological and plasmablast responses and plasmablast-derived IgG monoclonal antibodies (MAbs) have been analysed in three COVID-19 patients with different clinical severities. Potent humoral responses were detected within 3 weeks of onset of illness in all patients and the serological titre was elicited soon after or concomitantly with peripheral plasmablast response. An average of 13.7% and 3.5% of plasmablast-derived MAbs were reactive with virus spike glycoprotein or nucleocapsid, respectively. A subset of anti-spike (10 of 32) antibodies cross-reacted with other betacoronaviruses tested and harboured extensive somatic mutations, indicative of an expansion of memory B cells upon SARS-CoV-2 infection. Fourteen of 32 anti-spike MAbs, including five anti-receptor-binding domain (RBD), three anti-non-RBD S1 and six anti-S2, neutralised wild-type SARS-CoV-2 in independent assays. Anti-RBD MAbs were further grouped into four cross-inhibiting clusters, of which six antibodies from three separate clusters blocked the binding of RBD to ACE2 and five were neutralising. All ACE2-blocking anti-RBD antibodies were isolated from two recovered patients with prolonged fever, which is compatible with substantial ACE2-blocking response in their sera. Finally, the identification of non-competing pairs of neutralising antibodies would offer potential templates for the development of prophylactic and therapeutic agents against SARS-CoV-2.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Adulto , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/genética , Células Produtoras de Anticorpos/imunologia , Sítios de Ligação , Epitopos , Humanos , Imunoglobulina G/imunologia , Nucleocapsídeo/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
11.
J Immunol ; 207(2): 449-458, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34215657

RESUMO

Differentiation of Ag-specific B cells into class-switched, high-affinity, Ab-secreting cells provides protection against invading pathogens but is undesired when Abs target self-tissues in autoimmunity, beneficial non-self-blood transfusion products, or therapeutic proteins. Essential T cell factors have been uncovered that regulate T cell-dependent B cell differentiation. We performed a screen using a secreted protein library to identify novel factors that promote this process and may be used to combat undesired Ab formation. We tested the differentiating capacity of 756 secreted proteins on human naive or memory B cell differentiation in a setting with suboptimal T cell help in vitro (suboptimal CD40L and IL-21). High-throughput flow cytometry screening and validation revealed that type I IFNs and soluble FAS ligand (sFASL) induce plasmablast differentiation in memory B cells. Furthermore, sFASL induces robust secretion of IgG1 and IgG4 Abs, indicative of functional plasma cell differentiation. Our data suggest a mechanistic connection between elevated sFASL levels and the induction of autoreactive Abs, providing a potential therapeutic target in autoimmunity. Indeed, the modulators identified in this secretome screen are associated with systemic lupus erythematosus and may also be relevant in other autoimmune diseases and allergy.


Assuntos
Células Produtoras de Anticorpos/imunologia , Diferenciação Celular/imunologia , Proteína Ligante Fas/imunologia , Memória Imunológica/imunologia , Interleucinas/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Animais , Autoimunidade/imunologia , Linfócitos B/imunologia , Ligante de CD40/imunologia , Linhagem Celular , Células HEK293 , Humanos , Ativação Linfocitária/imunologia , Camundongos , Células NIH 3T3 , Plasmócitos/imunologia , Linfócitos T/imunologia
12.
J Neuroinflammation ; 19(1): 6, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991631

RESUMO

BACKGROUND: Anti-aquaporin 4 (AQP4) antibody (AQP4-Ab) is involved in the pathogenesis of neuromyelitis optica spectrum disorder (NMOSD). However, the mechanism involved in AQP4-Ab production remains unclear. METHODS: We analyzed the immunophenotypes of patients with NMOSD and other neuroinflammatory diseases as well as healthy controls (HC) using flow cytometry. Transcriptome analysis of B cell subsets obtained from NMOSD patients and HCs was performed. The differentiation capacity of B cell subsets into antibody-secreting cells was analyzed. RESULTS: The frequencies of switched memory B (SMB) cells and plasmablasts were increased and that of naïve B cells was decreased in NMOSD patients compared with relapsing-remitting multiple sclerosis patients and HC. SMB cells from NMOSD patients had an enhanced potential to differentiate into antibody-secreting cells when cocultured with T peripheral helper cells. Transcriptome analysis revealed that the profiles of B cell lineage transcription factors in NMOSD were skewed towards antibody-secreting cells and that IL-2 signaling was upregulated, particularly in naïve B cells. Naïve B cells expressing CD25, a receptor of IL-2, were increased in NMOSD patients and had a higher potential to differentiate into antibody-secreting cells, suggesting CD25+ naïve B cells are committed to differentiate into antibody-secreting cells. CONCLUSIONS: To the best of our knowledge, this is the first study to demonstrate that B cells in NMOSD patients are abnormally skewed towards antibody-secreting cells at the transcriptome level during the early differentiation phase, and that IL-2 might participate in this pathogenic process. Our study indicates that CD25+ naïve B cells are a novel candidate precursor of antibody-secreting cells in autoimmune diseases.


Assuntos
Células Produtoras de Anticorpos/patologia , Linfócitos B/patologia , Diferenciação Celular/fisiologia , Neuromielite Óptica/patologia , Adolescente , Adulto , Idoso , Células Produtoras de Anticorpos/imunologia , Linfócitos B/imunologia , Feminino , Perfilação da Expressão Gênica , Humanos , Imunoglobulina G/imunologia , Interleucina-2/imunologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/patologia , Neuromielite Óptica/imunologia , Transdução de Sinais/imunologia , Adulto Jovem
13.
J Virol ; 95(23): e0141421, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34495701

RESUMO

Rabies, caused by rabies virus (RABV), remains a serious threat to public health in most countries worldwide. At present, the administration of rabies vaccines has been the most effective strategy to control rabies. Herein, we evaluate the effect of colloidal manganese salt (Mn jelly [MnJ]) as an adjuvant of rabies vaccine in mice, cats, and dogs. The results showed that MnJ promoted type I interferon (IFN-I) and cytokine production in vitro and the maturation of dendritic cells (DCs) in vitro and in vivo. Besides, MnJ serving as an adjuvant for rabies vaccines could significantly facilitate the generation of T follicular helper (Tfh) cells, germinal center (GC) B cells, plasma cells (PCs), and RABV-specific antibody-secreting cells (ASCs), consequently improve the immunogenicity of rabies vaccines, and provide better protection against virulent RABV challenge. Similarly, MnJ enhanced the humoral immune response in cats and dogs as well. Collectively, our results suggest that MnJ can facilitate the maturation of DCs during rabies vaccination, which can be a promising adjuvant candidate for rabies vaccines. IMPORTANCE Extending the humoral immune response by using adjuvants is an important strategy for vaccine development. In this study, a novel adjuvant, MnJ, supplemented in rabies vaccines was evaluated in mice, cats, and dogs. Our results in the mouse model revealed that MnJ increased the numbers of mature DCs, Tfh cells, GC B cells, PCs, and RABV-specific ASCs, resulting in enhanced immunogenicity and protection rate of rabies vaccines. We further found that MnJ had the same stimulative effect in cats and dogs. Our study provides the first evidence that MnJ serving as a novel adjuvant of rabies vaccines can boost the immune response in both a mouse and pet model.


Assuntos
Adjuvantes Imunológicos , Manganês/farmacologia , Vacina Antirrábica/imunologia , Animais , Anticorpos Antivirais/sangue , Células Produtoras de Anticorpos/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos , Gatos , Células Dendríticas/imunologia , Modelos Animais de Doenças , Cães , Feminino , Centro Germinativo/imunologia , Imunidade Humoral , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Plasmócitos/imunologia , Raiva/imunologia , Vírus da Raiva/imunologia , Vacinação , Desenvolvimento de Vacinas
15.
Immunology ; 164(1): 120-134, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34041745

RESUMO

Antibody-secreting cells (ASC) are divided into two principal subsets, including the long-lived plasma cell (PC) subset residing in the bone marrow and the short-lived subset, also called plasmablast (PB). PB are described as a proliferating subset circulating through the blood and ending its differentiation in tissues. Due to their inherent heterogeneity, the molecular signature of PB is not fully established. The purpose of this study was to decipher a specific PB signature in humans and mice through a comprehensive meta-analysis of different data sets exploring the PB differentiation in both species and across different experimental conditions. The present study used recent analyses using whole RNA sequencing in prdm1-GFP transgenic mice to define a reliable and accurate PB signature. Next, we performed similar analysis using current data sets obtained from human PB and PC. The PB-specific signature is composed of 155 and 113 genes in mouse and human being, respectively. Although only nine genes are shared between the human and mice PB signature, the loss of B-cell identity such as the down-regulation of PAX5, MS4A1, (CD20) CD22 and IL-4R is a conserved feature across species and across the different experimental conditions. Additionally, we observed that the IRF8 and IRF4 transcription factors have a specific dynamic range of expression in human PB. We thus demonstrated that IRF4/IRF8 intranuclear staining was useful to define PB in vivo and in vitro and able to discriminate between atypical PB populations and transient states.


Assuntos
Células Produtoras de Anticorpos/imunologia , Linfócitos B/imunologia , Plasmócitos/imunologia , Animais , Antígenos CD20/genética , Diferenciação Celular , Glicoproteínas/genética , Humanos , Camundongos , Camundongos Transgênicos/genética , Fator de Transcrição PAX5/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Análise de Sequência de RNA , Transcriptoma , Sequenciamento Completo do Genoma
16.
J Gen Virol ; 102(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34661517

RESUMO

Rabies is a zoonotic disease caused by the rabies virus (RABV). RABV can lead to fatal encephalitis and is still a serious threat in most parts of the world. Interferon regulatory factor 7 (IRF7) is the main transcriptional regulator of type I IFN, and it is crucial for the induction of IFNα/ß and the type I IFN-dependent immune response. In this study, we focused on the role of IRF7 in the pathogenicity and immunogenicity of RABV using an IRF7-/- mouse model. The results showed that the absence of IRF7 made mice more susceptible to RABV, because IRF7 restricted the replication of RABV in the early stage of infection. IRF7 deficiency affected the recruitment of plasmacytoid dendritic cells to the draining lymph nodes (dLNs), reduced the production of type I IFN and expression of IFN-stimulated genes. Furthermore, we found that the ability to produce specific RABV-neutralizing antibody was impaired in IRF7-/- mice. Consistently, IRF7 deficiency affected the recruitment of germinal-centre B cells to dLNs, and the generation of plasma cells and RABV-specific antibody secreting cells. Moreover, the absence of IRF7 downregulated the induction of IFN-γ and reduced type 1 T helper cell (Th1)-dependent antibody production. Collectively, our findings demonstrate that IRF7 promotes humoral immune responses and compromises the pathogenicity of RABV in a mouse model.


Assuntos
Fator Regulador 7 de Interferon/fisiologia , Vírus da Raiva/imunologia , Vírus da Raiva/patogenicidade , Raiva/imunologia , Raiva/virologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Células Produtoras de Anticorpos/imunologia , Linfócitos B/imunologia , Linhagem Celular , Células Dendríticas/imunologia , Modelos Animais de Doenças , Feminino , Imunidade Humoral , Fator Regulador 7 de Interferon/deficiência , Fator Regulador 7 de Interferon/genética , Interferons/análise , Linfonodos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vacina Antirrábica/imunologia , Células Th1/imunologia , Carga Viral
17.
Ann Rheum Dis ; 80(5): 651-659, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33208344

RESUMO

OBJECTIVES: Anti-centromere antibodies (ACAs) are detected in patients with various autoimmune diseases such as Sjögren's syndrome (SS), systemic sclerosis (SSc) and primary biliary cholangitis (PBC). However, the targeted antigens of ACAs are not fully elucidated despite the accumulating understanding of the molecular structure of the centromere. The aim of this study was to comprehensively reveal the autoantigenicity of centromere proteins. METHODS: A centromere antigen library including 16 principal subcomplexes composed of 41 centromere proteins was constructed. Centromere protein/complex binding beads were used to detect serum ACAs in patients with SS, SSc and PBC. ACA-secreting cells in salivary glands obtained from patients with SS were detected with green fluorescent protein-fusion centromere antigens and semiquantified with confocal microscopy. RESULTS: A total of 241 individuals with SS, SSc or PBC and healthy controls were recruited for serum ACA profiling. A broad spectrum of serum autoantibodies was observed, and some of them had comparative frequency as anti-CENP-B antibody, which is the known major ACA. The prevalence of each antibody was shared across the three diseases. Immunostaining of SS salivary glands showed the accumulation of antibody-secreting cells (ASCs) specific for kinetochore, which is a part of the centromere, whereas little reactivity against CENP-B was seen. CONCLUSIONS: We demonstrated that serum autoantibodies target the centromere-kinetochore macrocomplex in patients with SS, SSc and PBC. The specificity of ASCs in SS salivary glands suggests kinetochore complex-driven autoantibody selection, providing insight into the underlying mechanism of ACA acquisition.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Autoanticorpos/imunologia , Centrômero/imunologia , Cirrose Hepática Biliar/imunologia , Escleroderma Sistêmico/imunologia , Síndrome de Sjogren/imunologia , Idoso , Anticorpos Antinucleares/imunologia , Células Produtoras de Anticorpos/imunologia , Autoantígenos/imunologia , Feminino , Humanos , Cinetocoros/imunologia , Cirrose Hepática Biliar/sangue , Masculino , Pessoa de Meia-Idade , Glândulas Salivares/imunologia , Escleroderma Sistêmico/sangue , Síndrome de Sjogren/sangue
18.
Malar J ; 20(1): 474, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930312

RESUMO

BACKGROUND: Development of an effective vaccine against blood-stage malaria requires the induction of long-term immune responses. Plasmodium vivax Reticulocyte Binding Protein 1a (PvRBP1a) is a blood-stage parasite antigen which is associated with invasion of red blood cells and induces antibody responses. Thus, PvRBP1a is considered as a target for design of a blood-stage vaccine against vivax malaria. METHODS: Both cross-sectional and cohort studies were used to explore the development and persistence of long-lived antibody and memory B cell responses to PvRBP1a in individuals who lived in an area of low malaria endemicity. Antibody titers and frequency of memory B cells specific to PvRBP1a were measured during infection and following recovery for up to 12 months. RESULTS: IgG antibody responses against PvRBP1a were prevalent during acute vivax malaria, predominantly IgG1 subclass responses. High responders to PvRBP1a had persistent antibody responses for at least 12-month post-infection. Further analysis of high responder found a direct relation between antibody titers and frequency of activated and atypical memory B cells. Furthermore, circulating antibody secreting cells and memory B cells specific to PvRBP1a were generated during infection. The PvRBP1a-specific memory B cells were maintained for up to 3-year post-infection, indicating the ability of PvRBP1a to induce long-term humoral immunity. CONCLUSION: The study revealed an ability of PvRBP1a protein to induce the generation and maintenance of antibody and memory B cell responses. Therefore, PvRBP1a could be considered as a vaccine candidate against the blood-stage of P. vivax.


Assuntos
Anticorpos Antiprotozoários/sangue , Células Produtoras de Anticorpos/imunologia , Proteínas de Membrana/análise , Células B de Memória/imunologia , Proteínas de Protozoários/análise , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
19.
J Immunol ; 202(4): 1287-1300, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30642980

RESUMO

Recurrent mutational activation of the MAP kinase pathway in plasma cell myeloma implicates growth factor-like signaling responses in the biology of Ab-secreting cells (ASCs). Physiological ASCs survive in niche microenvironments, but how niche signals are propagated and integrated is poorly understood. In this study, we dissect such a response in human ASCs using an in vitro model. Applying time course expression data and parsimonious gene correlation network analysis (PGCNA), a new approach established by our group, we map expression changes that occur during the maturation of proliferating plasmablast to quiescent plasma cell under survival conditions including the potential niche signal TGF-ß3. This analysis demonstrates a convergent pattern of differentiation, linking unfolded protein response/endoplasmic reticulum stress to secretory optimization, coordinated with cell cycle exit. TGF-ß3 supports ASC survival while having a limited effect on gene expression including upregulation of CXCR4. This is associated with a significant shift in response to SDF1 in ASCs with amplified ERK1/2 activation, growth factor-like immediate early gene regulation and EGR1 protein expression. Similarly, ASCs responding to survival conditions initially induce partially overlapping sets of immediate early genes without sustaining the response. Thus, in human ASCs growth factor-like gene regulation is transiently imposed by niche signals but is not sustained during subsequent survival and maturation.


Assuntos
Células Produtoras de Anticorpos/imunologia , Quimiocina CXCL12/imunologia , Fator de Crescimento Transformador beta3/imunologia , Sobrevivência Celular , Células Cultivadas , Quimiocina CXCL12/genética , Voluntários Saudáveis , Humanos , Fator de Crescimento Transformador beta3/genética
20.
J Immunol ; 202(2): 401-405, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30552165

RESUMO

The T follicular helper (Tfh) cell subset of CD4+ Th cells promotes affinity maturation by B cells in germinal centers. The contribution of other Th cell subsets to B cell responses has not been fully explored in vivo. We addressed this issue by analyzing the T cell-dependent B cell response to the protein Ag PE in mice lacking specific Th cell subsets. As expected, PE-specific germinal center B cell production required Tfh cells. However, Tfh, Th1, or Th17 cell-deficient mice produced as many PE-specific, isotype-switched plasmablasts as wild-type mice. This response depended on Th cell expression of CD154 and Ag presentation by B cells. These results indicate that many Th cell subsets can promote plasmablast formation by providing CD40 signals to naive B cells.


Assuntos
Células Produtoras de Anticorpos/imunologia , Linfócitos T CD4-Positivos/imunologia , Centro Germinativo/imunologia , Plasmócitos/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Afinidade de Anticorpos , Apresentação de Antígeno , Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Comunicação Celular , Diferenciação Celular , Células Cultivadas , Feminino , Switching de Imunoglobulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA