Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(10): 2767-2778.e15, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33857423

RESUMO

Individual neurons in visual cortex provide the brain with unreliable estimates of visual features. It is not known whether the single-neuron variability is correlated across large neural populations, thus impairing the global encoding of stimuli. We recorded simultaneously from up to 50,000 neurons in mouse primary visual cortex (V1) and in higher order visual areas and measured stimulus discrimination thresholds of 0.35° and 0.37°, respectively, in an orientation decoding task. These neural thresholds were almost 100 times smaller than the behavioral discrimination thresholds reported in mice. This discrepancy could not be explained by stimulus properties or arousal states. Furthermore, behavioral variability during a sensory discrimination task could not be explained by neural variability in V1. Instead, behavior-related neural activity arose dynamically across a network of non-sensory brain areas. These results imply that perceptual discrimination in mice is limited by downstream decoders, not by neural noise in sensory representations.


Assuntos
Discriminação Psicológica/fisiologia , Neurônios/fisiologia , Córtex Visual Primário/fisiologia , Percepção Visual , Animais , Nível de Alerta , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa , Estimulação Luminosa , Córtex Visual Primário/citologia , Limiar Sensorial
2.
Nature ; 617(7962): 769-776, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37138089

RESUMO

Sensory processing in the neocortex requires both feedforward and feedback information flow between cortical areas1. In feedback processing, higher-level representations provide contextual information to lower levels, and facilitate perceptual functions such as contour integration and figure-ground segmentation2,3. However, we have limited understanding of the circuit and cellular mechanisms that mediate feedback influence. Here we use long-range all-optical connectivity mapping in mice to show that feedback influence from the lateromedial higher visual area (LM) to the primary visual cortex (V1) is spatially organized. When the source and target of feedback represent the same area of visual space, feedback is relatively suppressive. By contrast, when the source is offset from the target in visual space, feedback is relatively facilitating. Two-photon calcium imaging data show that this facilitating feedback is nonlinearly integrated in the apical tuft dendrites of V1 pyramidal neurons: retinotopically offset (surround) visual stimuli drive local dendritic calcium signals indicative of regenerative events, and two-photon optogenetic activation of LM neurons projecting to identified feedback-recipient spines in V1 can drive similar branch-specific local calcium signals. Our results show how neocortical feedback connectivity and nonlinear dendritic integration can together form a substrate to support both predictive and cooperative contextual interactions.


Assuntos
Dendritos , Retroalimentação Fisiológica , Córtex Visual , Vias Visuais , Animais , Camundongos , Cálcio/metabolismo , Dendritos/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Vias Visuais/citologia , Vias Visuais/fisiologia , Retroalimentação Fisiológica/fisiologia , Córtex Visual Primário/citologia , Córtex Visual Primário/fisiologia , Células Piramidais/citologia , Células Piramidais/fisiologia , Optogenética , Sinalização do Cálcio
3.
Nature ; 611(7936): 532-539, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36323788

RESUMO

Neuropsychiatric disorders classically lack defining brain pathologies, but recent work has demonstrated dysregulation at the molecular level, characterized by transcriptomic and epigenetic alterations1-3. In autism spectrum disorder (ASD), this molecular pathology involves the upregulation of microglial, astrocyte and neural-immune genes, the downregulation of synaptic genes, and attenuation of gene-expression gradients in cortex1,2,4-6. However, whether these changes are limited to cortical association regions or are more widespread remains unknown. To address this issue, we performed RNA-sequencing analysis of 725 brain samples spanning 11 cortical areas from 112 post-mortem samples from individuals with ASD and neurotypical controls. We find widespread transcriptomic changes across the cortex in ASD, exhibiting an anterior-to-posterior gradient, with the greatest differences in primary visual cortex, coincident with an attenuation of the typical transcriptomic differences between cortical regions. Single-nucleus RNA-sequencing and methylation profiling demonstrate that this robust molecular signature reflects changes in cell-type-specific gene expression, particularly affecting excitatory neurons and glia. Both rare and common ASD-associated genetic variation converge within a downregulated co-expression module involving synaptic signalling, and common variation alone is enriched within a module of upregulated protein chaperone genes. These results highlight widespread molecular changes across the cerebral cortex in ASD, extending beyond association cortex to broadly involve primary sensory regions.


Assuntos
Transtorno do Espectro Autista , Córtex Cerebral , Variação Genética , Transcriptoma , Humanos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Neurônios/metabolismo , RNA/análise , RNA/genética , Transcriptoma/genética , Autopsia , Análise de Sequência de RNA , Córtex Visual Primário/metabolismo , Neuroglia/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(8): e2314855121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38354261

RESUMO

In order to investigate the involvement of the primary visual cortex (V1) in working memory (WM), parallel, multisite recordings of multi-unit activity were obtained from monkey V1 while the animals performed a delayed match-to-sample (DMS) task. During the delay period, V1 population firing rate vectors maintained a lingering trace of the sample stimulus that could be reactivated by intervening impulse stimuli that enhanced neuronal firing. This fading trace of the sample did not require active engagement of the monkeys in the DMS task and likely reflects the intrinsic dynamics of recurrent cortical networks in lower visual areas. This renders an active, attention-dependent involvement of V1 in the maintenance of WM contents unlikely. By contrast, population responses to the test stimulus depended on the probabilistic contingencies between sample and test stimuli. Responses to tests that matched expectations were reduced which agrees with concepts of predictive coding.


Assuntos
Memória de Curto Prazo , Córtex Visual Primário , Animais , Macaca mulatta , Memória de Curto Prazo/fisiologia , Neurônios/fisiologia , Atenção , Estimulação Luminosa
5.
Proc Natl Acad Sci U S A ; 121(28): e2306800121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38959037

RESUMO

Understanding the genesis of shared trial-to-trial variability in neuronal population activity within the sensory cortex is critical to uncovering the biological basis of information processing in the brain. Shared variability is often a reflection of the structure of cortical connectivity since it likely arises, in part, from local circuit inputs. A series of experiments from segregated networks of (excitatory) pyramidal neurons in the mouse primary visual cortex challenge this view. Specifically, the across-network correlations were found to be larger than predicted given the known weak cross-network connectivity. We aim to uncover the circuit mechanisms responsible for these enhanced correlations through biologically motivated cortical circuit models. Our central finding is that coupling each excitatory subpopulation with a specific inhibitory subpopulation provides the most robust network-intrinsic solution in shaping these enhanced correlations. This result argues for the existence of excitatory-inhibitory functional assemblies in early sensory areas which mirror not just response properties but also connectivity between pyramidal cells. Furthermore, our findings provide theoretical support for recent experimental observations showing that cortical inhibition forms structural and functional subnetworks with excitatory cells, in contrast to the classical view that inhibition is a nonspecific blanket suppression of local excitation.


Assuntos
Modelos Neurológicos , Rede Nervosa , Células Piramidais , Animais , Camundongos , Células Piramidais/fisiologia , Rede Nervosa/fisiologia , Córtex Visual/fisiologia , Córtex Visual Primário/fisiologia
6.
PLoS Biol ; 21(12): e3002384, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38048367

RESUMO

Neurons in primary visual cortex (area V1) are strongly driven by both sensory stimuli and non-sensory events. However, although the representation of sensory stimuli has been well characterized, much less is known about the representation of non-sensory events. Here, we characterize the specificity and organization of non-sensory representations in rat V1 during a freely moving visual decision task. We find that single neurons encode diverse combinations of task features simultaneously and across task epochs. Despite heterogeneity at the level of single neuron response patterns, both visual and nonvisual task variables could be reliably decoded from small neural populations (5 to 40 units) throughout a trial. Interestingly, in animals trained to make an auditory decision following passive observation of a visual stimulus, some but not all task features could also be decoded from V1 activity. Our results support the view that even in V1-the earliest stage of the cortical hierarchy-bottom-up sensory information may be combined with top-down non-sensory information in a task-dependent manner.


Assuntos
Córtex Visual , Percepção Visual , Animais , Ratos , Neurônios/fisiologia , Estimulação Luminosa/métodos , Córtex Visual Primário , Córtex Visual/fisiologia , Percepção Visual/fisiologia
7.
PLoS Biol ; 20(6): e3001701, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35763497

RESUMO

New findings in PLOS Biology show that visual gamma oscillations are greatly attenuated by small spatial discontinuities in visual stimuli, suggesting that their genesis occurs in response to predictable regularities in the visual world.


Assuntos
Córtex Visual , Animais , Córtex Visual Primário , Primatas , Córtex Visual/fisiologia
8.
PLoS Biol ; 20(6): e3001666, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35700175

RESUMO

Gamma oscillations (30 to 80 Hz) have been hypothesized to play an important role in feature binding, based on the observation that continuous long bars induce stronger gamma in the visual cortex than bars with a small gap. Recently, many studies have shown that natural images, which have discontinuities in several low-level features, do not induce strong gamma oscillations, questioning their role in feature binding. However, the effect of different discontinuities on gamma has not been well studied. To address this, we recorded spikes and local field potential from 2 monkeys while they were shown gratings with discontinuities in 4 attributes: space, orientation, phase, or contrast. We found that while these discontinuities only had a modest effect on spiking activity, gamma power drastically reduced in all cases, suggesting that gamma could be a resonant phenomenon. An excitatory-inhibitory population model with stimulus-tuned recurrent inputs showed such resonant properties. Therefore, gamma could be a signature of excitation-inhibition balance, which gets disrupted due to discontinuities.


Assuntos
Córtex Visual Primário , Córtex Visual , Potenciais de Ação/fisiologia , Animais , Ritmo Gama/fisiologia , Estimulação Luminosa , Primatas , Córtex Visual/fisiologia
9.
PLoS Comput Biol ; 20(6): e1012190, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38935792

RESUMO

When stimulated, neural populations in the visual cortex exhibit fast rhythmic activity with frequencies in the gamma band (30-80 Hz). The gamma rhythm manifests as a broad resonance peak in the power-spectrum of recorded local field potentials, which exhibits various stimulus dependencies. In particular, in macaque primary visual cortex (V1), the gamma peak frequency increases with increasing stimulus contrast. Moreover, this contrast dependence is local: when contrast varies smoothly over visual space, the gamma peak frequency in each cortical column is controlled by the local contrast in that column's receptive field. No parsimonious mechanistic explanation for these contrast dependencies of V1 gamma oscillations has been proposed. The stabilized supralinear network (SSN) is a mechanistic model of cortical circuits that has accounted for a range of visual cortical response nonlinearities and contextual modulations, as well as their contrast dependence. Here, we begin by showing that a reduced SSN model without retinotopy robustly captures the contrast dependence of gamma peak frequency, and provides a mechanistic explanation for this effect based on the observed non-saturating and supralinear input-output function of V1 neurons. Given this result, the local dependence on contrast can trivially be captured in a retinotopic SSN which however lacks horizontal synaptic connections between its cortical columns. However, long-range horizontal connections in V1 are in fact strong, and underlie contextual modulation effects such as surround suppression. We thus explored whether a retinotopically organized SSN model of V1 with strong excitatory horizontal connections can exhibit both surround suppression and the local contrast dependence of gamma peak frequency. We found that retinotopic SSNs can account for both effects, but only when the horizontal excitatory projections are composed of two components with different patterns of spatial fall-off with distance: a short-range component that only targets the source column, combined with a long-range component that targets columns neighboring the source column. We thus make a specific qualitative prediction for the spatial structure of horizontal connections in macaque V1, consistent with the columnar structure of cortex.


Assuntos
Ritmo Gama , Modelos Neurológicos , Córtex Visual , Animais , Ritmo Gama/fisiologia , Córtex Visual/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Estimulação Luminosa , Biologia Computacional , Macaca , Córtex Visual Primário/fisiologia , Sensibilidades de Contraste/fisiologia
10.
PLoS Comput Biol ; 20(5): e1012127, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38820562

RESUMO

Neurons in the primary visual cortex respond selectively to simple features of visual stimuli, such as orientation and spatial frequency. Simple cells, which have phase-sensitive responses, can be modeled by a single receptive field filter in a linear-nonlinear model. However, it is challenging to analyze phase-invariant complex cells, which require more elaborate models having a combination of nonlinear subunits. Estimating parameters of these models is made additionally more difficult by cortical neurons' trial-to-trial response variability. We develop a simple convolutional neural network method to estimate receptive field models for both simple and complex visual cortex cells from their responses to natural images. The model consists of a spatiotemporal filter, a parameterized rectifier unit (PReLU), and a two-dimensional Gaussian "map" of the receptive field envelope. A single model parameter determines the simple vs. complex nature of the receptive field, capturing complex cell responses as a summation of homogeneous subunits, and collapsing to a linear-nonlinear model for simple type cells. The convolutional method predicts simple and complex cell responses to natural image stimuli as well as grating tuning curves. The fitted models yield a continuum of values for the PReLU parameter across the sampled neurons, showing that the simple/complex nature of cells can vary in a continuous manner. We demonstrate that complex-like cells respond less reliably than simple-like cells. However, compensation for this unreliability with noise ceiling analysis reveals predictive performance for complex cells proportionately closer to that for simple cells. Most spatial receptive field structures are well fit by Gabor functions, whose parameters confirm well-known properties of cat A17/18 receptive fields.


Assuntos
Biologia Computacional , Modelos Neurológicos , Redes Neurais de Computação , Neurônios , Córtex Visual , Animais , Neurônios/fisiologia , Córtex Visual/fisiologia , Córtex Visual/citologia , Biologia Computacional/métodos , Estimulação Luminosa , Campos Visuais/fisiologia , Gatos , Córtex Visual Primário/fisiologia
11.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37955641

RESUMO

We investigated whether neurons in monkey primary visual cortex (V1) exhibit mixed selectivity for sensory input and behavioral choice. Parallel multisite spiking activity was recorded from area V1 of awake monkeys performing a delayed match-to-sample task. The monkeys had to make a forced choice decision of whether the test stimulus matched the preceding sample stimulus. The population responses evoked by the test stimulus contained information about both the identity of the stimulus and with some delay but before the onset of the motor response the forthcoming choice. The results of subspace identification analysis indicate that stimulus-specific and decision-related information coexists in separate subspaces of the high-dimensional population activity, and latency considerations suggest that the decision-related information is conveyed by top-down projections.


Assuntos
Neurônios , Córtex Visual Primário , Animais , Haplorrinos , Neurônios/fisiologia , Estimulação Luminosa/métodos
12.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38725292

RESUMO

The local field potential (LFP) is an extracellular electrical signal associated with neural ensemble input and dendritic signaling. Previous studies have linked gamma band oscillations of the LFP in cortical circuits to sensory stimuli encoding, attention, memory, and perception. Inconsistent results regarding gamma tuning for visual features were reported, but it remains unclear whether these discrepancies are due to variations in electrode properties. Specifically, the surface area and impedance of the electrode are important characteristics in LFP recording. To comprehensively address these issues, we conducted an electrophysiological study in the V1 region of lightly anesthetized mice using two types of electrodes: one with higher impedance (1 MΩ) and a sharp tip (10 µm), while the other had lower impedance (100 KΩ) but a thicker tip (200 µm). Our findings demonstrate that gamma oscillations acquired by sharp-tip electrodes were significantly stronger than those obtained from thick-tip electrodes. Regarding size tuning, most gamma power exhibited surround suppression at larger gratings when recorded from sharp-tip electrodes. However, the majority showed enhanced gamma power at larger gratings when recorded from thick-tip electrodes. Therefore, our study suggests that microelectrode parameters play a significant role in accurately recording gamma oscillations and responsive tuning to sensory stimuli.


Assuntos
Ritmo Gama , Camundongos Endogâmicos C57BL , Estimulação Luminosa , Córtex Visual Primário , Animais , Ritmo Gama/fisiologia , Camundongos , Estimulação Luminosa/métodos , Córtex Visual Primário/fisiologia , Masculino , Microeletrodos , Córtex Visual/fisiologia , Eletrodos
13.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38652553

RESUMO

Luminance and spatial contrast provide information on the surfaces and edges of objects. We investigated neural responses to black and white surfaces in the primary visual cortex (V1) of mice and monkeys. Unlike primates that use their fovea to inspect objects with high acuity, mice lack a fovea and have low visual acuity. It thus remains unclear whether monkeys and mice share similar neural mechanisms to process surfaces. The animals were presented with white or black surfaces and the population responses were measured at high spatial and temporal resolution using voltage-sensitive dye imaging. In mice, the population response to the surface was not edge-dominated with a tendency to center-dominance, whereas in monkeys the response was edge-dominated with a "hole" in the center of the surface. The population response to the surfaces in both species exhibited suppression relative to a grating stimulus. These results reveal the differences in spatial patterns to luminance surfaces in the V1 of mice and monkeys and provide evidence for a shared suppression process relative to grating.


Assuntos
Camundongos Endogâmicos C57BL , Estimulação Luminosa , Animais , Estimulação Luminosa/métodos , Camundongos , Masculino , Sensibilidades de Contraste/fisiologia , Córtex Visual/fisiologia , Neurônios/fisiologia , Córtex Visual Primário/fisiologia , Especificidade da Espécie , Imagens com Corantes Sensíveis à Voltagem , Macaca mulatta
14.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35058366

RESUMO

Here, we report on a previously unknown form of thalamocortical plasticity observed following lesions of the primary visual area (V1) in marmoset monkeys. In primates, lateral geniculate nucleus (LGN) neurons form parallel pathways to the cortex, which are characterized by the expression of different calcium-binding proteins. LGN projections to the middle temporal (MT) area only originate in the koniocellular layers, where many neurons express calbindin. In contrast, projections to V1 also originate in the magnocellular and parvocellular layers, where neurons express parvalbumin but not calbindin. Our results demonstrate that this specificity is disrupted following long-term (1 to 3 y) unilateral V1 lesions, indicating active rearrangement of the geniculocortical circuit. In lesioned animals, retrograde tracing revealed MT-projecting neurons scattered throughout the lesion projection zone (LPZ, the sector of the LGN that underwent retrograde degeneration following a V1 lesion). Many of the MT-projecting neurons had large cell bodies and were located outside the koniocellular layers. Furthermore, we found that a large percentage of magno- and parvocellular neurons expressed calbindin in addition to the expected parvalbumin expression and that this coexpression was present in many of the MT-projecting neurons within the LPZ. These results demonstrate that V1 lesions trigger neurochemical and structural remodeling of the geniculo-extrastriate pathway, leading to the emergence of nonkoniocellular input to MT. This has potential implications for our understanding of the neurobiological bases of the residual visual abilities that survive V1 lesions, including motion perception and blindsight, and reveals targets for rehabilitation strategies to ameliorate the consequences of cortical blindness.


Assuntos
Corpos Geniculados/fisiologia , Regeneração Nervosa , Córtex Visual Primário/patologia , Lobo Temporal/fisiologia , Vias Visuais , Animais , Biomarcadores , Plasticidade Celular , Imunofluorescência , Expressão Gênica , Imuno-Histoquímica , Neurônios/metabolismo , Córtex Visual Primário/metabolismo
15.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35101916

RESUMO

To explore how neural circuits represent novel versus familiar inputs, we presented mice with repeated sets of images with novel images sparsely substituted. Using two-photon calcium imaging to record from layer 2/3 neurons in the mouse primary visual cortex, we found that novel images evoked excess activity in the majority of neurons. This novelty response rapidly emerged, arising with a time constant of 2.6 ± 0.9 s. When a new image set was repeatedly presented, a majority of neurons had similarly elevated activity for the first few presentations, which decayed to steady state with a time constant of 1.4 ± 0.4 s. When we increased the number of images in the set, the novelty response's amplitude decreased, defining a capacity to store ∼15 familiar images under our conditions. These results could be explained quantitatively using an adaptive subunit model in which presynaptic neurons have individual tuning and gain control. This result shows that local neural circuits can create different representations for novel versus familiar inputs using generic, widely available mechanisms.


Assuntos
Neurônios/fisiologia , Córtex Visual Primário/fisiologia , Percepção Visual/fisiologia , Adaptação Biológica/fisiologia , Animais , Encéfalo , Masculino , Camundongos , Camundongos Transgênicos , Estimulação Luminosa/métodos , Córtex Visual/fisiologia
16.
J Neurosci ; 43(38): 6495-6507, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37604691

RESUMO

The brain combines two-dimensional images received from the two eyes to form a percept of three-dimensional surroundings. This process of binocular integration in the primary visual cortex (V1) serves as a useful model for studying how neural circuits generate emergent properties from multiple input signals. Here, we perform a thorough characterization of binocular integration using electrophysiological recordings in the V1 of awake adult male and female mice by systematically varying the orientation and phase disparity of monocular and binocular stimuli. We reveal widespread binocular integration in mouse V1 and demonstrate that the three commonly studied binocular properties-ocular dominance, interocular matching, and disparity selectivity-are independent of each other. For individual neurons, the responses to monocular stimulation can predict the average amplitude of binocular response but not its selectivity. Finally, the extensive and independent binocular integration of monocular inputs is seen across cortical layers in both regular-spiking and fast-spiking neurons, regardless of stimulus design. Our data indicate that the current model of simple feedforward convergence is inadequate to account for binocular integration in mouse V1, thus suggesting an indispensable role played by intracortical circuits in binocular computation.SIGNIFICANCE STATEMENT Binocular integration is an important step of visual processing that takes place in the visual cortex. Studying the process by which V1 neurons become selective for certain binocular disparities is informative about how neural circuits integrate multiple information streams at a more general level. Here, we systematically characterize binocular integration in mice. Our data demonstrate more widespread and complex binocular integration in mouse V1 than previously reported. Binocular responses cannot be explained by a simple convergence of monocular responses, contrary to the prevailing model of binocular integration. These findings thus indicate that intracortical circuits must be involved in the exquisite computation of binocular disparity, which would endow brain circuits with the plasticity needed for binocular development and processing.


Assuntos
Encéfalo , Córtex Visual Primário , Feminino , Masculino , Animais , Camundongos , Dominância Ocular , Olho , Neurônios
17.
J Neurosci ; 43(31): 5668-5684, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37487737

RESUMO

Black and white information is asymmetrically distributed in natural scenes, evokes asymmetric neuronal responses, and causes asymmetric perceptions. Recognizing the universality and essentiality of black-white asymmetry in visual information processing, the neural substrates for black-white asymmetry remain unclear. To disentangle the role of the feedforward and recurrent mechanisms in the generation of cortical black-white asymmetry, we recorded the V1 laminar responses and LGN responses of anesthetized cats of both sexes. In a cortical column, we found that black-white asymmetry starts at the input layer and becomes more pronounced in the output layer. We also found distinct dynamics of black-white asymmetry between the output layer and the input layer. Specifically, black responses dominate in all layers after stimulus onset. After stimulus offset, black and white responses are balanced in the input layer, but black responses still dominate in the output layer. Compared with that in the input layer, the rebound response in the output layer is significantly suppressed. The relative suppression strength evoked by white stimuli is notably stronger and depends on the location within the ON-OFF cortical map. A model with delayed and polarity-selective cortical suppression explains black-white asymmetry in the output layer, within which prominent recurrent connections are identified by Granger causality analysis. In addition to black-white asymmetry in response strength, the interlaminar differences in spatial receptive field varied dynamically. Our findings suggest that the feedforward and recurrent mechanisms are dynamically recruited for the generation of black-white asymmetry in V1.SIGNIFICANCE STATEMENT Black-white asymmetry is universal and essential in visual information processing, yet the neural substrates for cortical black-white asymmetry remain unknown. Leveraging V1 laminar recordings, we provided the first laminar pattern of black-white asymmetry in cat V1 and found distinct dynamics of black-white asymmetry between the output layer and the input layer. Comparing black-white asymmetry across three visual hierarchies, the LGN, V1 input layer, and V1 output layer, we demonstrated that the feedforward and recurrent mechanisms are dynamically recruited for the generation of cortical black-white asymmetry. Our findings not only enhance our understanding of laminar processing within a cortical column but also elucidate how feedforward connections and recurrent connections interact to shape neuronal response properties.


Assuntos
Córtex Visual Primário , Córtex Visual , Masculino , Feminino , Animais , Córtex Visual/fisiologia , Estimulação Luminosa , Percepção Visual/fisiologia , Neurônios/fisiologia , Vias Visuais/fisiologia
18.
J Neurosci ; 43(16): 2885-2906, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36944489

RESUMO

In everyday life, we integrate visual and auditory information in routine tasks such as navigation and communication. While concurrent sound can improve visual perception, the neuronal correlates of audiovisual integration are not fully understood. Specifically, it remains unclear whether neuronal firing patters in the primary visual cortex (V1) of awake animals demonstrate similar sound-induced improvement in visual discriminability. Furthermore, presentation of sound is associated with movement in the subjects, but little is understood about whether and how sound-associated movement affects audiovisual integration in V1. Here, we investigated how sound and movement interact to modulate V1 visual responses in awake, head-fixed mice and whether this interaction improves neuronal encoding of the visual stimulus. We presented visual drifting gratings with and without simultaneous auditory white noise to awake mice while recording mouse movement and V1 neuronal activity. Sound modulated activity of 80% of light-responsive neurons, with 95% of neurons increasing activity when the auditory stimulus was present. A generalized linear model (GLM) revealed that sound and movement had distinct and complementary effects of the neuronal visual responses. Furthermore, decoding of the visual stimulus from the neuronal activity was improved with sound, an effect that persisted even when controlling for movement. These results demonstrate that sound and movement modulate visual responses in complementary ways, improving neuronal representation of the visual stimulus. This study clarifies the role of movement as a potential confound in neuronal audiovisual responses and expands our knowledge of how multimodal processing is mediated at a neuronal level in the awake brain.SIGNIFICANCE STATEMENT Sound and movement are both known to modulate visual responses in the primary visual cortex; however, sound-induced movement has largely remained unaccounted for as a potential confound in audiovisual studies in awake animals. Here, authors found that sound and movement both modulate visual responses in an important visual brain area, the primary visual cortex, in distinct, yet complementary ways. Furthermore, sound improved encoding of the visual stimulus even when accounting for movement. This study reconciles contrasting theories on the mechanism underlying audiovisual integration and asserts the primary visual cortex as a key brain region participating in tripartite sensory interactions.


Assuntos
Córtex Auditivo , Córtex Visual Primário , Camundongos , Animais , Percepção Visual/fisiologia , Som , Movimento , Neurônios/fisiologia , Córtex Auditivo/fisiologia , Estimulação Luminosa/métodos
19.
J Neurophysiol ; 131(6): 1213-1225, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629848

RESUMO

Acetylcholine is a neurotransmitter that plays a variety of roles in the central nervous system. It was previously shown that blocking muscarinic receptors with a nonselective antagonist prevents a form of experience-dependent plasticity termed "spatiotemporal sequence learning" in the mouse primary visual cortex (V1). Muscarinic signaling is a complex process involving the combined activities of five different G protein-coupled receptors, M1-M5, all of which are expressed in the murine brain but differ from each other functionally and in anatomical localization. Here we present electrophysiological evidence that M2, but not M1, receptors are required for spatiotemporal sequence learning in mouse V1. We show in male mice that M2 is highly expressed in the neuropil in V1, especially in thalamorecipient layer 4, and colocalizes with the soma in a subset of somatostatin-expressing neurons in deep layers. We also show that expression of M2 receptors is higher in the monocular region of V1 than it is in the binocular region but that the amount of experience-dependent sequence potentiation is similar in both regions and that blocking muscarinic signaling after visual stimulation does not prevent plasticity. This work establishes a new functional role for M2-type receptors in processing temporal information and demonstrates that monocular circuits are modified by experience in a manner similar to binocular circuits.NEW & NOTEWORTHY Muscarinic acetylcholine receptors are required for multiple forms of plasticity in the brain and support perceptual functions, but the precise role of the five subtypes (M1-M5) are unclear. Here we show that the M2 receptor is specifically required to encode experience-dependent representations of spatiotemporal relationships in both monocular and binocular regions of mouse V1. This work identifies a novel functional role for M2 receptors in coding temporal information into cortical circuits.


Assuntos
Córtex Visual Primário , Receptor Muscarínico M2 , Animais , Masculino , Camundongos , Receptor Muscarínico M2/metabolismo , Córtex Visual Primário/fisiologia , Córtex Visual Primário/metabolismo , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Neurônios/metabolismo , Receptor Muscarínico M1/metabolismo , Córtex Visual/fisiologia , Córtex Visual/metabolismo , Somatostatina/metabolismo , Aprendizagem/fisiologia
20.
PLoS Biol ; 19(12): e3001466, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34932558

RESUMO

Gamma rhythms in many brain regions, including the primary visual cortex (V1), are thought to play a role in information processing. Here, we report a surprising finding of 3 narrowband gamma rhythms in V1 that processed distinct spatial frequency (SF) signals and had different neural origins. The low gamma (LG; 25 to 40 Hz) rhythm was generated at the V1 superficial layer and preferred a higher SF compared with spike activity, whereas both the medium gamma (MG; 40 to 65 Hz), generated at the cortical level, and the high gamma HG; (65 to 85 Hz), originated precortically, preferred lower SF information. Furthermore, compared with the rates of spike activity, the powers of the 3 gammas had better performance in discriminating the edge and surface of simple objects. These findings suggest that gamma rhythms reflect the neural dynamics of neural circuitries that process different SF information in the visual system, which may be crucial for multiplexing SF information and synchronizing different features of an object.


Assuntos
Ritmo Gama/fisiologia , Córtex Visual Primário/fisiologia , Percepção Visual/fisiologia , Animais , Encéfalo/fisiologia , Gatos , Neurônios/fisiologia , Estimulação Luminosa/métodos , Córtex Visual Primário/patologia , Córtex Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA