Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 43(1): 200-9, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26163370

RESUMO

Targeted mutagenesis in mice is a powerful tool for functional analysis of genes. However, genetic variation between embryonic stem cells (ESCs) used for targeting (previously almost exclusively 129-derived) and recipient strains (often C57BL/6J) typically results in congenic mice in which the targeted gene is flanked by ESC-derived passenger DNA potentially containing mutations. Comparative genomic analysis of 129 and C57BL/6J mouse strains revealed indels and single nucleotide polymorphisms resulting in alternative or aberrant amino acid sequences in 1,084 genes in the 129-strain genome. Annotating these passenger mutations to the reported genetically modified congenic mice that were generated using 129-strain ESCs revealed that nearly all these mice possess multiple passenger mutations potentially influencing the phenotypic outcome. We illustrated this phenotypic interference of 129-derived passenger mutations with several case studies and developed a Me-PaMuFind-It web tool to estimate the number and possible effect of passenger mutations in transgenic mice of interest.


Assuntos
Variação Genética/genética , Genoma/genética , Camundongos Endogâmicos C57BL/genética , Sequência de Aminoácidos/genética , Animais , Caspases/genética , Caspases Iniciadoras , Mapeamento Cromossômico , Hibridização Genômica Comparativa , Conexinas/genética , Genótipo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 8 da Matriz/genética , Camundongos , Camundongos Congênicos/genética , Camundongos Knockout , Mutação/genética , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único
2.
Kidney Int ; 96(4): 918-926, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31420193

RESUMO

Genetic factors influence susceptibility to diabetic kidney disease. Here we mapped genes mediating renal hypertrophic changes in response to diabetes. A survey of 15 mouse strains identified variation in diabetic kidney hypertrophy. Strains with greater (FVB/N(FVB)) and lesser (C57BL/6 (B6)) responses were crossed and diabetic F2 progeny were characterized. Kidney weights of diabetic F2 mice were broadly distributed. Quantitative trait locus analyses revealed diabetic mice with kidney weights in the upper quartile shared alleles on chromosomes (chr) 6 and 12; these loci were designated as Diabetic kidney hypertrophy (Dkh)-1 and -2. To confirm these loci, reciprocal congenic mice were generated with defined FVB chromosome segments on the B6 strain background (B6.Dkh1/2f) or vice versa (FVB.Dkh1/2b). Diabetic mice of the B6.Dkh1/2f congenic strain developed diabetic kidney hypertrophy, while the reciprocal FVB.Dkh1/2b congenic strain was protected. The chr6 locus contained the candidate gene; Ark1b3, coding aldose reductase; the FVB allele has a missense mutation in this gene. Microarray analysis identified differentially expressed genes between diabetic B6 and FVB mice. Thus, since the two loci identified by quantitative trait locus mapping are syntenic with regions identified for human diabetic kidney disease, the congenic strains we describe provide a valuable new resource to study diabetic kidney disease and test agents that may prevent it.


Assuntos
Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/genética , Modelos Animais de Doenças , Rim/patologia , Locos de Características Quantitativas , Aldeído Redutase/genética , Aloxano/toxicidade , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Nefropatias Diabéticas/patologia , Feminino , Humanos , Hipertrofia/genética , Masculino , Camundongos , Camundongos Congênicos/genética , Mutação de Sentido Incorreto
3.
Nat Rev Immunol ; 3(3): 243-52, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12658272

RESUMO

Autoimmune diseases are, in general, under complex genetic control and subject to strong interactions between genetics and the environment. Greater knowledge of the underlying genetics will provide immunologists with a framework for study of the immune dysregulation that occurs in such diseases. Ascertaining the number of genes that are involved and their characterization have, however, proven to be difficult. Improved methods of genetic analysis and the availability of a draft sequence of the complete mouse genome have markedly improved the outlook for such research, and they have emphasized the advantages of mice as a model system. In this review, we provide an overview of the genetic analysis of autoimmune diseases and of the crucial role of congenic and consomic mouse strains in such research.


Assuntos
Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Camundongos Congênicos/genética , Camundongos Congênicos/imunologia , Animais , Modelos Animais de Doenças , Variação Genética/imunologia , Humanos , Camundongos , Locos de Características Quantitativas/imunologia
4.
Heredity (Edinb) ; 113(5): 416-23, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24781804

RESUMO

Recent genetic studies have shown that genetic loci with significant effects in whole-genome quantitative trait loci (QTL) analyses were lost or weakened in congenic strains. Characterisation of the genetic basis of this attenuated QTL effect is important to our understanding of the genetic mechanisms of complex traits. We previously found that a consomic strain, B6-Chr6C(MSM), which carries chromosome 6 of a wild-derived strain MSM/Ms on the genetic background of C57BL/6J, exhibited lower home-cage activity than C57BL/6J. In the present study, we conducted a composite interval QTL analysis using the F2 mice derived from a cross between C57BL/6J and B6-Chr6C(MSM). We found one QTL peak that spans 17.6 Mbp of chromosome 6. A subconsomic strain that covers the entire QTL region also showed lower home-cage activity at the same level as the consomic strain. We developed 15 congenic strains, each of which carries a shorter MSM/Ms-derived chromosomal segment from the subconsomic strain. Given that the results of home-cage activity tests on the congenic strains cannot be explained by a simple single-gene model, we applied regression analysis to segregate the multiple genetic loci. The results revealed three loci (loci 1-3) that have the effect of reducing home-cage activity and one locus (locus 4) that increases activity. We also found that the combination of loci 3 and 4 cancels out the effects of the congenic strains, which indicates the existence of a genetic mechanism related to the loss of QTLs.


Assuntos
Comportamento Animal , Mapeamento Cromossômico/métodos , Camundongos Congênicos/genética , Locos de Características Quantitativas , Animais , Cruzamentos Genéticos , Genótipo , Masculino , Camundongos Endogâmicos C57BL , Repetições de Microssatélites , Análise de Regressão
5.
Genes (Basel) ; 15(5)2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38790233

RESUMO

The objective of this study was to investigate gene regulation of the developing fetal brain from congenic or inbred mice strains that differed in longevity. Gene expression and alternative splice variants were analyzed in a genome-wide manner in the fetal brain of C57BL/6J mice (long-lived) in comparison to B6.Cg-Cav1tm1Mls/J (congenic, short-lived) and AKR/J (inbred, short-lived) mice on day(d) 12, 15, and 17 of gestation. The analysis showed a contrasting gene expression pattern during fetal brain development in these mice. Genes related to brain development, aging, and the regulation of alternative splicing were significantly differentially regulated in the fetal brain of the short-lived compared to long-lived mice during development from d15 and d17. A significantly reduced number of splice variants was observed on d15 compared to d12 or d17 in a strain-dependent manner. An epigenetic clock analysis of d15 fetal brain identified DNA methylations that were significantly associated with single-nucleotide polymorphic sites between AKR/J and C57BL/6J strains. These methylations were associated with genes that show epigenetic changes in an age-correlated manner in mice. Together, the finding of this study suggest that fetal brain development and longevity are epigenetically linked, supporting the emerging concept of the early-life origin of longevity.


Assuntos
Encéfalo , Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Longevidade , Camundongos Endogâmicos C57BL , Animais , Encéfalo/metabolismo , Encéfalo/embriologia , Camundongos , Longevidade/genética , Processamento Alternativo , Feminino , Epigênese Genética , Camundongos Congênicos/genética , Camundongos Endogâmicos AKR , Masculino , Desenvolvimento Fetal/genética
6.
Physiol Genomics ; 44(2): 117-20, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22108210

RESUMO

Genetic analysis of polygenic traits in rats and mice has been very useful for finding the approximate chromosomal locations of the genes causing quantitative phenotypic variation, so-called quantitative trait loci (QTL). Further localization of the causative genes and their ultimate identification has, however, proven to be slow and frustrating. A major technique for gene identification in such models utilizes series of congenic strains with progressively smaller chromosomal segments introgressed from one inbred strain into another inbred strain. Under the assumption that a single causative locus underlies a QTL, nested series of congenic strains were earlier suggested as an appropriate configuration for the congenic strains. It is now known that most QTL are compound, that is, the QTL signal is caused by clusters of loci where alleles exert positive, negative, and interactive effects on the trait in a given strain comparison. It is argued that in this situation an initial series of nonoverlapping contiguous congenic strains over a relatively large chromosomal region will lead to a better appreciation of the underlying complexity of the QTL and therefore more rapid gene identification. Examples from the literature where this strategy would be helpful, as well as a case where it would be potentially counterproductive, are given.


Assuntos
Locos de Características Quantitativas , Alelos , Animais , Mapeamento Cromossômico/métodos , Camundongos , Camundongos Congênicos/genética , Fenótipo , Ratos
7.
Physiol Genomics ; 44(17): 843-52, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22805347

RESUMO

Epidemiological studies show that high HDL-cholesterol (HDLc) decreases the risk of cardiovascular disease. To map genes controlling lipid metabolism, particularly HDLc levels, we screened the plasma lipids of 36 AcB/BcA RC mouse strains subjected to either a normal or a high-fat/cholesterol diet. Strains BcA68 and AcB65 showed deviant HDLc plasma levels compared with the parental A/J and C57BL/6J strains; they were thus selected to generate informative F2 crosses. Linkage analyses in the AcB65 strain identified a locus on chromosome 4 (Hdlq78) responsible for high post-high fat diet HDLc levels. This locus has been previously associated at genome-wide significance to two regions in the human genome. A second linkage analysis in strain BcA68 identified linkage in the vicinity of a gene cluster known to control HDLc levels. Sequence analysis of these candidates identified a de novo, loss-of-function mutation in the ApoA1 gene of BcA68 that prematurely truncates the ApoA1 protein. The possibility of dissecting the specific effects of this new ApoA1 deficiency in the context of isogenic controls makes the BcA68 mouse a valuable new tool.


Assuntos
Apolipoproteína A-I/genética , HDL-Colesterol/sangue , HDL-Colesterol/genética , Dieta Hiperlipídica , Camundongos Congênicos/genética , Animais , Sequência de Bases , Mapeamento Cromossômico , Cruzamentos Genéticos , Loci Gênicos/genética , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Mutação/genética , Análise de Sequência de DNA , Especificidade da Espécie
8.
Mamm Genome ; 22(5-6): 282-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21451961

RESUMO

A previous genome-wide QTL study revealed many QTLs affecting postnatal body weight and growth in an intersubspecific backcross mouse population between the C57BL/6J (B6) strain and wild Mus musculus castaneus mice captured in the Philippines. Subsequently, several closely linked QTLs for body composition traits were revealed in an F(2) intercross population between B6 and B6.Cg-Pbwg1, a congenic strain on the B6 genetic background carrying the growth QTL Pbwg1 on proximal chromosome 2. However, no QTL affecting body weight has been duplicated in the F(2) population, except for mapping an overdominant QTL that causes heterosis of body weight. In this study, we developed 17 intersubspecific subcongenic strains with overlapping and nonoverlapping castaneus regions from the B6.Cg-Pbwg1 congenic strain in order to search for and genetically dissect QTLs affecting body weight into distinct closely linked loci. Phenotypic comparisons of several developed subcongenic strains with the B6 strain revealed that two closely linked but distinct QTLs that regulate body weight, named Pbwg1.11 and Pbwg1.12, are located on an 8.9-Mb region between D2Mit270 and D2Mit472 and on the next 3.6-Mb region between D2Mit205 and D2Mit182, respectively. Further analyses using F(2) segregating populations obtained from intercrosses between B6 and each of the two selected subcongenic strains confirmed the presence of these two body weight QTLs. Pbwg1.11 had an additive effect on body weight at 6, 10, and 13 weeks of age, and its castaneus allele decreased it. In contrast, the castaneus allele at Pbwg1.12 acted in a dominant fashion and surprisingly increased body weight at 6, 10, and 13 weeks of age despite the body weight of wild castaneus mice being 60% of that of B6 mice. These findings illustrate the complex genetic nature of body weight regulation and support the importance of subcongenic mouse analysis to dissect closely linked loci.


Assuntos
Composição Corporal/genética , Peso Corporal/genética , Camundongos Congênicos/genética , Fenótipo , Locos de Características Quantitativas/genética , Análise de Variância , Animais , Animais Selvagens , Cruzamentos Genéticos , Camundongos , Camundongos Endogâmicos C57BL , Filipinas
9.
J Immunol ; 183(7): 4261-72, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19752227

RESUMO

The MHC-matched, minor histocompatibility Ag (miHA)-mismatched B10.BR-->CBA strain combination has been used to elucidate the immunobiology of graft-vs-host disease (GVHD) following allogeneic bone marrow transplantation. Studies conducted in the 1980s had established that B10.BR CD8+ T cells were capable of mediating GVHD in the absence of CD4+ T cells, and that CD4+ T cells were unable to induce lethal disease. In more recent studies with this GVHD model, we detected etiological discrepancies with the previously published results, which suggested that genetic drift might have occurred within the B10.BR strain. In particular, there was increased allorecognition of CBA miHA by B10.BR CD4+ T cells, as determined by both TCR Vbeta spectratype analysis and the induction of lethal GVHD in CBA recipients. Additionally, alloreactivity was observed between the genetically drifted mice (B10.BR/Jdrif) and mice rederived from frozen embryos of the original strain (B10.BR/Jrep) using Vbeta spectratype analysis and IFN-gamma ELISPOT assays, suggesting that new miHA differences had arisen between the mice. Furthermore, T cell-depleted B10.BR/Jdrif bone marrow cells were unable to provide long-term survival following either allogeneic or syngeneic bone marrow transplantation. Gene expression analysis revealed several genes involved in hematopoiesis that were overexpressed in the lineage-negative fraction of B10.BR/Jdrif bone marrow, as compared with B10.BR/Jrep mice. Taken together, these results suggest that genetic drift in the B10.BR strain has significantly impacted the immune alloreactive response in the GVHD model by causing altered expression of miHA and diminished capacity for survival following transplantation into lethally irradiated recipients.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Deriva Genética , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Camundongos Congênicos/imunologia , Doença Aguda , Animais , Transplante de Medula Óssea/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/transplante , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/transplante , Cruzamentos Genéticos , Doença Enxerto-Hospedeiro/mortalidade , Doença Enxerto-Hospedeiro/terapia , Masculino , Camundongos , Camundongos Congênicos/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Antígenos de Histocompatibilidade Menor/biossíntese , Antígenos de Histocompatibilidade Menor/genética , Especificidade da Espécie
10.
BMC Biol ; 8: 96, 2010 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-20624276

RESUMO

BACKGROUND: It has been proposed that the use of gene expression microarrays in nonrecombinant parental or congenic strains can accelerate the process of isolating individual genes underlying quantitative trait loci (QTL). However, the effectiveness of this approach has not been assessed. RESULTS: Thirty-seven studies that have implemented the QTL/microarray approach in rodents were reviewed. About 30% of studies showed enrichment for QTL candidates, mostly in comparisons between congenic and background strains. Three studies led to the identification of an underlying QTL gene. To complement the literature results, a microarray experiment was performed using three mouse congenic strains isolating the effects of at least 25 biometric QTL. Results show that genes in the congenic donor regions were preferentially selected. However, within donor regions, the distribution of differentially expressed genes was homogeneous once gene density was accounted for. Genes within identical-by-descent (IBD) regions were less likely to be differentially expressed in chromosome 2, but not in chromosomes 11 and 17. Furthermore, expression of QTL regulated in cis (cis eQTL) showed higher expression in the background genotype, which was partially explained by the presence of single nucleotide polymorphisms (SNP). CONCLUSIONS: The literature shows limited successes from the QTL/microarray approach to identify QTL genes. Our own results from microarray profiling of three congenic strains revealed a strong tendency to select cis-eQTL over trans-eQTL. IBD regions had little effect on rate of differential expression, and we provide several reasons why IBD should not be used to discard eQTL candidates. In addition, mismatch probes produced false cis-eQTL that could not be completely removed with the current strains genotypes and low probe density microarrays. The reviewed studies did not account for lack of coverage from the platforms used and therefore removed genes that were not tested. Together, our results explain the tendency to report QTL candidates as differentially expressed and indicate that the utility of the QTL/microarray as currently implemented is limited. Alternatives are proposed that make use of microarray data from multiple experiments to overcome the outlined limitations.


Assuntos
Camundongos Congênicos/genética , Análise de Sequência com Séries de Oligonucleotídeos , Locos de Características Quantitativas , Animais , Genes , Humanos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos/economia , Análise de Sequência com Séries de Oligonucleotídeos/métodos
11.
Mamm Genome ; 21(9-10): 477-85, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20886216

RESUMO

The activity of mice in their home cage is influenced greatly by the cycle of light and dark. In addition, home-cage activity shows remarkable time-dependent changes that result in a prominent temporal pattern. The wild-derived mouse strain MSM/Ms (MSM) exhibits higher total activity in the home cage than does C57BL/6 (B6), a commonly used laboratory strain. In addition, there is a clear strain difference in the temporal pattern of home-cage activity. This study aimed to clarify the genetic basis of strain differences in the temporal pattern of home-cage activity between MSM and B6. Through the comparison of temporal patterns of home-cage activity between B6 and MSM, the pattern can be classified into five temporal components: (1) resting phase, (2) anticipation phase, (3) 1st phase, (4) 2nd phase, and (5) 3rd phase. To identify quantitative trait loci (QTLs) involved in these temporal components, we used consomic strains established from crosses between B6 and MSM. Five consomic strains, for Chrs 2T (telomere), 3, 4, 13, and 14, showed significantly higher total activity than B6. In contrast, the consomic strains of Chrs 6C (centromere), 7T, 9, 11, and 15 were less active than B6. This indicates that multigenic factors regulate the total activity. Further analysis showed an impact of QTLs on the temporal components of home-cage activity. The present data showed that each temporal component was regulated by different combinations of multigenic factors, with some overlap. These temporal component-related QTLs are important to understand fully the genetic mechanisms that underlie home-cage activity.


Assuntos
Mapeamento Cromossômico , Camundongos Endogâmicos/genética , Atividade Motora/genética , Locos de Características Quantitativas , Animais , Comportamento Animal , Causalidade , Relógios Circadianos/genética , Cruzamentos Genéticos , Análise por Pareamento , Camundongos , Camundongos Congênicos/genética , Camundongos Endogâmicos C57BL/genética , Esforço Físico , Locos de Características Quantitativas/genética
12.
Mamm Genome ; 21(3-4): 172-85, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20204375

RESUMO

We previously identified a Chr 15 quantitative trait locus (QTL) Fob3b in lines of mice selected for high (Fat line) and low (Lean line) body fat content that represent a unique model of polygenic obesity. Here we genetically dissected the Fob3b interval by analyzing the phenotypes of eight overlapping congenic lines and four F(2) congenic intercrosses and prioritized candidates by bioinformatics approaches. Analyses revealed that the Fob3b QTL consists of at least two separate linked QTLs Fob3b1 and Fob3b2. They exhibit additive inheritance and are linked in coupling with alleles originating from the Lean line, decreasing obesity-related traits. In further analyses, we focused on Fob3b1 because it had a larger effect on obesity-related traits than Fob3b2, e.g., the difference between homozygotes for adiposity index (ADI) percentage was 1.22 and 0.77% for Fob3b1 and Fob3b2, respectively. A set of bioinformatics tools was used to narrow down positional candidates from 85 to 4 high-priority Fob3b1 candidates. A previous single Fob3b QTL was therefore resolved into another two closely linked QTLs, confirming the fractal nature of QTLs mapped at low resolution. The interval of the original Fob3b QTL was narrowed from 22.39 to 4.98 Mbp for Fob3b1 and to 7.68 Mbp for Fob3b2, which excluded the previously assigned candidate squalene epoxidase (Sqle) as the causal gene because it maps proximal to refined Fob3b1 and Fob3b2 intervals. A high-resolution map along with prioritization of Fob3b1 candidates by bioinformatics represents an important step forward to final identification of the Chr 15 obesity QTL.


Assuntos
Cromossomos de Mamíferos/genética , Biologia Computacional/métodos , Camundongos Congênicos/genética , Camundongos/genética , Locos de Características Quantitativas/genética , Animais , Cruzamentos Genéticos , Feminino , Ligação Genética , Marcadores Genéticos , Homozigoto , Masculino , Repetições de Microssatélites/genética , Modelos Genéticos , Obesidade/genética , Mapeamento Físico do Cromossomo , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável
13.
Brain Behav Immun ; 24(7): 1116-25, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20580925

RESUMO

The development of gene-targeting technologies has enabled research with immune system-related knockout mouse strains to advance our understanding of how cytokines and their receptors interact and influence a number of body systems, including the central nervous system (CNS). A critical issue when we are interpreting phenotypic data from these knockout strains is the potential role of genes other than the targeted one. Although many of the knockout strains have been made congenic on a C57BL/6 (B6) genetic background, there remains a certain amount of genetic material from the129 substrain that was used in the development of these strains. This genetic material could result in phenotypes incorrectly attributed to the targeted gene. We recently reported low-activity behavior in Il10(-/-) mice that was linked to this genetic material rather than the targeted gene itself. In the current study we confirm the generalizability of those earlier findings, by assessing behavior in Il18(-/-) and Il18r1(-/-) knockout mice. We identified low activity and high anxiety-like behaviors in Il18r1(-/-) mice, whereas Il18(-/-) mice displayed little anxiety-like behavior. Although Il18r1(-/-) mice are considered a congenic strain, we have identified substantial regions of 129P2-derived genetic material not only flanking the ablated Il18r1 on Chromosome 1, but also on Chromosomes 4, 5, 8, 10, and 14. Our studies suggest that residual 129-derived gene(s), rather than the targeted Il18r1 gene, is/are responsible for the low level of activity seen in the Il18r1(-/-) mice. Mapping studies are necessary to identify the gene or genes contributing to the low-activity phenotype.


Assuntos
Ansiedade/genética , Comportamento Exploratório , Subunidade alfa de Receptor de Interleucina-18/deficiência , Subunidade alfa de Receptor de Interleucina-18/genética , Camundongos Congênicos/genética , Atividade Motora/genética , Animais , Ansiedade/psicologia , Mapeamento Cromossômico , DNA/genética , DNA/isolamento & purificação , Modelos Animais de Doenças , Genótipo , Interleucina-18/deficiência , Interleucina-18/genética , Camundongos , Camundongos Congênicos/psicologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Fenótipo , Reação em Cadeia da Polimerase , Especificidade da Espécie
14.
Jpn J Vet Res ; 57(2): 89-99, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19827744

RESUMO

Mx1 (Myxovirus resistance protein) and Oaslb (Oligoadenylate synthetase-1), induced by type 1 interferon (IFN), play a role in early antiviral innate immunity by inhibiting the replication of viruses. In mice, Mx1 and Oas1b confer resistance to the infection of orthomyxoviruses including influenza viruses and flaviviruses including West Nile viruses, respectively. Laboratory mice have been used to study the mechanisms of the pathogenesis of these virus infections; however, it is possible that they are not a suitable model system to study these viruses, since most of the inbred laboratory mouse strains lack both genes. It has been reported that feral mouse-derived inbred strains show resistance to the infection of these viruses due to the presence of intact both genes. In this study, we generated congenic strains in which the Mx or Oas locus of the MSM/Ms (MSM) mouce was introduced to the most widely used mouse strain, C57BL/6J (B6). B6.MSM-Mx mice showed resistance to the infection of influenza virus but not of West Nile virus. On the other hand, B6.MSM-Oas mice showed resistance to the infection of West Nile virus but not of influenza virus. Our results indicate that Mx1 and Oaslb show highly antiviral specificity in mice possessing the same genetic background. Therefore, these congenic mice are useful for not only infection study but also investigation of host defense mechanism to these viruses.


Assuntos
2',5'-Oligoadenilato Sintetase/genética , Proteínas de Ligação ao GTP/genética , Imunidade Inata/genética , Camundongos Congênicos/genética , Viroses/imunologia , Animais , Sequência de Bases , Mapeamento Cromossômico , Infecções por Flavivirus/imunologia , Íntrons , Camundongos , Camundongos Endogâmicos C57BL/genética , Repetições de Microssatélites/genética , Proteínas de Resistência a Myxovirus , Deleção de Sequência , Especificidade da Espécie , Febre do Nilo Ocidental/imunologia
15.
Pathol Int ; 58(7): 407-14, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18577108

RESUMO

Based on the hypothesis that the complex pathological and immunological manifestations of rheumatoid arthritis (RA) and the related diseases are under the control of multiple gene loci with allelic polymorphism, a recombinant congenic mouse strain was prepared between an MRL/Mp-lpr/lpr (MRL/lpr) strain, which develops arthritis resembling RA, and a non-arthritic strain C3H/HeJ-lpr/lpr (C3H/lpr). In MRL/lpr x (MRL/lpr x C3H/lpr) F1 mice, the mice developing severe arthritis were selected based on joint swelling to further continue intercrosses, and then an McH-lpr/lpr-RA1 (McH/lpr-RA1) strain was established and its histopathological phenotypes of joints and autoimmune traits were analyzed. Arthritis in McH/lpr-RA1 mice developed at a higher incidence by 20 weeks of age, compared with that in the MRL/lpr mice, who had severe synovitis (ankle, 60.3%; knee, 65.1%), and also fibrous and fibrocartilaginous lesions of articular ligamenta resembling enthesopathy (ankle, 79.4%; knee, 38.1%), resulting in ankylosis. The lymphoproliferative disorder was less, and serum levels of IgG and IgG autoantibodies including anti-dsDNA and rheumatoid factor were lower than those of both MRL/lpr and C3H/lpr strains. McH/lpr-RA1 mice may provide a new insight into the study of RA regarding the common genomic spectrum of seronegative RA and enthesopathy.


Assuntos
Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Modelos Animais de Doenças , Camundongos Congênicos , Animais , Articulação do Tornozelo/patologia , Anquilose/epidemiologia , Artrite Reumatoide/patologia , Autoanticorpos/sangue , Feminino , Citometria de Fluxo , Imunoglobulinas/sangue , Articulação do Joelho/patologia , Linfócitos/citologia , Linfócitos/imunologia , Masculino , Camundongos , Camundongos Congênicos/genética , Camundongos Congênicos/imunologia , Camundongos Endogâmicos MRL lpr , Sinovite , Vasculite/epidemiologia
16.
Genes Brain Behav ; 6(3): 299-303, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17331107

RESUMO

In gene targeting experiments, the importance of genetic background is now widely appreciated, and knockout alleles are routinely backcrossed onto a standard inbred background. This produces a congenic strain with a substantial segment of embryonic stem (ES)-cell-derived chromosome still flanking the knockout allele, a phenomenon often neglected in knockout studies. In cholecystokynin 2 (Cckbr) knockout mice backcrossed with C57BL/6, we have found a clear 'congenic footprint' of expression differences in at least 10 genes across 40 Mb sequence flanking the Cckbr locus, each of which is potentially responsible for aspects of the 'knockout' phenotype. The expression differences are overwhelmingly in the knockout-low direction, which may point to a general phenomenon of background dependence. This finding emphasizes the need for caution in using gene knockouts to attribute phenotypic effects to genes. This is especially the case when the gene is of unknown function or the phenotype is unexpected, and is a particular concern for large-scale knockout and phenotypic screening programmes. However, the impact of genetic background should not be simply viewed as a potential confound, but as a unique opportunity to study the broader responses of a system to a specific (genetic) perturbation.


Assuntos
Comportamento Animal/fisiologia , DNA Intergênico/genética , Genoma/genética , Camundongos Congênicos/genética , Camundongos Knockout/genética , Receptor de Colecistocinina B/genética , Animais , Mapeamento Cromossômico , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Colecistocinina B/metabolismo
17.
Novartis Found Symp ; 281: 141-53; discussion 153-5, 208-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17534071

RESUMO

The AcB/BcA gene discovery platform consists of a series of 36 recombinant congenic strains (RCS) produced from the second backcross generation of the progenitor mouse strains A/J and C57BL/6J. Each individual inbred RCS carries 12.5% of the donor genome in 87.5% of the background genome. As the two parental strains are known to vary in the expression of resistance and susceptibility to a considerable number of mouse models of human diseases, the AcB/BcA RCS platform represents a valuable and versatile genetic tool to study many different phenotypes. RCS can be used to follow the segregation of single gene effects in individual strains, or to look at association/dissociation of mechanistic aspects of complex phenotypes. In addition, one can select strains with fixed alleles at known loci to look for novel gene effects, or use strains with overlapping congenic segments to delineate minimal QTL, intervals. The AcB/BcA RCS platform was used by our group and others to study a series of complex phenotypes including nociception, malaria susceptibility and lipid metabolism. Linkage mapping in secondary crosses and gene expression analysis in targeted organs allowed the identification of chromosomal regions, genes, and biological pathways which might unravel novel targets for preventive and therapeutic interventions.


Assuntos
Camundongos Congênicos/genética , Modelos Animais , Fenótipo , Locos de Características Quantitativas , Animais , Mapeamento Cromossômico , Clonagem Molecular , Cruzamentos Genéticos , Perfilação da Expressão Gênica , Camundongos
18.
FEMS Microbiol Ecol ; 59(3): 576-83, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17381516

RESUMO

Scent marking in mice allows males to communicate information such as territory ownership, male competitive ability and current reproductive, nutritional, social and health status. It has been suggested that female mice eavesdrop on these olfactory cues, using them as a means of selecting mates with dissimilar major histocompatibility complex (MHC) genes, known as H2 in mice. The mechanisms underpinning MHC-dependent olfactory communication remain unresolved. Using congenic mouse strains and molecular methods we explore the involvement of the microbial communities, a known source of odourants, in scent marks to test the hypothesis that the microbial communities and hence the olfactory signals are genetically determined. Here we show that the indigenous microbial community of murine scent marks is genetically determined. Both background genotype and H2 haplotype influence the community structure of the scent mark flora, removing the possibility that community composition is solely orchestrated by the MHC. Qualitative and quantitative components of the bacterial community associated with MHC haplotype and background genotype were identified. The analyses confirm that the four groups of congenic mice tested are distinguishable on basis of the microbiology of their scent marks alone, strengthening the role of microorganisms in the development of MHC-dependent odours.


Assuntos
Bactérias , Haplótipos/genética , Complexo Principal de Histocompatibilidade , Camundongos Congênicos/genética , Camundongos Congênicos/microbiologia , Comunicação Animal , Animais , Bactérias/classificação , Eletroforese em Gel Bidimensional , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Odorantes/análise , Especificidade da Espécie
19.
Syst Biol Reprod Med ; 63(6): 360-363, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29099633

RESUMO

The aim of the study was to assess the cumulative effects of aging and Y-chromosome long arm deletion on sperm quality parameters. Motility, mitochondrial activity, and head morphology were evaluated for sperm of 3- and 12-month-old males from B10.BR-Ydel and B10.BR congenic mouse strains. The study revealed that quality and fertilizing potential of sperm produced by younger and older B10.BR males persist on similar levels, but worsen significantly with age of B10.BR-Ydel males. The findings imply that partial Yq deletions might be more harmful for spermiogenesis in advancing age and may be applicable to other species including humans. ABBREVIATIONS: AZF: azoospermia factor; MSYq: male-specific region of the Y-chromosome long arm.


Assuntos
Envelhecimento/fisiologia , Deleção Cromossômica , Espermatozoides/fisiologia , Cromossomo Y/genética , Animais , Azoospermia/genética , Fertilização , Infertilidade Masculina/genética , Masculino , Camundongos , Camundongos Congênicos/genética , Mitocôndrias/fisiologia , Motilidade dos Espermatozoides/genética , Espermatogênese/genética , Espermatozoides/ultraestrutura
20.
J Clin Invest ; 125(11): 4171-85, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26524590

RESUMO

Mucosal-associated invariant T cells (MAITs) have potent antimicrobial activity and are abundant in humans (5%-10% in blood). Despite strong evolutionary conservation of the invariant TCR-α chain and restricting molecule MR1, this population is rare in laboratory mouse strains (≈0.1% in lymphoid organs), and lack of an appropriate mouse model has hampered the study of MAIT biology. Herein, we show that MAITs are 20 times more frequent in clean wild-derived inbred CAST/EiJ mice than in C57BL/6J mice. Increased MAIT frequency was linked to one CAST genetic trait that mapped to the TCR-α locus and led to higher usage of the distal Vα segments, including Vα19. We generated a MAIThi congenic strain that was then crossed to a transgenic Rorcgt-GFP reporter strain. Using this tool, we characterized polyclonal mouse MAITs as memory (CD44+) CD4-CD8lo/neg T cells with tissue-homing properties (CCR6+CCR7-). Similar to human MAITs, mouse MAITs expressed the cytokine receptors IL-7R, IL-18Rα, and IL-12Rß and the transcription factors promyelocytic leukemia zinc finger (PLZF) and RAR-related orphan receptor γ (RORγt). Mouse MAITs produced Th1/2/17 cytokines upon TCR stimulation and recognized a bacterial compound in an MR1-dependent manner. During experimental urinary tract infection, MAITs migrated to the bladder and decreased bacterial load. Our study demonstrates that the MAIThi congenic strain allows phenotypic and functional characterization of naturally occurring mouse MAITs in health and disease.


Assuntos
Camundongos Congênicos/imunologia , Células T Matadoras Naturais/imunologia , Animais , Quimiotaxia de Leucócito , Cruzamentos Genéticos , Modelos Animais de Doenças , Feminino , Rearranjo Gênico da Cadeia alfa dos Receptores de Antígenos dos Linfócitos T , Vida Livre de Germes , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Memória Imunológica , Fatores de Transcrição Kruppel-Like/análise , Ativação Linfocitária , Contagem de Linfócitos , Tecido Linfoide/citologia , Linfocinas/metabolismo , Camundongos , Camundongos Congênicos/genética , Camundongos Congênicos/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microbiota , Antígenos de Histocompatibilidade Menor , Células T Matadoras Naturais/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/análise , Fenótipo , Polimorfismo de Nucleotídeo Único , Proteína com Dedos de Zinco da Leucemia Promielocítica , Quimera por Radiação , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Citocinas/análise , Infecções Urinárias/imunologia , Infecções Urinárias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA