Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 405
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 610(7933): 796-803, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224384

RESUMO

The initial step in the sensory transduction pathway underpinning hearing and balance in mammals involves the conversion of force into the gating of a mechanosensory transduction channel1. Despite the profound socioeconomic impacts of hearing disorders and the fundamental biological significance of understanding mechanosensory transduction, the composition, structure and mechanism of the mechanosensory transduction complex have remained poorly characterized. Here we report the single-particle cryo-electron microscopy structure of the native transmembrane channel-like protein 1 (TMC-1) mechanosensory transduction complex isolated from Caenorhabditis elegans. The two-fold symmetric complex is composed of two copies each of the pore-forming TMC-1 subunit, the calcium-binding protein CALM-1 and the transmembrane inner ear protein TMIE. CALM-1 makes extensive contacts with the cytoplasmic face of the TMC-1 subunits, whereas the single-pass TMIE subunits reside on the periphery of the complex, poised like the handles of an accordion. A subset of complexes additionally includes a single arrestin-like protein, arrestin domain protein (ARRD-6), bound to a CALM-1 subunit. Single-particle reconstructions and molecular dynamics simulations show how the mechanosensory transduction complex deforms the membrane bilayer and suggest crucial roles for lipid-protein interactions in the mechanism by which mechanical force is transduced to ion channel gating.


Assuntos
Caenorhabditis elegans , Microscopia Crioeletrônica , Canais Iônicos , Mecanotransdução Celular , Animais , Arrestinas/química , Arrestinas/metabolismo , Arrestinas/ultraestrutura , Caenorhabditis elegans/química , Caenorhabditis elegans/ultraestrutura , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/ultraestrutura , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/ultraestrutura , Ativação do Canal Iônico , Canais Iônicos/química , Canais Iônicos/metabolismo , Canais Iônicos/ultraestrutura , Lipídeos
2.
Nature ; 590(7846): 509-514, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568813

RESUMO

Mechanosensitive channels sense mechanical forces in cell membranes and underlie many biological sensing processes1-3. However, how exactly they sense mechanical force remains under investigation4. The bacterial mechanosensitive channel of small conductance, MscS, is one of the most extensively studied mechanosensitive channels4-8, but how it is regulated by membrane tension remains unclear, even though the structures are known for its open and closed states9-11. Here we used cryo-electron microscopy to determine the structure of MscS in different membrane environments, including one that mimics a membrane under tension. We present the structures of MscS in the subconducting and desensitized states, and demonstrate that the conformation of MscS in a lipid bilayer in the open state is dynamic. Several associated lipids have distinct roles in MscS mechanosensation. Pore lipids are necessary to prevent ion conduction in the closed state. Gatekeeper lipids stabilize the closed conformation and dissociate with membrane tension, allowing the channel to open. Pocket lipids in a solvent-exposed pocket between subunits are pulled out under sustained tension, allowing the channel to transition to the subconducting state and then to the desensitized state. Our results provide a mechanistic underpinning and expand on the 'force-from-lipids' model for MscS mechanosensation4,11.


Assuntos
Microscopia Crioeletrônica , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Escherichia coli/química , Canais Iônicos/metabolismo , Canais Iônicos/ultraestrutura , Membranas Artificiais , Fosfatidilcolinas/metabolismo , Detergentes/farmacologia , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Interações Hidrofóbicas e Hidrofílicas , Canais Iônicos/química , Canais Iônicos/genética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Modelos Moleculares , Mutação , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Fosfatidilcolinas/química , Fosfatidilcolinas/farmacologia , Conformação Proteica/efeitos dos fármacos , beta-Ciclodextrinas/farmacologia
3.
Nature ; 587(7833): 313-318, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32698188

RESUMO

Persistently depolarizing sodium (Na+) leak currents enhance electrical excitability1,2. The ion channel responsible for the major background Na+ conductance in neurons is the Na+ leak channel, non-selective (NALCN)3,4. NALCN-mediated currents regulate neuronal excitability linked to respiration, locomotion and circadian rhythm4-10. NALCN activity is under tight regulation11-14 and mutations in NALCN cause severe neurological disorders and early death15,16. NALCN is an orphan channel in humans, and fundamental aspects of channel assembly, gating, ion selectivity and pharmacology remain obscure. Here we investigate this essential leak channel and determined the structure of NALCN in complex with a distinct auxiliary subunit, family with sequence similarity 155 member A (FAM155A). FAM155A forms an extracellular dome that shields the ion-selectivity filter from neurotoxin attack. The pharmacology of NALCN is further delineated by a walled-off central cavity with occluded lateral pore fenestrations. Unusual voltage-sensor domains with asymmetric linkages to the pore suggest mechanisms by which NALCN activity is modulated. We found a tightly closed pore gate in NALCN where the majority of missense patient mutations cause gain-of-function phenotypes that cluster around the S6 gate and distinctive π-bulges. Our findings provide a framework to further study the physiology of NALCN and a foundation for discovery of treatments for NALCN channelopathies and other electrical disorders.


Assuntos
Microscopia Crioeletrônica , Canais Iônicos/química , Canais Iônicos/ultraestrutura , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Mutação com Ganho de Função , Células HEK293 , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Mutação de Sentido Incorreto , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
4.
Nature ; 573(7773): 225-229, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31435011

RESUMO

PIEZO2 is a mechanosensitive cation channel that has a key role in sensing touch, tactile pain, breathing and blood pressure. Here we describe the cryo-electron microscopy structure of mouse PIEZO2, which is a three-bladed, propeller-like trimer that comprises 114 transmembrane helices (38 per protomer). Transmembrane helices 1-36 (TM1-36) are folded into nine tandem units of four transmembrane helices each to form the unusual non-planar blades. The three blades are collectively curved into a nano-dome of 28-nm diameter and 10-nm depth, with an extracellular cap-like structure embedded in the centre and a 9-nm-long intracellular beam connecting to the central pore. TM38 and the C-terminal domain are surrounded by the anchor domain and TM37, and enclose the central pore with both transmembrane and cytoplasmic constriction sites. Structural comparison between PIEZO2 and its homologue PIEZO1 reveals that the transmembrane constriction site might act as a transmembrane gate that is controlled by the cap domain. Together, our studies provide insights into the structure and mechanogating mechanism of Piezo channels.


Assuntos
Microscopia Crioeletrônica , Canais Iônicos/metabolismo , Canais Iônicos/ultraestrutura , Sequência de Aminoácidos , Animais , Canais Iônicos/química , Transporte de Íons , Camundongos , Modelos Moleculares , Domínios Proteicos
5.
Nature ; 573(7773): 230-234, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31435018

RESUMO

PIEZO1 is a mechanosensitive channel that converts applied force into electrical signals. Partial molecular structures show that PIEZO1 is a bowl-shaped trimer with extended arms. Here we use cryo-electron microscopy to show that PIEZO1 adopts different degrees of curvature in lipid vesicles of different sizes. We also use high-speed atomic force microscopy to analyse the deformability of PIEZO1 under force in membranes on a mica surface, and show that PIEZO1 can be flattened reversibly into the membrane plane. By approximating the absolute force applied, we estimate a range of values for the mechanical spring constant of PIEZO1. Both methods of microscopy demonstrate that PIEZO1 can deform its shape towards a planar structure. This deformation could explain how lateral membrane tension can be converted into a conformation-dependent change in free energy to gate the PIEZO1 channel in response to mechanical perturbations.


Assuntos
Microscopia Crioeletrônica , Canais Iônicos/química , Canais Iônicos/ultraestrutura , Microscopia de Força Atômica , Silicatos de Alumínio/química , Animais , Células HEK293 , Humanos , Canais Iônicos/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Lipossomos/ultraestrutura , Camundongos
6.
Nature ; 554(7693): 487-492, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29469092

RESUMO

The mechanosensitive Piezo channels function as key eukaryotic mechanotransducers. However, their structures and mechanogating mechanisms remain unknown. Here we determine the three-bladed, propeller-like electron cryo-microscopy structure of mouse Piezo1 and functionally reveal its mechanotransduction components. Despite the lack of sequence repetition, we identify nine repetitive units consisting of four transmembrane helices each-which we term transmembrane helical units (THUs)-which assemble into a highly curved blade-like structure. The last transmembrane helix encloses a hydrophobic pore, followed by three intracellular fenestration sites and side portals that contain pore-property-determining residues. The central region forms a 90 Å-long intracellular beam-like structure, which undergoes a lever-like motion to connect THUs to the pore via the interfaces of the C-terminal domain, the anchor-resembling domain and the outer helix. Deleting extracellular loops in the distal THUs or mutating single residues in the beam impairs the mechanical activation of Piezo1. Overall, Piezo1 possesses a unique 38-transmembrane-helix topology and designated mechanotransduction components, which enable a lever-like mechanogating mechanism.


Assuntos
Microscopia Crioeletrônica , Ativação do Canal Iônico , Canais Iônicos/metabolismo , Canais Iônicos/ultraestrutura , Mecanotransdução Celular , Animais , Canais Iônicos/química , Camundongos , Modelos Moleculares , Movimento , Relação Estrutura-Atividade
7.
Nature ; 554(7693): 481-486, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29261642

RESUMO

Piezo1 and Piezo2 are mechanically activated ion channels that mediate touch perception, proprioception and vascular development. Piezo proteins are distinct from other ion channels and their structure remains poorly defined, which impedes detailed study of their gating and ion permeation properties. Here we report a high-resolution cryo-electron microscopy structure of the mouse Piezo1 trimer. The detergent-solubilized complex adopts a three-bladed propeller shape with a curved transmembrane region containing at least 26 transmembrane helices per protomer. The flexible propeller blades can adopt distinct conformations, and consist of a series of four-transmembrane helical bundles that we term Piezo repeats. Carboxy-terminal domains line the central ion pore, and the channel is closed by constrictions in the cytosol. A kinked helical beam and anchor domain link the Piezo repeats to the pore, and are poised to control gating allosterically. The structure provides a foundation to dissect further how Piezo channels are regulated by mechanical force.


Assuntos
Microscopia Crioeletrônica , Canais Iônicos/química , Canais Iônicos/ultraestrutura , Animais , Sítios de Ligação , Ativação do Canal Iônico , Canais Iônicos/genética , Canais Iônicos/metabolismo , Lipídeos , Camundongos , Modelos Moleculares , Mutação , Maleabilidade , Domínios Proteicos , Solubilidade
8.
Nature ; 542(7639): 60-65, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28099415

RESUMO

Cyclic-nucleotide-gated channels are essential for vision and olfaction. They belong to the voltage-gated ion channel superfamily but their activities are controlled by intracellular cyclic nucleotides instead of transmembrane voltage. Here we report a 3.5-Å-resolution single-particle electron cryo-microscopy structure of a cyclic-nucleotide-gated channel from Caenorhabditis elegans in the cyclic guanosine monophosphate (cGMP)-bound open state. The channel has an unusual voltage-sensor-like domain, accounting for its deficient voltage dependence. A carboxy-terminal linker connecting S6 and the cyclic-nucleotide-binding domain interacts directly with both the voltage-sensor-like domain and the pore domain, forming a gating ring that couples conformational changes triggered by cyclic nucleotide binding to the gate. The selectivity filter is lined by the carboxylate side chains of a functionally important glutamate and three rings of backbone carbonyls. This structure provides a new framework for understanding mechanisms of ion permeation, gating and channelopathy of cyclic-nucleotide-gated channels and cyclic nucleotide modulation of related channels.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/ultraestrutura , Caenorhabditis elegans , Microscopia Crioeletrônica , Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Canais de Cátion Regulados por Nucleotídeos Cíclicos/ultraestrutura , Canais Iônicos/química , Canais Iônicos/ultraestrutura , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/química , Caenorhabditis elegans/ultraestrutura , Proteínas de Caenorhabditis elegans/metabolismo , GMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Condutividade Elétrica , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Ativação do Canal Iônico , Canais Iônicos/metabolismo , Modelos Biológicos , Modelos Moleculares , Domínios Proteicos
9.
Proc Natl Acad Sci U S A ; 117(46): 28754-28762, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33148804

RESUMO

The mechanosensitive channel of small conductance (MscS) is the prototype of an evolutionarily diversified large family that fine-tunes osmoregulation but is likely to fulfill additional functions. Escherichia coli has six osmoprotective paralogs with different numbers of transmembrane helices. These helices are important for gating and sensing in MscS but the role of the additional helices in the paralogs is not understood. The medium-sized channel YnaI was extracted and delivered in native nanodiscs in closed-like and open-like conformations using the copolymer diisobutylene/maleic acid (DIBMA) for structural studies. Here we show by electron cryomicroscopy that YnaI has an extended sensor paddle that during gating relocates relative to the pore concomitant with bending of a GGxGG motif in the pore helices. YnaI is the only one of the six paralogs that has this GGxGG motif allowing the sensor paddle to move outward. Access to the pore is through a vestibule on the cytosolic side that is fenestrated by side portals. In YnaI, these portals are obstructed by aromatic side chains but are still fully hydrated and thus support conductance. For comparison with large-sized channels, we determined the structure of YbiO, which showed larger portals and a wider pore with no GGxGG motif. Further in silico comparison of MscS, YnaI, and YbiO highlighted differences in the hydrophobicity and wettability of their pores and vestibule interiors. Thus, MscS-like channels of different sizes have a common core architecture but show different gating mechanisms and fine-tuned conductive properties.


Assuntos
Proteínas de Escherichia coli/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular , Microscopia Crioeletrônica , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestrutura , Interações Hidrofóbicas e Hidrofílicas , Canais Iônicos/química , Canais Iônicos/ultraestrutura , Metabolismo dos Lipídeos
10.
Exp Eye Res ; 205: 108488, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33571532

RESUMO

Increased intraocular pressure (IOP) is the main risk factor for primary open-angle glaucoma and results from impaired drainage of aqueous humor (AH) through the trabecular outflow pathway. AH must pass the inner wall (IW) endothelium of Schlemm's canal (SC), which is a monolayer held together by tight junctions, to exit the eye. One route across the IW is through giant vacuoles (GVs) with their basal openings and intracellular pores (I-pores). AH drainage through the trabecular outflow pathway is segmental. Whether more GVs with both basal openings and I-pores are present in the active flow areas and factors that may influence formation of GVs with I-pores have not been fully elucidated due to limitations in imaging methods. In this study, we applied a relatively new technique, serial block-face scanning electron microscopy (SBF-SEM), to investigate morphological factors associated with GVs with I-pores in different flow areas. Two normal human donor eyes were perfused at 15 mmHg with fluorescent tracers to label the outflow pattern followed by perfusion-fixation. Six radial wedges of trabecular meshwork including SC (2 each from high-, low-, and non-flow areas) were imaged using SBF-SEM (total: 9802 images). Total GVs, I-pores, basal openings, and four types of GVs were identified. Percentages of GVs with I-pores and basal openings and number of I-pores/GV were determined. Overall, 14.4% (477/3302) of GVs had I-pores. Overall percentage of GVs with both I-pores and basal openings was higher in high- (15.7%), than low- (12.6%) or non-flow (7.3%) areas. Of GVs with I-pores, 83.2% had a single I-pore; 16.8% had multiple I-pores (range: 2-6). Additionally, 180 GVs (90 with I-pores and 90 without I-pores) were randomly selected, manually segmented, and three-dimensionally (3D) reconstructed to determine size, shape, and thickness of the cellular lining. Size of GVs (including median volume, surface area, and maximal cross-sectional area) with I-pores (n = 90) was significantly larger than GVs without I-pores (n = 90) using 3D-reconstructed GVs (P ≤ 0.01). Most I-pores (73.3%; 66/90) were located on or close to GV's maximal cross-sectional area with significant thinning of the cellular lining. Our results suggest that larger size and thinner cellular lining of GVs may contribute to formation of GVs with I-pores. More GVs with I-pores and basal openings were observed in high-flow areas, suggesting these GVs do provide a channel through which AH passes into SC and that increasing this type of GV may be a potential strategy to increase aqueous outflow for glaucoma treatment.


Assuntos
Células Endoteliais/ultraestrutura , Canais Iônicos/ultraestrutura , Limbo da Córnea/ultraestrutura , Malha Trabecular/ultraestrutura , Vacúolos/ultraestrutura , Adulto , Idoso de 80 Anos ou mais , Tecido Conjuntivo , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Microscopia Eletrônica de Varredura , Doadores de Tecidos
11.
Nature ; 527(7576): 64-9, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26390154

RESUMO

Piezo proteins are evolutionarily conserved and functionally diverse mechanosensitive cation channels. However, the overall structural architecture and gating mechanisms of Piezo channels have remained unknown. Here we determine the cryo-electron microscopy structure of the full-length (2,547 amino acids) mouse Piezo1 (Piezo1) at a resolution of 4.8 Å. Piezo1 forms a trimeric propeller-like structure (about 900 kilodalton), with the extracellular domains resembling three distal blades and a central cap. The transmembrane region has 14 apparently resolved segments per subunit. These segments form three peripheral wings and a central pore module that encloses a potential ion-conducting pore. The rather flexible extracellular blade domains are connected to the central intracellular domain by three long beam-like structures. This trimeric architecture suggests that Piezo1 may use its peripheral regions as force sensors to gate the central ion-conducting pore.


Assuntos
Microscopia Crioeletrônica , Canais Iônicos/química , Canais Iônicos/ultraestrutura , Animais , Membrana Celular/metabolismo , Condutividade Elétrica , Ativação do Canal Iônico , Canais Iônicos/metabolismo , Camundongos , Modelos Moleculares , Maleabilidade , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
12.
Nature ; 521(7553): 545-9, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25778700

RESUMO

Anthrax toxin, comprising protective antigen, lethal factor, and oedema factor, is the major virulence factor of Bacillus anthracis, an agent that causes high mortality in humans and animals. Protective antigen forms oligomeric prepores that undergo conversion to membrane-spanning pores by endosomal acidification, and these pores translocate the enzymes lethal factor and oedema factor into the cytosol of target cells. Protective antigen is not only a vaccine component and therapeutic target for anthrax infections but also an excellent model system for understanding the mechanism of protein translocation. On the basis of biochemical and electrophysiological results, researchers have proposed that a phi (Φ)-clamp composed of phenylalanine (Phe)427 residues of protective antigen catalyses protein translocation via a charge-state-dependent Brownian ratchet. Although atomic structures of protective antigen prepores are available, how protective antigen senses low pH, converts to active pore, and translocates lethal factor and oedema factor are not well defined without an atomic model of its pore. Here, by cryo-electron microscopy with direct electron counting, we determine the protective antigen pore structure at 2.9-Å resolution. The structure reveals the long-sought-after catalytic Φ-clamp and the membrane-spanning translocation channel, and supports the Brownian ratchet model for protein translocation. Comparisons of four structures reveal conformational changes in prepore to pore conversion that support a multi-step mechanism by which low pH is sensed and the membrane-spanning channel is formed.


Assuntos
Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/ultraestrutura , Bacillus anthracis/química , Bacillus anthracis/ultraestrutura , Toxinas Bacterianas/metabolismo , Microscopia Crioeletrônica , Antígenos de Bactérias/química , Toxinas Bacterianas/química , Biocatálise , Concentração de Íons de Hidrogênio , Canais Iônicos/química , Canais Iônicos/metabolismo , Canais Iônicos/ultraestrutura , Modelos Moleculares , Fenilalanina/metabolismo , Conformação Proteica , Transporte Proteico , Relação Estrutura-Atividade
13.
Annu Rev Biomed Eng ; 21: 395-415, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30892930

RESUMO

In recent years, cryo electron microscopy (cryo-EM) technology has been transformed with the development of better instrumentation, direct electron detectors, improved methods for specimen preparation, and improved software for data analysis. Analyses using single-particle cryo-EM methods have enabled determination of structures of proteins with sizes smaller than 100 kDa and resolutions of ∼2 Šin some cases. The use of electron tomography combined with subvolume averaging is beginning to allow the visualization of macromolecular complexes in their native environment in unprecedented detail. As a result of these advances, solutions to many intractable challenges in structural and cell biology, such as analysis of highly dynamic soluble and membrane-embedded protein complexes or partially ordered protein aggregates, are now within reach. Recent reports of structural studies of G protein-coupled receptors, spliceosomes, and fibrillar specimens illustrate the progress that has been made using cryo-EM methods, and are the main focus of this review.


Assuntos
Microscopia Crioeletrônica/tendências , Substâncias Macromoleculares/química , Substâncias Macromoleculares/ultraestrutura , Animais , Engenharia Biomédica , Tomografia com Microscopia Eletrônica/tendências , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/ultraestrutura , Humanos , Imageamento Tridimensional , Canais Iônicos/química , Canais Iônicos/ultraestrutura , Substâncias Macromoleculares/isolamento & purificação , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/ultraestrutura , Modelos Moleculares , Spliceossomos/química , Spliceossomos/ultraestrutura
14.
PLoS Comput Biol ; 13(10): e1005786, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29059183

RESUMO

There is growing interest in studying and engineering integral membrane proteins (MPs) that play key roles in sensing and regulating cellular response to diverse external signals. A MP must be expressed, correctly inserted and folded in a lipid bilayer, and trafficked to the proper cellular location in order to function. The sequence and structural determinants of these processes are complex and highly constrained. Here we describe a predictive, machine-learning approach that captures this complexity to facilitate successful MP engineering and design. Machine learning on carefully-chosen training sequences made by structure-guided SCHEMA recombination has enabled us to accurately predict the rare sequences in a diverse library of channelrhodopsins (ChRs) that express and localize to the plasma membrane of mammalian cells. These light-gated channel proteins of microbial origin are of interest for neuroscience applications, where expression and localization to the plasma membrane is a prerequisite for function. We trained Gaussian process (GP) classification and regression models with expression and localization data from 218 ChR chimeras chosen from a 118,098-variant library designed by SCHEMA recombination of three parent ChRs. We use these GP models to identify ChRs that express and localize well and show that our models can elucidate sequence and structure elements important for these processes. We also used the predictive models to convert a naturally occurring ChR incapable of mammalian localization into one that localizes well.


Assuntos
Membrana Celular/química , Desenho de Fármacos , Canais Iônicos/química , Bicamadas Lipídicas/química , Aprendizado de Máquina , Rodopsina/química , Análise de Sequência de Proteína/métodos , Membrana Celular/ultraestrutura , Células HEK293 , Humanos , Canais Iônicos/ultraestrutura , Rodopsina/ultraestrutura , Relação Estrutura-Atividade , Frações Subcelulares/química
15.
Biochim Biophys Acta ; 1858(7 Pt B): 1733-40, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26891818

RESUMO

Molecular dynamics simulations have played a fundamental role in numerous fields of science by providing insights into the structure and dynamics of complex systems at the atomistic level. However, exhaustive sampling by standard molecular dynamics is in most cases computationally prohibitive, and the time scales accessible remain significantly shorter than many biological processes of interest. In particular, in the study of ion channels, realistic models to describe permeation and gating require accounting for large numbers of particles and accurate interaction potentials, which severely limits the length of the simulations. To overcome such limitations, several advanced methods have been proposed among which is metadynamics. In this algorithm, an external bias potential to accelerate sampling along selected collective variables is introduced. This bias potential discourages visiting regions of the configurational space already explored. In addition, the bias potential provides an estimate of the free energy as a function of the collective variables chosen once the simulation has converged. In this review, recent contributions of metadynamics to the field of ion channels are discussed, including how metadynamics has been used to search for transition states, predict permeation pathways, treat conformational flexibility that underlies the coupling between gating and permeation, or compute free energy of permeation profiles. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.


Assuntos
Algoritmos , Ativação do Canal Iônico , Canais Iônicos/química , Canais Iônicos/ultraestrutura , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Sítios de Ligação , Transporte Biológico Ativo , Difusão , Proteínas de Membrana , Ligação Proteica , Conformação Proteica
16.
Biochim Biophys Acta ; 1858(7 Pt B): 1710-21, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26806161

RESUMO

Viral channel forming proteins (VCPs) have been discovered in the late 70s and are found in many viruses to date. Usually they are small and have to assemble to form channels which depolarize the lipid membrane of the host cells. Structural information is just about to emerge for just some of them. Thus, computational methods play a pivotal role in generating plausible structures which can be used in the drug development process. In this review the accumulation of structural data is introduced from a historical perspective. Computational performances and their predictive power are reported guided by biological questions such as the assembly, mechanism of function and drug-protein interaction of VCPs. An outlook of how coarse grained simulations can contribute to yet unexplored issues of these proteins is given. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.


Assuntos
Canais Iônicos/química , Bicamadas Lipídicas/química , Modelos Químicos , Modelos Moleculares , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/ultraestrutura , Simulação por Computador , Interações Hidrofóbicas e Hidrofílicas , Canais Iônicos/ultraestrutura
17.
Biochim Biophys Acta ; 1858(7 Pt B): 1741-52, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26874204

RESUMO

Ion channels are of universal importance for all cell types and play key roles in cellular physiology and pathology. Increased insight into their functional mechanisms is crucial to enable drug design on this important class of membrane proteins, and to enhance our understanding of some of the fundamental features of cells. This review presents the concepts behind the recently developed simulation protocol Computational Electrophysiology (CompEL), which facilitates the atomistic simulation of ion channels in action. In addition, the review provides guidelines for its application in conjunction with the molecular dynamics software package GROMACS. We first lay out the rationale for designing CompEL as a method that models the driving force for ion permeation through channels the way it is established in cells, i.e., by electrochemical ion gradients across the membrane. This is followed by an outline of its implementation and a description of key settings and parameters helpful to users wishing to set up and conduct such simulations. In recent years, key mechanistic and biophysical insights have been obtained by employing the CompEL protocol to address a wide range of questions on ion channels and permeation. We summarize these recent findings on membrane proteins, which span a spectrum from highly ion-selective, narrow channels to wide diffusion pores. Finally we discuss the future potential of CompEL in light of its limitations and strengths. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.


Assuntos
Ativação do Canal Iônico , Canais Iônicos/química , Canais Iônicos/ultraestrutura , Bicamadas Lipídicas/química , Potenciais da Membrana , Modelos Químicos , Algoritmos , Sítios de Ligação , Transporte Biológico Ativo , Biologia Computacional/métodos , Simulação por Computador , Eletrofisiologia/métodos , Proteínas de Membrana , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Software
18.
Biochim Biophys Acta ; 1858(7 Pt B): 1760-71, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26721326

RESUMO

Channels in the outer membrane of Gram-negative bacteria provide essential pathways for the controlled and unidirectional transport of ions, nutrients and metabolites into the cell. At the same time the outer membrane serves as a physical barrier for the penetration of noxious substances such as antibiotics into the bacteria. Most antibiotics have to pass through these membrane channels to either reach cytoplasmic bound targets or to further cross the hydrophobic inner membrane. Considering the pharmaceutical significance of antibiotics, understanding the functional role and mechanism of these channels is of fundamental importance in developing strategies to design new drugs with enhanced permeation abilities. Due to the biological complexity of membrane channels and experimental limitations, computer simulations have proven to be a powerful tool to investigate the structure, dynamics and interactions of membrane channels. Considerable progress has been made in computer simulations of membrane channels during the last decade. The goal of this review is to provide an overview of the computational techniques and their roles in modeling the transport across outer membrane channels. A special emphasis is put on all-atom molecular dynamics simulations employed to better understand the transport of molecules. Moreover, recent molecular simulations of ion, substrate and antibiotics translocation through membrane pores are briefly summarized. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Membrana Celular/química , Canais Iônicos/química , Canais Iônicos/ultraestrutura , Simulação de Dinâmica Molecular , Antibacterianos/química , Sítios de Ligação , Membrana Celular/ultraestrutura , Difusão , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/ultraestrutura , Ativação do Canal Iônico , Bicamadas Lipídicas/química , Modelos Químicos , Ligação Proteica , Conformação Proteica
19.
Biochim Biophys Acta ; 1858(7 Pt B): 1772-7, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26796683

RESUMO

The number of pathogens developing multiple drug resistance is ever increasing. The impact on healthcare systems is huge and the need for novel antibiotics as well a new way to develop them is urgent, especially against Gram-negative bacteria. The first defense of these bacteria is the outer membrane, where unspecific protein channels (porins) modulate nutrients passive diffusion. Also polar antibiotics enter through this path and down-regulation and/or mutation of porins are very common in drug resistant strains. Our inability to come up with novel effective antibiotics mostly relies upon the insufficient comprehension of the key molecular features enabling better penetration through porins. Molecular dynamics simulations offer an extraordinary tool in the study of the dynamics of biological systems; however, one of the major drawbacks of this method is that its use is currently restricted to study time scales of the order of microsecond. Enhanced sampling methods like Metadynamics have been recently used to investigate the diffusion of antibiotics through bacterial porins. The main limitation is that dynamical properties cannot be estimated because of the different potential that the systems under study are experiencing. Recently, the scope of Metadynamics has been extended. By applying an a posteriori analysis one can obtain rates of transitions and rate-limiting steps of the process under study, directly comparable with kinetic data extracted from electrophysiology experiments. In this work, we apply this method to the study of the permeability of Escherichia coli's OmpF with respect to Meropenem, finding good agreement with the residence time obtained analyzing experimental current noise. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Membrana Celular/química , Canais Iônicos/química , Canais Iônicos/ultraestrutura , Simulação de Dinâmica Molecular , Antibacterianos/química , Sítios de Ligação , Membrana Celular/ultraestrutura , Permeabilidade da Membrana Celular , Difusão , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/ultraestrutura , Ativação do Canal Iônico , Bicamadas Lipídicas/química , Modelos Químicos , Porosidade , Ligação Proteica , Conformação Proteica
20.
Proc Natl Acad Sci U S A ; 111(48): 17170-5, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25404294

RESUMO

Mechanosensitive ion channels are sensors probing membrane tension in all species; despite their importance and vital role in many cell functions, their gating mechanism remains to be elucidated. Here, we determined the conditions for releasing intact mechanosensitive channel of large conductance (MscL) proteins from their detergents in the gas phase using native ion mobility-mass spectrometry (IM-MS). By using IM-MS, we could detect the native mass of MscL from Escherichia coli, determine various global structural changes during its gating by measuring the rotationally averaged collision cross-sections, and show that it can function in the absence of a lipid bilayer. We could detect global conformational changes during MscL gating as small as 3%. Our findings will allow studying native structure of many other membrane proteins.


Assuntos
Ativação do Canal Iônico/fisiologia , Canais Iônicos/metabolismo , Espectrometria de Massas/métodos , Mecanotransdução Celular/fisiologia , Detergentes/química , Escherichia coli/metabolismo , Escherichia coli/fisiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/fisiologia , Proteínas de Escherichia coli/ultraestrutura , Canais Iônicos/química , Canais Iônicos/fisiologia , Canais Iônicos/ultraestrutura , Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Proteínas de Membrana/ultraestrutura , Microscopia Eletrônica , Simulação de Dinâmica Molecular , Octoxinol/química , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA