Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35145028

RESUMO

The cerebellum, the site where protein kinase C (PKC) was first discovered, contains the highest amount of PKC in the central nervous system, with PKCγ being the major isoform. Systemic PKCγ-knockout (KO) mice showed impaired motor coordination and deficient pruning of surplus climbing fibers (CFs) from developing cerebellar Purkinje cells (PCs). However, the physiological significance of PKCγ in the mature cerebellum and the cause of motor incoordination remain unknown. Using adeno-associated virus vectors targeting PCs, we showed that impaired motor coordination was restored by re-expression of PKCγ in mature PKCγ-KO mouse PCs in a kinase activity-dependent manner, while normal motor coordination in mature Prkcgfl/fl mice was impaired by the Cre-dependent removal of PKCγ from PCs. Notably, the rescue or removal of PKCγ from mature PKCγ-KO or Prkcgfl/fl mice, respectively, did not affect the CF innervation profile of PCs, suggesting the presence of a mechanism distinct from multiple CF innervation of PCs for the motor defects in PKCγ-deficient mice. We found marked potentiation of Ca2+-activated large-conductance K+ (BK) channel currents in PKCγ-deficient mice, as compared to wild-type mice, which decreased the membrane resistance, resulting in attenuation of the electrical signal during the propagation and significant alterations of the complex spike waveform. These changes in PKCγ-deficient mice were restored by the rescue of PKCγ or pharmacological suppression of BK channels. Our results suggest that PKCγ is a critical regulator that negatively modulates BK currents in PCs, which significantly influences PC output from the cerebellar cortex and, eventually, motor coordination.


Assuntos
Terapia Genética , Atividade Motora/genética , Canais de Potássio Cálcio-Ativados/metabolismo , Proteína Quinase C/metabolismo , Células de Purkinje/enzimologia , Animais , Sinalização do Cálcio , Deleção de Genes , Camundongos , Camundongos Knockout , Atividade Motora/fisiologia , Canais de Potássio Cálcio-Ativados/genética , Proteína Quinase C/genética , Potenciais Sinápticos
2.
Dev Dyn ; 250(10): 1477-1493, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33728688

RESUMO

BACKGROUND: Calcium-activated potassium channels (KCa) are a specific type of potassium channel activated by intracellular calcium concentration changes. This group of potassium channels plays fundamental roles ranging from regulating neuronal excitability to immune cell activation. Many human diseases such as schizophrenia, hypertension, epilepsy, and cancers have been linked to mutations in this group of potassium channels. Although the KCa channels have been extensively studied electrophysiologically and pharmacologically, their spatiotemporal gene expression during embryogenesis remains mostly unknown. RESULTS: Using zebrafish as a model, we identified and renamed 14 KCa genes. We further performed phylogenetic and syntenic analyses on vertebrate KCa genes. Our data revealed that the number of KCa genes in zebrafish was increased, most likely due to teleost-specific whole-genome duplication. Moreover, we examined zebrafish KCa gene expression during early embryogenesis. The duplicated ohnologous genes show distinct and overlapped gene expression. Furthermore, we found that zebrafish KCa genes are expressed in various tissues and organs (somites, fins, olfactory regions, eye, kidney, and so on) and neuronal tissues, suggesting that they may play important roles during zebrafish embryogenesis. CONCLUSIONS: Our phylogenetic and developmental analyses shed light on the potential functions of the KCa genes during embryogenesis related to congenital diseases and human channelopathies.


Assuntos
Desenvolvimento Embrionário/fisiologia , Filogenia , Canais de Potássio Cálcio-Ativados/metabolismo , Peixe-Zebra/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Canais de Potássio Cálcio-Ativados/genética , Somitos/metabolismo , Peixe-Zebra/genética
3.
J Cell Mol Med ; 25(20): 9685-9696, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34514691

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. Its high metastasis rate is significantly correlated with poor patient prognosis. Elucidating the molecular mechanism underlying HCC metastasis is essential for HCC treatment. Owing to their high conductance, large-conductance calcium-activated potassium channels (BK channels) play a critical role in the control of membrane potential and have repeatedly been proposed as potential targets for cancer therapy. Emerging evidence suggests that BK channels are involved in the progression of cancer malignancies. The present study investigated the role of BK channels in mediating the hypoxia-stimulated migration of HCC cells both in vitro and in vivo in the absence and presence of various BK channels modulators. We found that BK channels were functionally expressed on the membranes of the SMMC-7721 and Huh7 HCC cell lines. Furthermore, blockage or activation of BK channels on the surface of HCC cells correspondingly inhibited or promoted HCC cell proliferation, migration and invasion in hypoxia conditions, with altered expression and distribution of cell-cell adhesion molecule E-cadherin and typical marker of mesenchymal cells, Vimentin, but not N-cadherin. Hypoxia conditions did not alter BK channels expression but increased its open probability. Moreover, BK channels blocker IbTX significantly inhibited HCC cell remote colonization in HCC cell xenografted mice. In conclusion, the results of this study suggest that blocking BK channels offers an attractive strategy for treating HCC.


Assuntos
Movimento Celular/genética , Canais de Potássio Cálcio-Ativados/genética , Canais de Potássio Cálcio-Ativados/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos , Xenoenxertos , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Bloqueadores dos Canais de Potássio/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Pflugers Arch ; 473(1): 53-66, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33033891

RESUMO

Tacrolimus (TAC, also called FK506), a common immunosuppressive drug used to prevent allograft rejection in transplant patients, is well known to alter the functions of blood vessels. In this study, we sought to determine whether chronic treatment of TAC could inhibit the activity of big-conductance Ca2+-activated K+ (BK) channels in vascular smooth muscle cells (SMCs), leading to hypertension. Our data reveal that the activity of BK channels was inhibited in cerebral artery SMCs (CASMCs) from mice after intraperitoneal injection of TAC once a day for 4 weeks. The voltage sensitivity, Ca2+ sensitivity, and open time of single BK channels were all decreased. In support, BK channel ß1-, but not α-subunit protein expression was significantly decreased in cerebral arteries. In TAC-treated mice, application of norepinephrine induced stronger vasoconstriction in both cerebral and mesenteric arteries as well as a larger [Ca2+]i in CASMCs. Chronic treatment of TAC, similar to BK channel ß1-subunit knockout (KO), resulted in hypertension in mice, but did not cause a further increase in blood pressure in BK channel ß1-subunit KO mice. Moreover, BK channel activity in CASMCs was negatively correlated with blood pressure. Our findings provide novel evidence that TAC inhibits BK channels by reducing the channel ß1-subunit expression and functions in vascular SMCs, leading to enhanced vasoconstriction and hypertension.


Assuntos
Artérias Cerebrais/efeitos dos fármacos , Hipertensão/induzido quimicamente , Músculo Liso/efeitos dos fármacos , Canais de Potássio Cálcio-Ativados/metabolismo , Tacrolimo/toxicidade , Animais , Cálcio/metabolismo , Imunossupressores/toxicidade , Camundongos , Norepinefrina/farmacologia , Canais de Potássio Cálcio-Ativados/genética , Vasoconstrição/efeitos dos fármacos
5.
Am J Physiol Heart Circ Physiol ; 317(2): H357-H363, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31199187

RESUMO

Elevated plasma aldosterone (Aldo) levels are associated with greater risk of cardiac ischemic events and cardiovascular mortality. Adenosine-mediated coronary vasodilation is a critical cardioprotective mechanism during ischemia; however, whether this response is impaired by increased Aldo is unclear. We hypothesized that chronic Aldo impairs coronary adenosine-mediated vasodilation via downregulation of vascular K+ channels. Male C57BL/6J mice were treated with vehicle (Con) or subpressor Aldo for 4 wk. Coronary artery function, assessed by wire myography, revealed Aldo-induced reductions in vasodilation to adenosine and the endothelium-dependent vasodilator acetylcholine but not to the nitric oxide donor sodium nitroprusside. Coronary vasoconstriction to endothelin-1 and the thromboxane A2 mimetic U-46619 was unchanged by Aldo. Additional mechanistic studies revealed impaired adenosine A2A, not A2B, receptor-dependent vasodilation by Aldo with a tendency for Aldo-induced reduction of coronary A2A gene expression. Adenylate cyclase inhibition attenuated coronary adenosine dilation but did not eliminate group differences, and adenosine-stimulated vascular cAMP production was similar between Con and Aldo mice. Similarly, blockade of inward rectifier K+ channels reduced but did not eliminate group differences in adenosine dilation whereas group differences were eliminated by blockade of Ca2+-activated K+ (KCa) channels that blunted and abrogated adenosine and A2A-dependent dilation, respectively. Gene expression of several coronary KCa channels was reduced by Aldo. Together, these data demonstrate Aldo-induced impairment of adenosine-mediated coronary vasodilation involving blunted A2A-KCa-dependent vasodilation, independent of blood pressure, providing important insights into the link between plasma Aldo and cardiac mortality and rationale for aldosterone antagonist use to preserve coronary microvascular function.NEW & NOTEWORTHY Increased plasma aldosterone levels are associated with worsened cardiac outcomes in diverse patient groups by unclear mechanisms. We identified that, in male mice, elevated aldosterone impairs coronary adenosine-mediated vasodilation, an important cardioprotective mechanism. This aldosterone-induced impairment involves reduced adenosine A2A, not A2B, receptor-dependent vasodilation associated with downregulation of coronary KCa channels and does not involve altered adenylate cyclase/cAMP signaling. Importantly, this effect of aldosterone occurred independent of changes in coronary vasoconstrictor responsiveness and blood pressure.


Assuntos
Adenosina/farmacologia , Aldosterona/farmacologia , Vasos Coronários/efeitos dos fármacos , Canais de Potássio Cálcio-Ativados/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Vasos Coronários/metabolismo , AMP Cíclico/metabolismo , Regulação para Baixo , Masculino , Camundongos Endogâmicos C57BL , Canais de Potássio Cálcio-Ativados/genética , Canais de Potássio Cálcio-Ativados/metabolismo , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Transdução de Sinais
6.
Int J Mol Sci ; 20(15)2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370156

RESUMO

Diabetes mellitus is one of the major risk factors for cardiovascular disease and is an important health issue worldwide. Long-term diabetes causes endothelial dysfunction, which in turn leads to diabetic vascular complications. Endothelium-derived nitric oxide is a major vasodilator in large-size vessels, and the hyperpolarization of vascular smooth muscle cells mediated by the endothelium plays a central role in agonist-mediated and flow-mediated vasodilation in resistance-size vessels. Although the mechanisms underlying diabetic vascular complications are multifactorial and complex, impairment of endothelium-dependent hyperpolarization (EDH) of vascular smooth muscle cells would contribute at least partly to the initiation and progression of microvascular complications of diabetes. In this review, we present the current knowledge about the pathophysiology and underlying mechanisms of impaired EDH in diabetes in animals and humans. We also discuss potential therapeutic approaches aimed at the prevention and restoration of EDH in diabetes.


Assuntos
Fatores Biológicos/genética , Doenças Cardiovasculares/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Endotélio Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Canais de Potássio Cálcio-Ativados/genética , Animais , Fatores Biológicos/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/genética , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Junções Comunicantes/patologia , Regulação da Expressão Gênica , Humanos , Hipoglicemiantes/uso terapêutico , Resistência à Insulina , Potenciais da Membrana/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Canais de Potássio Cálcio-Ativados/metabolismo , Fatores de Risco , Transdução de Sinais , Vasodilatação/efeitos dos fármacos
7.
Am J Physiol Cell Physiol ; 313(1): C118-C129, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28490422

RESUMO

Parathyroid hormone (PTH), a pleiotropic hormone that maintains mineral homeostasis, is also essential for controlling pH balance and ion transport across renal and intestinal epithelia. Optimization of luminal pH is important for absorption of trace elements, e.g., calcium and phosphorus. We have previously demonstrated that PTH rapidly stimulated electrogenic [Formula: see text] secretion in intestinal epithelial-like Caco-2 monolayers, but the underlying cellular mechanism, contributions of other ions, particularly Cl- and K+, and long-lasting responses are not completely understood. Herein, PTH and forskolin were confirmed to induce anion secretion, which peaked within 1-3 min (early phase), followed by an abrupt decay and plateau that lasted for 60 min (late phase). In both early and late phases, apical membrane capacitance was increased with a decrease in basolateral capacitance after PTH or forskolin exposure. PTH also induced a transient increase in apical conductance with a long-lasting decrease in basolateral conductance. Anion secretion in both phases was reduced under [Formula: see text]-free and/or Cl--free conditions or after exposure to carbonic anhydrase inhibitor (acetazolamide), CFTR inhibitor (CFTRinh-172), Na+/H+ exchanger (NHE)-3 inhibitor (tenapanor), or K+ channel inhibitors (BaCl2, clotrimazole, and TRAM-34; basolateral side), the latter of which suggested that PTH action was dependent on basolateral K+ recycling. Furthermore, early- and late-phase responses to PTH were diminished by inhibitors of PI3K (wortmannin and LY-294002) and PKA (PKI 14-22). In conclusion, PTH requires NHE3 and basolateral K+ channels to induce [Formula: see text] and Cl- secretion, thus explaining how PTH regulated luminal pH balance and pH-dependent absorption of trace minerals.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Hormônio Paratireóideo/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Acetazolamida/farmacologia , Potenciais de Ação/efeitos dos fármacos , Androstadienos/farmacologia , Compostos de Bário/farmacologia , Bicarbonatos/metabolismo , Células CACO-2 , Cálcio/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Cloretos/metabolismo , Cloretos/farmacologia , Cromonas/farmacologia , Clotrimazol/farmacologia , Colforsina/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Condutividade Elétrica , Humanos , Concentração de Íons de Hidrogênio , Transporte de Íons/efeitos dos fármacos , Isoquinolinas/farmacologia , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase , Fósforo/metabolismo , Potássio/metabolismo , Canais de Potássio Cálcio-Ativados/antagonistas & inibidores , Canais de Potássio Cálcio-Ativados/genética , Pirazóis/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/genética , Sulfonamidas/farmacologia , Wortmanina
8.
Biochim Biophys Acta ; 1857(8): 1247-1257, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26951942

RESUMO

In this review, we summarize our knowledge about mitochondrial potassium channels, with a special focus on unanswered questions in this field. The following potassium channels have been well described in the inner mitochondrial membrane: ATP-regulated potassium channel, Ca(2+)-activated potassium channel, the voltage-gated Kv1.3 potassium channel, and the two-pore domain TASK-3 potassium channel. The primary functional roles of these channels include regulation of mitochondrial respiration and the alteration of membrane potential. Additionally, they modulate the mitochondrial matrix volume and the synthesis of reactive oxygen species by mitochondria. Mitochondrial potassium channels are believed to contribute to cytoprotection and cell death. In this paper, we discuss fundamental issues concerning mitochondrial potassium channels: their molecular identity, channel pharmacology and functional properties. Attention will be given to the current problems present in our understanding of the nature of mitochondrial potassium channels. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Assuntos
Mitocôndrias/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Expressão Gênica , Humanos , Transporte de Íons , Mitocôndrias/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Especificidade de Órgãos , Plantas/efeitos dos fármacos , Plantas/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Cálcio-Ativados/antagonistas & inibidores , Canais de Potássio Cálcio-Ativados/genética , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Trypanosomatina/efeitos dos fármacos , Trypanosomatina/metabolismo
9.
Biochim Biophys Acta ; 1848(10 Pt B): 2657-64, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25445673

RESUMO

Neoadjuvant, adjuvant or definitive fractionated radiation therapy are implemented in first line anti-cancer treatment regimens of many tumor entities. Ionizing radiation kills the tumor cells mainly by causing double strand breaks of their DNA through formation of intermediate radicals. Survival of the tumor cells depends on both, their capacity of oxidative defense and their efficacy of DNA repair. By damaging the targeted cells, ionizing radiation triggers a plethora of stress responses. Among those is the modulation of ion channels such as Ca2+-activated K+ channels or Ca2+-permeable nonselective cation channels belonging to the super-family of transient receptor potential channels. Radiogenic activation of these channels may contribute to radiogenic cell death as well as to DNA repair, glucose fueling, radiogenic hypermigration or lowering of the oxidative stress burden. The present review article introduces these channels and summarizes our current knowledge on the mechanisms underlying radiogenic ion channel modulation. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.


Assuntos
DNA de Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Radiação Ionizante , Canais de Potencial de Receptor Transitório/metabolismo , Morte Celular/efeitos da radiação , Dano ao DNA , Reparo do DNA , DNA de Neoplasias/química , DNA de Neoplasias/metabolismo , Humanos , Terapia Neoadjuvante , Neoplasias/genética , Neoplasias/patologia , Neoplasias/radioterapia , Canais de Potássio Cálcio-Ativados/genética , Tolerância a Radiação , Radioterapia Adjuvante , Transdução de Sinais , Canais de Potencial de Receptor Transitório/genética , Resultado do Tratamento
10.
Biochim Biophys Acta ; 1848(10 Pt B): 2477-92, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25517985

RESUMO

Potassium channels are a diverse group of pore-forming transmembrane proteins that selectively facilitate potassium flow through an electrochemical gradient. They participate in the control of the membrane potential and cell excitability in addition to different cell functions such as cell volume regulation, proliferation, cell migration, angiogenesis as well as apoptosis. Because these physiological processes are essential for the correct cell function, K+ channels have been associated with a growing number of diseases including cancer. In fact, different K+ channel families such as the voltage-gated K+ channels, the ether à-go-go K+ channels, the two pore domain K+ channels and the Ca2+-activated K+ channels have been associated to tumor biology. Potassium channels have a role in neoplastic cell-cycle progression and their expression has been found abnormal in many types of tumors and cancer cells. In addition, the expression and activity of specific K+ channels have shown a significant correlation with the tumor malignancy grade. The aim of this overview is to summarize published data on K+ channels that exhibit oncogenic properties and have been linked to a more malignant cancer phenotype. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Potássio/metabolismo , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Progressão da Doença , Humanos , Potenciais da Membrana/efeitos dos fármacos , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neovascularização Patológica/prevenção & controle , Fenótipo , Bloqueadores dos Canais de Potássio/uso terapêutico , Canais de Potássio Cálcio-Ativados/antagonistas & inibidores , Canais de Potássio Cálcio-Ativados/genética , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética
11.
FASEB J ; 29(8): 3228-37, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25868728

RESUMO

Discovery of novel drug targets may lead to improved treatment of trypanosomiasis. We characterize here 2 gene products of Trypanosoma brucei that are essential for the growth of bloodstream form (BSF) parasites, as shown by RNA interference (RNAi)-mediated down-regulation of the individual mRNAs. The primary sequences of the 2 proteins--protein encoded by gene Tb927.1.4450 (TbK1) and protein encoded by gene Tb927.9.4820 (TbK2)--indicate that both belong to the family of putative, Ca(2+)-activated potassium channels. The proteins were expressed in Xenopus laevis oocytes and their functions investigated by use of electrophysiological techniques. Only combined expression of TbK1 and TbK2 results in the formation of sizeable currents, indicating that these proteins probably assemble into a heteromeric ion channel. The current mediated by this channel shows little time and voltage dependence and displays a permeability ratio of K(+)/Na(+) of >20. The known potassium channel blocker barium inhibits this channel with a half-maximal inhibitory concentration (IC50) of 98 ± 15 µM. The membrane potential of trypanosomes was measured with a fluorescent dye. Individual RNAi-mediated down-regulation of TbK1 or TbK2 eliminates a potassium conductance in the plasma membrane of BSF. Thus, this heteromeric potassium channel is involved in the modulation of the plasma membrane potential and represents a novel drug target in T. brucei.


Assuntos
Membrana Celular/genética , Potenciais da Membrana/genética , Canais de Potássio Cálcio-Ativados/genética , Trypanosoma brucei brucei/genética , Animais , Regulação para Baixo/genética , Oócitos/parasitologia , Potássio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/química , Sódio/metabolismo , Xenopus laevis/genética
12.
Biochim Biophys Acta ; 1843(10): 2322-33, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24613282

RESUMO

Potassium channels belong to the largest and the most diverse super-families of ion channels. Among them, Ca(2+)-activated K(+) channels (KCa) comprise many members. Based on their single channel conductance they are divided into three subfamilies: big conductance (BKCa), intermediate conductance (IKCa) and small conductance (SKCa; SK1, SK2 and SK3). Ca(2+) channels are divided into two main families, voltage gated/voltage dependent Ca(2+) channels and non-voltage gated/voltage independent Ca(2+) channels. Based on their electrophysiological and pharmacological properties and on the tissue where there are expressed, voltage gated Ca(2+) channels (Cav) are divided into 5 families: T-type, L-type, N-type, P/Q-type and R-type Ca(2+). Non-voltage gated Ca(2+) channels comprise the TRP (TRPC, TRPV, TRPM, TRPA, TRPP, TRPML and TRPN) and Orai (Orai1 to Orai3) families and their partners STIM (STIM1 to STIM2). A depolarization is needed to activate voltage-gated Ca(2+) channels while non-voltage gated Ca(2+) channels are activated by Ca(2+) depletion of the endoplasmic reticulum stores (SOCs) or by receptors (ROCs). These two Ca(2+) channel families also control constitutive Ca(2+) entries. For reducing the energy consumption and for the fine regulation of Ca(2+), KCa and Ca(2+) channels appear associated as complexes in excitable and non-excitable cells. Interestingly, there is now evidence that KCa-Ca(2+) channel complexes are also found in cancer cells and contribute to cancer-associated functions such as cell proliferation, cell migration and the capacity to develop metastases. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Células Eucarióticas/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Subunidades Proteicas/metabolismo , Animais , Canais de Cálcio/classificação , Canais de Cálcio/genética , Sinalização do Cálcio , Movimento Celular , Proliferação de Células , Retículo Endoplasmático/metabolismo , Células Eucarióticas/citologia , Regulação da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Especificidade de Órgãos , Canais de Potássio Cálcio-Ativados/classificação , Canais de Potássio Cálcio-Ativados/genética , Subunidades Proteicas/classificação , Subunidades Proteicas/genética
13.
J Cell Physiol ; 229(12): 1981-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24729485

RESUMO

Genistein, a protein tyrosine kinase (PTK) inhibitor, regulates ion channel activities. However, the mechanism of action of genistein on large-conductance calcium-activated potassium (BK(Ca)) channels is unclear. This study aimed to investigate whether the mechanism of Mg(2+)-dependent modulation of BK(Ca) channel activity in vascular smooth muscle cells involved inhibition of phosphorylation by genistein or direct interaction between genistein and BK(Ca) channels. The whole-cell and inside-out patch-clamp techniques were used to measure BK(Ca) currents and the effects of genistein on BK(Ca) channel activities in rat mesenteric arteriolar smooth muscle cells. We found that the effects of genistein on BK(Ca) currents were Mg(2+)-dependent. Genistein (50 µM) inhibited BK(Ca) currents if the intracellular free magnesium concentration ([Mg(2+)]i) was 2 µM or 20 µM, but amplified BK(Ca) currents if [Mg(2+)]i was 200 µM or 2000 µM. The inhibitory effect of genistein on BK(Ca) currents was reversed by the protein tyrosine phosphatase inhibitor sodium orthovanadate (0.5 mM). Daidzein (50 µM), an inactive analogue of genistein, also amplified BK(Ca) currents, and its amplification was insensitive to orthovanadate. Another PTK inhibitor, tyrphostin 23 (50 µM), reduced the open probability of BK(Ca) channels. This inhibitory effect was weaker at 200 µM [Mg(2+)]i than at 2 µM [Mg(2+) ]i, and was countered by orthovanadate. Our results suggest that genistein amplifies BK(Ca) currents at a high [Mg(2+)]i, but inhibits BK(Ca) currents at a low [Mg(2+)]i. The mechanism of this biphasic effects involves PTK-independent amplification and [Mg(2+)]i -PTK-dependent inhibition.


Assuntos
Cálcio/metabolismo , Genisteína/administração & dosagem , Miócitos de Músculo Liso/metabolismo , Canais de Potássio Cálcio-Ativados/genética , Animais , Arteríolas/metabolismo , Genisteína/metabolismo , Magnésio/administração & dosagem , Magnésio/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Canais de Potássio Cálcio-Ativados/metabolismo , Ratos , Sódio/metabolismo
14.
Plant Physiol ; 162(2): 953-64, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23640756

RESUMO

Despite the important achievement of the high-resolution structures of several prokaryotic channels, current understanding of their physiological roles in bacteria themselves is still far from complete. We have identified a putative two transmembrane domain-containing channel, SynCaK, in the genome of the freshwater cyanobacterium Synechocystis sp. PCC 6803, a model photosynthetic organism. SynCaK displays significant sequence homology to MthK, a calcium-dependent potassium channel isolated from Methanobacterium thermoautotrophicum. Expression of SynCaK in fusion with enhanced GFP in mammalian Chinese hamster ovary cells' plasma membrane gave rise to a calcium-activated, potassium-selective activity in patch clamp experiments. In cyanobacteria, Western blotting of isolated membrane fractions located SynCaK mainly to the plasma membrane. To understand its physiological function, a SynCaK-deficient mutant of Synechocystis sp. PCC 6803, ΔSynCaK, has been obtained. Although the potassium content in the mutant organisms was comparable to that observed in the wild type, ΔSynCaK was characterized by a depolarized resting membrane potential, as determined by a potential-sensitive fluorescent probe. Growth of the mutant under various conditions revealed that lack of SynCaK does not impair growth under osmotic or salt stress and that SynCaK is not involved in the regulation of photosynthesis. Instead, its lack conferred an increased resistance to the heavy metal zinc, an environmental pollutant. A similar result was obtained using barium, a general potassium channel inhibitor that also caused depolarization. Our findings thus indicate that SynCaK is a functional channel and identify the physiological consequences of its deletion in cyanobacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Synechocystis/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Células CHO , Cálcio/metabolismo , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Regulação da Expressão Gênica , Potenciais da Membrana , Methanobacterium/genética , Dados de Sequência Molecular , Mutação , Pressão Osmótica , Técnicas de Patch-Clamp , Canais de Potássio Cálcio-Ativados/química , Canais de Potássio Cálcio-Ativados/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Synechocystis/efeitos dos fármacos , Synechocystis/genética , Synechocystis/metabolismo , Zinco/metabolismo , Zinco/farmacologia
15.
J Neurogenet ; 28(3-4): 316-28, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25159538

RESUMO

Abstract Tethered flies allow studies of biomechanics and electrophysiology of flight control. We performed microelectrode recordings of spikes in an indirect flight muscle (the dorsal longitudinal muscle, DLMa) coupled with acoustic analysis of wing beat frequency (WBF) via microphone signals. Simultaneous electrophysiological recording of direct and indirect flight muscles has been technically challenging; however, the WBF is thought to reflect in a one-to-one relationship with spiking activity in a subset of direct flight muscles, including muscle m1b. Therefore, our approach enables systematic mutational analysis for changes in temporal features of electrical activity of motor neurons innervating subsets of direct and indirect flight muscles. Here, we report the consequences of specific ion channel disruptions on the spiking activity of myogenic DLMs (firing at ∼5 Hz) and the corresponding WBF (∼200 Hz). We examined mutants of the genes enconding: 1) voltage-gated Ca(2+) channels (cacophony, cac), 2) Ca(2+)-activated K(+) channels (slowpoke, slo), and 3) voltage-gated K(+) channels (Shaker, Sh) and their auxiliary subunits (Hyperkinetic, Hk and quiver, qvr). We found flight initiation in response to an air puff was severely disrupted in both cac and slo mutants. However, once initiated, slo flight was largely unaltered, whereas cac displayed disrupted DLM firing rates and WBF. Sh, Hk, and qvr mutants were able to maintain normal DLM firing rates, despite increased WBF. Notably, defects in the auxiliary subunits encoded by Hk and qvr could lead to distinct consequences, that is, disrupted DLM firing rhythmicity, not observed in Sh. Our mutant analysis of direct and indirect flight muscle activities indicates that the two motor activity patterns may be independently modified by specific ion channel mutations, and that this approach can be extended to other dipteran species and additional motor programs, such as electroconvulsive stimulation-induced seizures.


Assuntos
Proteínas de Drosophila/genética , Voo Animal/fisiologia , Músculos/fisiopatologia , Convulsões/genética , Asas de Animais/fisiopatologia , Potenciais de Ação/genética , Animais , Animais Geneticamente Modificados , Canais de Cálcio/genética , Drosophila/genética , Eletrofisiologia , Masculino , Canais de Potássio Cálcio-Ativados/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Convulsões/fisiopatologia
16.
Proc Natl Acad Sci U S A ; 108(43): 17684-9, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-21997217

RESUMO

Regulator of K(+) conductance (RCK) domains control the activity of a variety of K(+) transporters and channels, including the human large conductance Ca(2+)-activated K(+) channel that is important for blood pressure regulation and control of neuronal firing, and MthK, a prokaryotic Ca(2+)-gated K(+) channel that has yielded structural insight toward mechanisms of RCK domain-controlled channel gating. In MthK, a gating ring of eight RCK domains regulates channel activation by Ca(2+). Here, using electrophysiology and X-ray crystallography, we show that each RCK domain contributes to three different regulatory Ca(2+)-binding sites, two of which are located at the interfaces between adjacent RCK domains. The additional Ca(2+)-binding sites, resulting in a stoichiometry of 24 Ca(2+) ions per channel, is consistent with the steep relation between [Ca(2+)] and MthK channel activity. Comparison of Ca(2+)-bound and unliganded RCK domains suggests a physical mechanism for Ca(2+)-dependent conformational changes that underlie gating in this class of channels.


Assuntos
Sítios de Ligação/genética , Cálcio/metabolismo , Ativação do Canal Iônico/genética , Modelos Moleculares , Canais de Potássio Cálcio-Ativados/genética , Canais de Potássio Cálcio-Ativados/metabolismo , Estrutura Terciária de Proteína , Cristalografia por Raios X , Eletrofisiologia , Bicamadas Lipídicas/metabolismo
17.
Nat Genet ; 37(7): 733-8, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15937479

RESUMO

The large conductance calcium-sensitive potassium (BK) channel is widely expressed in many organs and tissues, but its in vivo physiological functions have not been fully defined. Here we report a genetic locus associated with a human syndrome of coexistent generalized epilepsy and paroxysmal dyskinesia on chromosome 10q22 and show that a mutation of the alpha subunit of the BK channel causes this syndrome. The mutant BK channel had a markedly greater macroscopic current. Single-channel recordings showed an increase in open-channel probability due to a three- to fivefold increase in Ca(2+) sensitivity. We propose that enhancement of BK channels in vivo leads to increased excitability by inducing rapid repolarization of action potentials, resulting in generalized epilepsy and paroxysmal dyskinesia by allowing neurons to fire at a faster rate. These results identify a gene that is mutated in generalized epilepsy and paroxysmal dyskinesia and have implications for the pathogenesis of human epilepsy, the neurophysiology of paroxysmal movement disorders and the role of BK channels in neurological disease.


Assuntos
Coreia/genética , Epilepsia Generalizada/genética , Canais de Potássio Cálcio-Ativados/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Células CHO , Pré-Escolar , Coreia/complicações , Cromossomos Humanos Par 10 , Sequência Conservada , Cricetinae , Cricetulus , Epilepsia Generalizada/complicações , Feminino , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Canais de Potássio Ativados por Cálcio de Condutância Alta , Dados de Sequência Molecular , Mutação , Oócitos/fisiologia , Linhagem , Canais de Potássio Cálcio-Ativados/fisiologia , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Xenopus laevis
18.
Am J Physiol Cell Physiol ; 304(7): C673-84, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23364268

RESUMO

Purinergic agonists have been considered for the treatment of respiratory epithelia in cystic fibrosis (CF) patients. The pancreas, one of the most seriously affected organs in CF, expresses various purinergic receptors. Studies on the rodent pancreas show that purinergic signaling regulates pancreatic secretion. In the present study we aim to identify Cl(-) and K(+) channels in human pancreatic ducts and their regulation by purinergic receptors. Human pancreatic duct epithelia formed by Capan-1 or CFPAC-1 cells were studied in open-circuit Ussing chambers. In Capan-1 cells, ATP/UTP effects were dependent on intracellular Ca(2+). Apically applied ATP/UTP stimulated CF transmembrane conductance regulator (CFTR) and Ca(2+)-activated Cl(-) (CaCC) channels, which were inhibited by CFTRinh-172 and niflumic acid, respectively. The basolaterally applied ATP stimulated CFTR. In CFPAC-1 cells, which have mutated CFTR, basolateral ATP and UTP had negligible effects. In addition to Cl(-) transport in Capan-1 cells, the effects of 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DC-EBIO) and clotrimazole indicated functional expression of the intermediate conductance K(+) channels (IK, KCa3.1). The apical effects of ATP/UTP were greatly potentiated by the IK channel opener DC-EBIO. Determination of RNA and protein levels revealed that Capan-1 cells have high expression of TMEM16A (ANO1), a likely CaCC candidate. We conclude that in human pancreatic duct cells ATP/UTP regulates via purinergic receptors both Cl(-) channels (TMEM16A/ANO1 and CFTR) and K(+) channels (IK). The K(+) channels provide the driving force for Cl(-)-channel-dependent secretion, and luminal ATP provided locally or secreted from acini may potentiate secretory processes. Future strategies in augmenting pancreatic duct function should consider sidedness of purinergic signaling and the essential role of K(+) channels.


Assuntos
Canais de Cloreto/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Ductos Pancreáticos/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Trifosfato de Adenosina/farmacologia , Cálcio/metabolismo , Linhagem Celular , Canais de Cloreto/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Ductos Pancreáticos/citologia , Canais de Potássio Cálcio-Ativados/genética , Receptores Purinérgicos P2X , Receptores Purinérgicos P2Y , Uridina Trifosfato/farmacologia
19.
Am J Respir Cell Mol Biol ; 46(3): 372-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22021335

RESUMO

As powerful vasodilators, prostacyclin analogues are presently the mainstay in the treatment of severe pulmonary arterial hypertension. Although the hemodynamic effects of prostacyclin analogues are well known, the molecular mechanism of their acute effects on pulmonary vascular tone and systemic vascular tone remains poorly understood. Peroxisome proliferator-activated receptor-ß/δ (PPARß/δ) was previously identified as a putative receptor responsible for the modulation of target gene expression in response to prostacyclin analogues. The present study investigated the signaling pathway of prostacyclin in human pulmonary arterial smooth muscle cells (PASMCs), and sought to define the role of PPARß/δ in the acute vasodilating effect. In human PASMCs, prostacyclin rapidly activated TWIK-related acid-sensitive K channel 1 (TASK-1) and calcium-dependent potassium channels (K(Ca)). This pathway was mediated via the prostanoid I receptor-protein kinase A pathway. The silencing of PPARß/δ demonstrated that the downstream K(Ca) activation was exclusively dependent on PPARß/δ signaling, whereas the activation of TASK-1 was not. In addition, the PPARß/δ-induced activation of K(Ca) was independent of NO. The acute prostacyclin-induced K(Ca) activation is critically dependent on PPARß/δ as a rapid signaling factor. This accounts in part for the vasodilating effect of prostacyclin in pulmonary arteries, and provides insights into a new molecular explanation for the effects of prostanoids.


Assuntos
Epoprostenol/análogos & derivados , Iloprosta/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , PPAR delta/agonistas , PPAR gama/agonistas , Canais de Potássio Cálcio-Ativados/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Epoprostenol/farmacologia , Inativação Gênica , Humanos , Masculino , Potenciais da Membrana , Músculo Liso Vascular/metabolismo , Proteínas do Tecido Nervoso/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , PPAR delta/genética , PPAR delta/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Canais de Potássio Cálcio-Ativados/genética , Canais de Potássio Cálcio-Ativados/metabolismo , Canais de Potássio de Domínios Poros em Tandem/efeitos dos fármacos , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Ratos , Ratos Wistar , Receptores de Epoprostenol , Receptores de Prostaglandina/efeitos dos fármacos , Receptores de Prostaglandina/metabolismo
20.
J Cell Physiol ; 227(5): 1972-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21732368

RESUMO

Mouse 3T3-L1 preadipocytes are widely used for metabolic study of obesity; however, their cellular physiology is not fully understood. The present study investigates functional ion channels and their role in the regulation of cell proliferation using whole-cell patch voltage-clamp, RT-PCR, Western blot, and cell proliferation assay in undifferentiated 3T3-L1 preadipocytes. We found three types of ionic currents present in 3T3-L1 preadipocytes, including an inwardly-rectifying K(+) current (I(Kir), recorded in 15% of cells) inhibited by Ba(2+), a Ca(2+)-activated intermediate K(+) current (IK(Ca), recorded in 44% of cells) inhibited by clotrimazole (or TRAM-34) as well as a chloride current (I(Cl)) inhibited by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) in 12% of cells, which can be activated in all cells with hypotonic (0.8 T) insult, implicating a volume-sensitive I(Cl) (I(Cl.vol)). RT-PCR and Western blot analysis revealed the expression of KCa3.1 (for IK(Ca)), Kir2.1 (for I(Kir)), and Clcn3 (for I(Cl.vol)). Blockade of IK(Ca) with TRAM-34 or I(Cl.vol) with DIDS inhibited cell proliferation in a concentration-dependent manner. Knockdown of KCa3.1 or Clcn3 with specific siRNAs also suppressed cell proliferation. Flow cytometry analysis showed that blockade or silencing of KCa3.1 or Clcn3 channels with corresponding blockers or siRNAs caused an accumulation of cells at the G0/G1 phase. These results demonstrate that three functional ion channel currents, I(KCa), I(Cl.vol), and I(Kir), are heterogeneously present in 3T3-L1 preadipocytes. I(KCa) and I(Cl.vol) participate in the regulation of cell proliferation.


Assuntos
Células 3T3-L1/fisiologia , Proliferação de Células , Canais de Cloreto/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Células 3T3-L1/citologia , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/metabolismo , Ciclo Celular/fisiologia , Canais de Cloreto/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Camundongos , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/metabolismo , Canais de Potássio Cálcio-Ativados/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Pirazóis/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA