Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525680

RESUMO

Kynurenic acid (KYNA, 4-oxoquinoline-2-carboxylic acid), an intermediate of the tryptophan metabolism, has been recognized to exert different neuroactive actions; however, the need of how it or its aminoalkylated amide derivative N-(2-(dimethylamino)ethyl)-3-(morpholinomethyl)-4-oxo-1,4-dihydroquinoline-2-carboxamide (KYNA-A4) exerts any effects on ion currents in excitable cells remains largely unmet. In this study, the investigations of how KYNA and other structurally similar KYNA derivatives have any adjustments on different ionic currents in pituitary GH3 cells and hippocampal mHippoE-14 neurons were performed by patch-clamp technique. KYNA or KYNA-A4 increased the amplitude of M-type K+ current (IK(M)) and concomitantly enhanced the activation time course of the current. The EC50 value required for KYNA- or KYNA-A4 -stimulated IK(M) was yielded to be 18.1 or 6.4 µM, respectively. The presence of KYNA or KYNA-A4 shifted the relationship of normalized IK(M)-conductance versus membrane potential to more depolarized potential with no change in the gating charge of the current. The voltage-dependent hysteretic area of IK(M) elicited by long-lasting triangular ramp pulse was observed in GH3 cells and that was increased during exposure to KYNA or KYNA-A4. In cell-attached current recordings, addition of KYNA raised the open probability of M-type K+ channels, along with increased mean open time of the channel. Cell exposure to KYNA or KYNA-A4 mildly inhibited delayed-rectifying K+ current; however, neither erg-mediated K+ current, hyperpolarization-activated cation current, nor voltage-gated Na+ current in GH3 cells was changed by KYNA or KYNA-A4. Under whole-cell, current-clamp recordings, exposure to KYNA or KYNA-A4 diminished the frequency of spontaneous action potentials; moreover, their reduction in firing frequency was attenuated by linopirdine, yet not by iberiotoxin or apamin. In hippocampal mHippoE-14 neurons, the addition of KYNA also increased the IK(M) amplitude effectively. Taken together, the actions presented herein would be one of the noticeable mechanisms through which they modulate functional activities of excitable cells occurring in vivo.


Assuntos
Hipocampo/fisiologia , Canais de Potássio KCNQ/efeitos dos fármacos , Ácido Cinurênico/farmacologia , Animais , Apamina/farmacologia , Linhagem Celular , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Indóis/farmacologia , Ácido Cinurênico/química , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Piridinas/farmacologia , Ratos
2.
Epilepsia ; 61(8): 1678-1690, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32652600

RESUMO

OBJECTIVE: Voltage-gated potassium channels of the KCNQ (Kv7) family are targeted by a variety of activator compounds with therapeutic potential for treatment of epilepsy. Exploration of this drug class has revealed a variety of effective compounds with diverse mechanisms. In this study, we aimed to clarify functional criteria for categorization of Kv7 activator compounds, and to compare the effects of prototypical drugs in a zebrafish larvae model. METHODS: In vitro electrophysiological approaches with recombinant ion channels were used to highlight functional properties important for classification of drug mechanisms. We also benchmarked the effects of representative antiepileptic Kv7 activator drugs using behavioral seizure assays of zebrafish larvae and in vivo Ca2+ imaging with the ratiometric Ca2+ sensor CaMPARI. RESULTS: Drug effects on channel gating kinetics, and drug sensitivity profiles to diagnostic channel mutations, were used to highlight properties for categorization of Kv7 activator drugs into voltage sensor-targeted or pore-targeted subtypes. Quantifying seizures and ratiometric Ca2+ imaging in freely swimming zebrafish larvae demonstrated that while all Kv7 activators tested lead to suppression of neuronal excitability, pore-targeted activators (like ML213 and retigabine) strongly suppress seizure behavior, whereas ICA-069673 triggers a seizure-like hypermotile behavior. SIGNIFICANCE: This study suggests criteria to categorize antiepileptic Kv7 activator drugs based on their underlying mechanism. We also establish the use of in vivo CaMPARI as a tool for screening effects of anticonvulsant drugs on neuronal excitability in zebrafish. In summary, despite a shared ability to suppress neuronal excitability, our findings illustrate how mechanistic differences between Kv7 activator subtypes influence their effects on heteromeric channels and lead to vastly different in vivo outcomes.


Assuntos
Anilidas/farmacologia , Anticonvulsivantes/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Cálcio/metabolismo , Carbamatos/farmacologia , Epilepsia/tratamento farmacológico , Canais de Potássio KCNQ/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Convulsões/tratamento farmacológico , Animais , Animais Geneticamente Modificados , Anticonvulsivantes/classificação , Modelos Animais de Doenças , Resistência a Medicamentos/genética , Epilepsia/metabolismo , Técnicas In Vitro , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/metabolismo , Canal de Potássio KCNQ2/efeitos dos fármacos , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/efeitos dos fármacos , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo , Proteínas Luminescentes/genética , Potenciais da Membrana , Mutação , Neurônios/metabolismo , Imagem Óptica , Técnicas de Patch-Clamp , Convulsões/metabolismo , Peixe-Zebra
3.
Pharmacology ; 105(7-8): 471-476, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32062659

RESUMO

INTRODUCTION: Gout arthritis is an inflammatory disease characterized by severe acute pain. The goal of pharmacological gout arthritis treatments is to reduce pain, and thereby increase the patient's quality of life. The Kv7/M channel activators retigabine and flupirtine show analgesic efficacy in animal models of osteoarthritic pain. We hypothesized that these drugs may also alleviate gout arthritis pain. OBJECTIVE: To determine the effects of retigabine and flupirtine on pain behavior associated with monosodium urate (MSU)-induced gout arthritis. METHODS: The gout arthritis model was established with an intra-articular injection of MSU into the right ankle joint, animals were treated with retigabine or flupirtine, and pain-related behaviors were assessed. RESULTS: Retigabine and flupirtine significantly increased the mechanical threshold and prolonged the paw withdrawal latency in a rat model of gout arthritis pain in a dose-dependent manner. The antinociceptive effects of retigabine and flupirtine were fully antagonized by the Kv7/M channel blocker XE991. CONCLUSION: Retigabine and flupirtine showed antinociceptive effects for MSU-induced gout pain at different times during pain development.


Assuntos
Aminopiridinas/farmacologia , Analgésicos/farmacologia , Artrite Experimental/tratamento farmacológico , Artrite Gotosa/tratamento farmacológico , Carbamatos/farmacologia , Dor/tratamento farmacológico , Fenilenodiaminas/farmacologia , Aminopiridinas/uso terapêutico , Analgésicos/uso terapêutico , Animais , Artrite Experimental/induzido quimicamente , Artrite Gotosa/induzido quimicamente , Comportamento Animal/efeitos dos fármacos , Carbamatos/uso terapêutico , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Canais de Potássio KCNQ/agonistas , Canais de Potássio KCNQ/efeitos dos fármacos , Masculino , Dor/induzido quimicamente , Fenilenodiaminas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Ácido Úrico/toxicidade
4.
J Pharmacol Exp Ther ; 356(1): 53-63, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26493746

RESUMO

Endogenous hydrogen sulfide (H2S) is involved in the regulation of vascular tone. We hypothesized that the lowering of calcium and opening of potassium (K) channels as well as calcium-independent mechanisms are involved in H2S-induced relaxation in rat mesenteric small arteries. Amperometric recordings revealed that free [H2S] after addition to closed tubes of sodium hydrosulfide (NaHS), Na2S, and GYY4137 [P-(4-methoxyphenyl)-P-4-morpholinyl-phosphinodithioic acid] were, respectively, 14%, 17%, and 1% of added amount. The compounds caused equipotent relaxations in isometric myographs, but based on the measured free [H2S], GYY4137 caused more relaxation in relation to released free H2S than NaHS and Na2S in rat mesenteric small arteries. Simultaneous measurements of [H2S] and tension showed that 15 µM of free H2S caused 61% relaxation in superior mesenteric arteries. Simultaneous measurements of smooth muscle calcium and tension revealed that NaHS lowered calcium and caused relaxation of NE-contracted arteries, while high extracellular potassium reduced NaHS relaxation without corresponding calcium changes. In NE-contracted arteries, NaHS (1 mM) lowered the phosphorylation of myosin light chain, while phosphorylation of myosin phosphatase target subunit 1 remained unchanged. Protein kinase A and G, inhibitors of guanylate cyclase, failed to reduce NaHS relaxation, whereas blockers of voltage-gated KV7 channels inhibited NaHS relaxation, and blockers of mitochondrial complex I and III abolished NaHS relaxation. Our findings suggest that low micromolar concentrations of free H2S open K channels followed by lowering of smooth muscle calcium, and by another mechanism involving mitochondrial complex I and III leads to uncoupling of force, and hence vasodilation.


Assuntos
Cálcio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Artérias Mesentéricas/efeitos dos fármacos , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Canais de Potássio/efeitos dos fármacos , Animais , Complexo I de Transporte de Elétrons/efeitos dos fármacos , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Sulfeto de Hidrogênio/metabolismo , Técnicas In Vitro , Canais de Potássio KCNQ/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Músculo Liso Vascular/metabolismo , Cadeias Leves de Miosina/efeitos dos fármacos , Cadeias Leves de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/antagonistas & inibidores , Fosforilação , Bloqueadores dos Canais de Potássio/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Wistar , Vasodilatação/efeitos dos fármacos
5.
J Vasc Res ; 53(3-4): 138-148, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27710966

RESUMO

Voltage-gated potassium (Kv) channels formed by Kv7 (KCNQ) α-subunits are recognized as crucial for vascular smooth muscle function, in addition to their established roles in the heart (Kv7.1) and the brain (Kv7.2-5). In vivo, Kv7 α-subunits are often regulated by KCNE subfamily ancillary (ß) subunits. We investigated the effects of targeted germline Kcne4 deletion on mesenteric artery reactivity in adult male and female mice. Kcne4 deletion increased mesenteric artery contractility in response to α-adrenoceptor agonist methoxamine, and decreased responses to Kv7.2-7.5 channel activator ML213, in male but not female mice. In contrast, Kcne4 deletion markedly decreased vasorelaxation in response to isoprenaline in both male and female mice. Kcne4 expression was 2-fold lower in the female versus the male mouse mesenteric artery, and Kcne4 deletion elicited only moderate changes of other Kcne transcripts, with no striking sex-specific differences. However, Kv7.4 protein expression in females was twice that in males, and was reduced in both sexes by Kcne4 deletion. Our findings confirm a crucial role for KCNE4 in regulation of Kv7 channel activity to modulate vascular tone, and provide the first known molecular mechanism for sex-specificity of this modulation that has important implications for vascular reactivity and may underlie sex-specific susceptibility to cardiovascular diseases.


Assuntos
Canais de Potássio KCNQ/metabolismo , Músculo Liso Vascular/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/deficiência , Vasoconstrição , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Anilidas/farmacologia , Animais , Compostos Bicíclicos com Pontes/farmacologia , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica , Genótipo , Canais de Potássio KCNQ/efeitos dos fármacos , Canais de Potássio KCNQ/genética , Masculino , Artérias Mesentéricas/metabolismo , Metoxamina/farmacologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Fatores Sexuais , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia
6.
J Neurosci ; 34(5): 1570-8, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24478341

RESUMO

Neuromodulators released during and after a fearful experience promote the consolidation of long-term memory for that experience. Because overconsolidation may contribute to the recurrent and intrusive memories of post-traumatic stress disorder, neuromodulatory receptors provide a potential pharmacological target for prevention. Stimulation of muscarinic receptors promotes memory consolidation in several conditioning paradigms, an effect primarily associated with the M1 receptor (M1R). However, neither inhibiting nor genetically disrupting M1R impairs the consolidation of cued fear memory. Using the M1R agonist cevimeline and antagonist telenzepine, as well as M1R knock-out mice, we show here that M1R, along with ß2-adrenergic (ß2AR) and D5-dopaminergic (D5R) receptors, regulates the consolidation of cued fear memory by redundantly activating phospholipase C (PLC) in the basolateral amygdala (BLA). We also demonstrate that fear memory consolidation in the BLA is mediated in part by neuromodulatory inhibition of the M-current, which is conducted by KCNQ channels and is known to be inhibited by muscarinic receptors. Manipulating the M-current by administering the KCNQ channel blocker XE991 or the KCNQ channel opener retigabine reverses the effects on consolidation caused by manipulating ß2AR, D5R, M1R, and PLC. Finally, we show that cAMP and protein kinase A (cAMP/PKA) signaling relevant to this stage of consolidation is upstream of these neuromodulators and PLC, suggesting an important presynaptic role for cAMP/PKA in consolidation. These results support the idea that neuromodulatory regulation of ion channel activity and neuronal excitability is a critical mechanism for promoting consolidation well after acquisition has occurred.


Assuntos
Medo/fisiologia , Canais de Potássio KCNQ/metabolismo , Memória/fisiologia , Receptor Muscarínico M1/fisiologia , Fosfolipases Tipo C/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Estimulação Elétrica/efeitos adversos , Inibidores Enzimáticos/farmacologia , Medo/efeitos dos fármacos , Feminino , Canais de Potássio KCNQ/efeitos dos fármacos , Masculino , Moduladores de Transporte de Membrana/farmacologia , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Agonistas Muscarínicos/farmacologia , Procaterol/farmacologia , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/antagonistas & inibidores , Receptor Muscarínico M1/deficiência , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
7.
Arterioscler Thromb Vasc Biol ; 34(7): 1522-30, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24855057

RESUMO

OBJECTIVE: Voltage-dependent K(+) (Kv) channels from the Kv7 family are expressed in blood vessels and contribute to cardiovascular physiology. Although Kv7 channel blockers trigger muscle contractions, Kv7 activators act as vasorelaxants. Kv7.1 and Kv7.5 are expressed in many vessels. Kv7.1 is under intense investigation because Kv7.1 blockers fail to modulate smooth muscle reactivity. In this study, we analyzed whether Kv7.1 and Kv7.5 may form functional heterotetrameric channels increasing the channel diversity in vascular smooth muscles. APPROACH AND RESULTS: Kv7.1 and Kv7.5 currents elicited in arterial myocytes, oocyte, and mammalian expression systems suggest the formation of heterotetrameric complexes. Kv7.1/Kv7.5 heteromers, exhibiting different pharmacological characteristics, participate in the arterial tone. Kv7.1/Kv7.5 associations were confirmed by coimmunoprecipitation, fluorescence resonance energy transfer, and fluorescence recovery after photobleaching experiments. Kv7.1/Kv7.5 heterotetramers were highly retained at the endoplasmic reticulum. Studies in HEK-293 cells, heart, brain, and smooth and skeletal muscles demonstrated that the predominant presence of Kv7.5 stimulates release of Kv7.1/Kv7.5 oligomers out of lipid raft microdomains. Electrophysiological studies supported that KCNE1 and KCNE3 regulatory subunits further increased the channel diversity. Finally, the analysis of rat isolated myocytes and human blood vessels demonstrated that Kv7.1 and Kv7.5 exhibited a differential expression, which may lead to channel diversity. CONCLUSIONS: Kv7.1 and Kv7.5 form heterotetrameric channels increasing the diversity of structures which fine-tune blood vessel reactivity. Because the lipid raft localization of ion channels is crucial for cardiovascular physiology, Kv7.1/Kv7.5 heteromers provide efficient spatial and temporal regulation of smooth muscle function. Our results shed light on the debate about the contribution of Kv7 channels to vasoconstriction and hypertension.


Assuntos
Canais de Potássio KCNQ/metabolismo , Canal de Potássio KCNQ1/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Potássio/metabolismo , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Canais de Potássio KCNQ/química , Canais de Potássio KCNQ/efeitos dos fármacos , Canais de Potássio KCNQ/genética , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/efeitos dos fármacos , Canal de Potássio KCNQ1/genética , Microdomínios da Membrana/metabolismo , Potenciais da Membrana , Músculo Liso Vascular/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Estrutura Quaternária de Proteína , Ratos , Transfecção , Xenopus
8.
Int J Urol ; 21(10): 1059-64, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24846346

RESUMO

OBJECTIVES: To investigate the effect of diabetes on urothelial modulation of bladder contractility. METHODS: Bladder strips (urothelium intact or denuded) were prepared from 8-week-old streptozotocin-induced diabetic (n = 19) and non-diabetic control rats (n = 10). The effect of modulators of MaxiK (iberiotoxin and tetraethylammonium) and Kv7 (XE991 and retigabine) potassium channel activity were investigated for their effects on both carbachol-induced force generation and spontaneous contractile activity. RESULTS: In bladder strips from non-diabetic animals, the presence of the urothelium resulted in marked sensitivity to carbachol-induced force generation by modulators of MaxiK and Kv7 channel activity, whereas in the diabetic animal urothelial sensitivity to these agents was significantly diminished. Urothelial-intact bladder strips from non-diabetic animals were more sensitive to modulators of Kv7 activity in reducing the amplitude of spontaneous phasic contractions than urothelial-denuded bladder strips, whereas in diabetic animals the presence or absence of the urothelium did not alter the sensitivity to modulators of Kv7 activity. Spontaneous activity in the presence of tetraethylammonium was not affected by the urothelium in bladder strips from either diabetic or non-diabetic animals. CONCLUSIONS: The presence of the urothelium in bladders from non-diabetic animals modulates the activity of potassium blockers to affect bladder contractility, whereas in the diabetic bladder this effect is attenuated. These findings could help to explain the lack of success of pharmaceutical treatments targeting potassium channels to treat bladder pathology in patients with diseases imparing urothelial function.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Canais de Potássio KCNQ/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Bexiga Urinária/fisiopatologia , Urotélio/fisiopatologia , Animais , Antracenos/farmacologia , Carbacol/farmacologia , Carbamatos/farmacologia , Agonistas Colinérgicos/farmacologia , Masculino , Moduladores de Transporte de Membrana/farmacologia , Peptídeos/farmacologia , Fenilenodiaminas/farmacologia , Ratos , Ratos Endogâmicos F344 , Tetraetilamônio/farmacologia , Bexiga Urinária/efeitos dos fármacos , Urotélio/efeitos dos fármacos
9.
Neuropharmacology ; 254: 109994, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750803

RESUMO

Neuronal voltage-gated KCNQ (Kv7) channels, expressed centrally and peripherally, mediate low-threshold and non-inactivating M-currents responsible for the control of tonic excitability of mammalian neurons. Pharmacological opening of KCNQ channels has been reported to generate analgesic effects in animal models of neuropathic pain. Here, we examined the possible involvement of central KCNQ channels in the analgesic effects of retigabine, a KCNQ channel opener. Behaviorally, intraperitoneally applied retigabine exerted analgesic effects on thermal and mechanical hypersensitivity in male mice developing neuropathic pain after partial sciatic nerve ligation, which was antagonized by the KCNQ channel blocker XE991 preadministered intraperitoneally and intrathecally. Intrathecally applied retigabine also exerted analgesic effects that were inhibited by intrathecally injected XE991. We then explored the synaptic mechanisms underlying the analgesic effects of retigabine in the spinal dorsal horn. Whole-cell recordings were made from dorsal horn neurons in spinal slices with attached dorsal roots from adult male mice developing neuropathic pain, and the effects of retigabine on miniature and afferent-evoked postsynaptic currents were examined. Retigabine reduced the amplitude of A-fiber-mediated EPSCs without affecting C-fiber-mediated excitatory synaptic transmission. A-fiber-mediated EPSCs remained unaltered by retigabine in the presence of XE991, consistently with the behavioral findings. The frequency and amplitude of mEPSCs were not affected by retigabine. Thus, opening of KCNQ channels in the central terminals of primary afferent A-fibers inhibits excitatory synaptic transmission in the spinal dorsal horn, most likely contributing to the analgesic effect of retigabine.


Assuntos
Analgésicos , Antracenos , Carbamatos , Canais de Potássio KCNQ , Fenilenodiaminas , Animais , Masculino , Carbamatos/farmacologia , Fenilenodiaminas/farmacologia , Canais de Potássio KCNQ/antagonistas & inibidores , Canais de Potássio KCNQ/efeitos dos fármacos , Antracenos/farmacologia , Camundongos , Analgésicos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neuralgia/tratamento farmacológico , Células do Corno Posterior/efeitos dos fármacos , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Fibras Nervosas Mielinizadas/fisiologia , Corno Dorsal da Medula Espinal/efeitos dos fármacos
10.
Mol Pharmacol ; 84(5): 763-73, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24019223

RESUMO

K(v)7.4 channel subunits are expressed in central auditory pathways and in inner ear sensory hair cells and skeletal and smooth muscle cells. Openers of K(v)7.4 channels have been suggested to improve hearing loss, systemic or pulmonary arterial hypertension, urinary incontinence, gastrointestinal and neuropsychiatric diseases, and skeletal muscle disorders. Scorpion venoms are a large source of peptides active on K⁺ channels. Therefore, we have optimized a combined purification/screening procedure to identify specific modulator(s) of K(v)7.4 channels from the venom of the North African scorpion Androctonus australis (Aa). We report the isolation and functional characterization of AaTXKß2₋64, a novel variant of AaTXKß1₋64, in a high-performance liquid chromatography fraction from Aa venom (named P8), which acts as the first peptide activator of K(v)7.4 channels. In particular, in both Xenopus oocytes and mammalian Chinese hamster ovary cells, AaTXKß2₋64, but not AaTXKß1₋64, hyperpolarized the threshold voltage of current activation and increased the maximal currents of heterologously expressed K(v)7.4 channels. AaTXKß2₋64 also activated K(v)7.3, K(v)7.2/3, and K(v)7.5/3 channels, whereas homomeric K(v)1.1, K(v)7.1, and K(v)7.2 channels were unaffected. We anticipate that these results may prove useful in unraveling the novel biologic roles of AaTXKß2₋64-sensitive K(v)7 channels and developing novel pharmacologic tools that allow subtype-selective targeting of K(v)7 channels.


Assuntos
Canais de Potássio KCNQ/efeitos dos fármacos , Venenos de Escorpião/farmacologia , Sequência de Aminoácidos , Animais , Células CHO , Cromatografia Líquida de Alta Pressão , Cricetinae , Cricetulus , Feminino , Dados de Sequência Molecular , Venenos de Escorpião/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Xenopus laevis
11.
Neurobiol Dis ; 56: 14-24, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23583611

RESUMO

In models of temporal lobe epilepsy, in-vitro exposure of the entorhinal cortex (EC) to low concentrations of acetylcholine (ACh) induces muscarinic-dependent seizure-like events. Potassium channels from the KCNQ/Kv7 family, which close upon activation of muscarinic receptors, are mutated in several epileptic syndromes such as benign familial neonatal convulsions (KCNQ2/KCNQ3) and sudden unexplained death in epilepsy (KCNQ1). Therefore, we tested the hypothesis whether the ictogenic effect of ACh involves alterations of KCNQ channels. In horizontal temporo-hippocampal slices from pilocarpine-treated chronically epileptic rats, field potential recordings of epileptiform activity were performed in response to the application of ACh, the KCNQ blocker linopirdine, and KCNQ agonists. In the EC of control rats, ACh (20 and 50 µM) induced nested fast activity in the range of 15-20 Hz riding on <1 Hz slow oscillations. By contrast, in slices from pilocarpine-treated rats, 5 µM ACh was sufficient to induce interictal discharges that frequently transformed to epileptiform events at 20 µM ACh. While the non-specific KCNQ/Kv7 channel blocker linopirdine (20 and 50 µM) had no effect in control animals, in slices from epileptic rats it induced interictal discharges or seizure-like events. These could be blocked by the unspecific KCNQ/Kv7 agonist retigabine and attenuated by the Kv7.1 agonist L364-373. Immunohistochemistry revealed reduced expression of KCNQ2 and KCNQ3 in the EC and of KCNQ3-positive dendrites in the subiculum of epileptic rats. These results indicate that channels of the KCNQ family are key regulators of seizure susceptibility and their decreased availability in the epileptic tissue may reduce seizure threshold and contribute to ictogenesis.


Assuntos
Acetilcolina/farmacologia , Córtex Entorrinal/efeitos dos fármacos , Canais de Potássio KCNQ/efeitos dos fármacos , Agonistas Muscarínicos/farmacologia , Pilocarpina/farmacologia , Animais , Agonistas dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Potenciais Evocados/efeitos dos fármacos , Imuno-Histoquímica , Indóis/farmacologia , Masculino , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Piridinas/farmacologia , Ratos , Ratos Wistar , Convulsões/fisiopatologia , Estado Epiléptico/fisiopatologia
12.
Am J Physiol Lung Cell Mol Physiol ; 302(1): L120-32, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21964407

RESUMO

Expression and function of Kv7 (KCNQ) voltage-activated potassium channels in guinea pig and human airway smooth muscle cells (ASMCs) were investigated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), patch-clamp electrophysiology, and precision-cut lung slices. qRT-PCR revealed expression of multiple KCNQ genes in both guinea pig and human ASMCs. Currents with electrophysiological and pharmacological characteristics of Kv7 currents were measured in freshly isolated guinea pig and human ASMCs. In guinea pig ASMCs, Kv7 currents were significantly suppressed by application of the bronchoconstrictor agonists methacholine (100 nM) or histamine (30 µM), but current amplitudes were restored by addition of a Kv7 channel activator, flupirtine (10 µM). Kv7 currents in guinea pig ASMCs were also significantly enhanced by another Kv7.2-7.5 channel activator, retigabine, and by celecoxib and 2,5-dimethyl celecoxib. In precision-cut human lung slices, constriction of airways by histamine was significantly reduced in the presence of flupirtine. Kv7 currents in both guinea pig and human ASMCs were inhibited by the Kv7 channel blocker XE991. In human lung slices, XE991 induced robust airway constriction, which was completely reversed by addition of the calcium channel blocker verapamil. These findings suggest that Kv7 channels in ASMCs play an essential role in the regulation of airway diameter and may be targeted pharmacologically to relieve airway hyperconstriction induced by elevated concentrations of bronchoconstrictor agonists.


Assuntos
Broncoconstrição/fisiologia , Broncodilatadores , Canais de Potássio KCNQ , Miócitos de Músculo Liso , Transdução de Sinais/efeitos dos fármacos , Aminopiridinas/farmacologia , Animais , Antracenos/farmacologia , Broncoconstrição/efeitos dos fármacos , Broncodilatadores/metabolismo , Broncodilatadores/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Carbamatos/farmacologia , Celecoxib , Cobaias , Histamina/farmacologia , Humanos , Canais de Potássio KCNQ/efeitos dos fármacos , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/metabolismo , Masculino , Cloreto de Metacolina/farmacologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Técnicas de Patch-Clamp , Fenilenodiaminas/farmacologia , Pirazóis/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulfonamidas/farmacologia , Verapamil/farmacologia
13.
J Physiol ; 589(Pt 10): 2559-68, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21486761

RESUMO

M-type (KCNQ) K⁺ channels are known to regulate excitability and firing properties of sympathetic neurons (SNs), but their role in regulating neurotransmitter release is unclear, requiring further study. We sought to use a physiological preparation in which SNs innervate primary cardiomyocytes to evaluate the direct role of M-channels in the release of noradrenaline (NA) from SNs. Co-cultures of rat SNs and mouse cardiomyocytes were prepared, and the contraction rate (CR) of the cardiomyocyte syncytium monitored by video microscopy. We excited the SNs with nicotine, acting on nicotinic acetylcholine receptors, and monitored the increase in CR in the presence or absence of the specific M-channel opener retigabine, or agonists of bradykinin B2 or purinergic P2Y receptors on the SNs. The maximal adrenergic effect on the CR was determined by application of isoproterenol (isoprenaline). To isolate the actions of B2 or P2Y receptor stimulation to the neurons, we prepared cardiomyocytes from B2 receptor or P2Y2 receptor knock-out mice, respectively. We found that co-application of retigabine strongly decreased the nicotine-induced increase in CR. Conversely, co-application of bradykinin or the P2Y-receptor agonist UTP augmented the nicotine-induced increase in CR to about half of the level produced by isoproterenol. All effects on the CR were wholly blocked by propranolol. Our data support the role of M-type K⁺ channels in the control of NA release by SNs at functional adrenergic synapses on cardiomyocytes.We conclude that physiological receptor agonists control the heart rate via the regulation of M-current in SNs.


Assuntos
Frequência Cardíaca/fisiologia , Coração/fisiologia , Canais de Potássio KCNQ/fisiologia , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Carbamatos/farmacologia , Cardiotônicos/farmacologia , Células Cultivadas , Técnicas de Cocultura , Estimulantes Ganglionares/farmacologia , Coração/efeitos dos fármacos , Coração/inervação , Frequência Cardíaca/efeitos dos fármacos , Isoproterenol/farmacologia , Canais de Potássio KCNQ/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Nicotina/farmacologia , Fenilenodiaminas/farmacologia , Agonistas do Receptor Purinérgico P2Y/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor B2 da Bradicinina/agonistas , Sistema Nervoso Simpático/efeitos dos fármacos
14.
J Neurophysiol ; 106(4): 1722-33, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21697446

RESUMO

After block of Kv1- and Kv2-mediated K(+) currents in acutely dissociated neocortical pyramidal neurons from layers II/III of rat somatosensory and motor cortex, the remaining current is slowly activating and persistent. We used whole cell voltage clamp to show that the Kv7 blockers linopirdine and XE-991 blocked a current with similar kinetics to the current remaining after combined block of Kv1 and Kv2 channels. This current was sensitive to low doses of linopirdine and activated more slowly and at more negative potentials than Kv1- or Kv2-mediated current. The Kv7-mediated current decreased in amplitude with time in whole cell recordings, but in most cells the current was stable for several minutes. Current in response to a traditional M-current protocol was blocked by muscarine, linopirdine, and XE-991. Whole cell slice recordings revealed that the Q10 for channel deactivation was ∼2.5. Sharp electrode current-clamp recordings from adult pyramidal cells demonstrated that block of Kv7-mediated current with XE-991 reduced rheobase, shortened the latency to firing to near rheobase current, induced more regular firing at low current intensity, and increased the rate of firing to a given current injection. XE-991 did not affect single action potentials or spike frequency adaptation. Application of XE-991 also eliminated subthreshold voltage oscillations and increased gain for low-frequency inputs (<10 Hz) without affecting gain for higher frequency inputs. These data suggest important roles for Kv7 channels in subthreshold regulation of excitability, generation of theta-frequency subthreshold oscillations, regulation of interspike intervals, and biasing selectivity toward higher frequency inputs.


Assuntos
Canais de Potássio KCNQ/fisiologia , Córtex Motor/citologia , Potássio/fisiologia , Células Piramidais/fisiologia , Córtex Somatossensorial/citologia , Potenciais de Ação/fisiologia , Animais , Antracenos/farmacologia , Indóis/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Canais de Potássio KCNQ/efeitos dos fármacos , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Células Piramidais/efeitos dos fármacos , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Limiar Sensorial/fisiologia , Estimulação Subliminar
15.
BMC Pharmacol Toxicol ; 22(1): 33, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108047

RESUMO

BACKGROUND: The objective of the present study was to determine the effect of allisartan, a new angiotensin II type 1 receptor antagonist on vascular remodeling through voltage gated potassium channels (Kv7) in hypertensive rats. METHODS: The study included a total of 47 Sprague Dawley (SD) rats. The animals were randomized to sham operation (n = 14), untreated hypertensive control group (n = 18) and allisartan treatment group (n = 15). Using renal artery stenosis, hypertension was induced in animals. Single dose of allisartan was administered intra-gastrically to animals in the allisartan treatment group and match placebo in the other 2 groups. Wire myography was used to measure the muscle tension in isolated mesenteric arteries from the animals. Real-time polymerase chain reaction was used to quantify the expression of Kv7 channel mRNA subunits. RESULTS: After 4 weeks of treatment, a significant decrease in mean arterial, systolic and diastolic blood pressure (SBP and DBP) was observed in allisartan treatment group compared to hypertension control group. The median arterial wall thickness and area/diameter ratio reduced significantly in treatment group compared to untreated hypertension group (P < 0.05). Wire myography demonstrated increased relaxation of mesenteric artery with increase in concentration of ML213. A significant up-regulation in the expression of all Kv7 mRNA subunits was observed in allisartan group compared to untreated hypertension group. CONCLUSIONS: From the results, allisartan was found to lower BP and preserve vascular remodeling through Kv7 channels.


Assuntos
Anti-Hipertensivos/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Hipertensão Renovascular/tratamento farmacológico , Imidazóis/uso terapêutico , Canais de Potássio KCNQ/efeitos dos fármacos , Remodelação Vascular/efeitos dos fármacos , Animais , Anti-Hipertensivos/farmacologia , Aorta/efeitos dos fármacos , Aorta/fisiologia , Compostos de Bifenilo/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Hipertensão Renovascular/genética , Hipertensão Renovascular/fisiopatologia , Imidazóis/farmacologia , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/fisiologia , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiologia , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
16.
Pflugers Arch ; 460(2): 277-88, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20401729

RESUMO

KV7 voltage-gated potassium channels, encoded by the KCNQ gene family, have caught increasing interest of the scientific community for their important physiological roles, which are emphasized by the fact that four of the five so far identified members are related to different hereditary diseases. Furthermore, these channels prove to be attractive pharmacological targets for treating diseases characterized by membrane hyperexcitability. KV7 channels are expressed in brain, heart, thyroid gland, pancreas, inner ear, muscle, stomach, and intestines. They give rise to functionally important potassium currents, reduction of which results in pathologies such as long QT syndrome, diabetes, neonatal epilepsy, neuromyotonia, or progressive deafness. Here, we summarize some key traits of KV7 channels and review how their molecular deficiencies could explain diverse disease phenotypes. We also assess the therapeutic potential of KV7 channels; in particular, how the activation of KV7 channels by the compounds retigabine and R-L3 may be useful for treatment of epilepsy or cardiac arrhythmia.


Assuntos
Canalopatias/fisiopatologia , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/fisiologia , Animais , Carbamatos/farmacologia , Canalopatias/genética , Epilepsia/tratamento farmacológico , Epilepsia/genética , Humanos , Canais de Potássio KCNQ/agonistas , Canais de Potássio KCNQ/efeitos dos fármacos , Síndrome do QT Longo/genética , Mutação , Fenilenodiaminas/farmacologia
17.
J Neurophysiol ; 103(4): 1969-77, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20147414

RESUMO

Salicylate causes a moderate hearing loss and tinnitus in humans at high-dose levels. Salicylate-induced hearing loss has been attributed to impaired sound amplification by outer hair cells (OHCs) through its direct action on the OHC motility sensor and/or motor. However, there is a disparity of salicylate concentrations between the clinical and animal studies, i.e., extremely high extracellular concentrations of salicylate (from 1 to 10 mM) is required to produce a significant reduction of electromotility in animal studies. Such concentrations are above the clinical/physiological range for humans. Here, we showed that clinical/physiological concentration range of salicylate caused concentration-dependent and reversible reductions in I(K,n) (KCNQ4) and subsequent depolarization of OHCs. Salicylate reduced the maximal tail current of the activation curve of I(K,n) without altering the voltage-sensitivity (V(half)). The salicylate-induced reduction of I(K,n) was almost completely blocked by linopirdine (0.1 mM) and BaCl2 (10 mM). Consistent with the finding in OHCs, salicylate significantly reduced KCNQ4-mediated current expressed in Chinese hamster ovarian (CHO) cells by comparable amplitude to OHCs without significantly shifting V(half). Nonstationary fluctuation analysis shows that salicylate significantly reduced the estimated single-channel current amplitude and numbers. Intracellular Ca²+ elevation resulting from cytoplasmic acidosis also contributes to the current reduction of I(K,n) (KCNQ4) of OHCs. These results indicate a different model for the salicylate-induced hearing loss through the reduction of KCNQ4 and subsequent depolarization of OHCs, which reduces the driving force for transduction current and electromotility. The major mechanism underlying the reduction of I(K,n) (KCNQ4) is the direct blocking action of salicylate on KCNQ4.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Células Ciliadas Auditivas Externas/efeitos dos fármacos , Canais de Potássio KCNQ/efeitos dos fármacos , Salicilatos/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Eletrofisiologia , Feminino , Cobaias , Células Ciliadas Auditivas Externas/citologia , Células Ciliadas Auditivas Externas/fisiologia , Perda Auditiva/fisiopatologia , Canais de Potássio KCNQ/fisiologia , Modelos Animais , Técnicas de Patch-Clamp
18.
Trends Pharmacol Sci ; 29(2): 99-107, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18206251

RESUMO

Voltage-gated Kv7 (or KCNQ) channels play a pivotal role in controlling membrane excitability. Like typical voltage-gated ion channels, Kv7 channels undergo a closed-to-open transition by sensing changes in transmembrane potential, and thereby mediate inhibitory K(+) currents to reduce membrane excitability. Reduction of Kv7 channel activity as a result of genetic mutation is responsible for various human diseases due to membrane hyperexcitability, including epilepsy, arrhythmia and deafness. As a result, the discovery of small compounds that activate voltage-gated ion channels is an important strategy for clinical intervention in such disorders. Because ligand binding can induce a conformational change leading to subthreshold channel opening, there is considerable interest in understanding the molecular basis of these 'gain-of-function' molecules. Although small-molecule activators of cation channels are rare, several novel compounds that activate Kv7 voltage-gated channels have been identified. Recent advances in defining the activator-binding sites and in understanding their mechanism of action have begun to provide insight into the activation of voltage-gated channels by synthetic compounds.


Assuntos
Canais de Potássio KCNQ/efeitos dos fármacos , Canais de Potássio KCNQ/metabolismo , Doenças do Sistema Nervoso/tratamento farmacológico , Sítios de Ligação , Humanos , Ligantes , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Doenças do Sistema Nervoso/fisiopatologia
19.
J Pharmacol Exp Ther ; 328(3): 951-62, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19098162

RESUMO

Dopaminergic (DAergic) neurons in the ventral tegmental area express both KCNQ2 and KCNQ4 channels, which opening is expected to decrease neuronal excitability via neuronal hyper-polarization. Because psychotic symptoms are believed to be associated with an increased excitability of dopamine (DA) cells in the mesencephalon, KCNQ channels might represent a new potential target for the treatment of psychosis. The aim of our study was to investigate the antipsychotic-like potential of KCNQ channel opening via modulation of neuronal activity within the mesolimbic DAergic system. We report that retigabine [N-(2-amino-4-(fluorobenzylamino)-phenyl)carbamic acid ester], a KCNQ opener, dose-dependently reduced basal DA firing rate and more potently suppressed burst firing activity in the ventral tegmental area, whereas XE-991 [10,10-bis(pyridinylmethyl)-9(10H)-anthracenone], a selective KCNQ blocker, induced opposite effects. In addition, retigabine prevented d-amphetamine-induced DA efflux in the nucleus accumbens and d-amphetamine-induced locomotor hyperactivity. In contrast, XE-991 potentiated both the locomotor hyperactivity and DA efflux evoked by d-amphetamine. These data strongly suggest that the activation of KCNQ channels attenuates DAergic neurotransmission in the mesolimbic system, particularly in conditions of excessive DAergic activity. In a model predictive of antipsychotic activity, the conditioned avoidance response paradigm, retigabine was found to inhibit avoidance responses, an effect blocked by coadministration of XE-991. Furthermore, retigabine was found to significantly inhibit the hyperlocomotor response to a phencyclidine (PCP) challenge in PCP-sensitized animals, considered as a disease model for schizophrenia. Taken together, our studies provide evidence that KCNQ channel openers represent a potential new class of antipsychotics.


Assuntos
Antipsicóticos/farmacologia , Carbamatos/farmacologia , Dopamina/metabolismo , Canais de Potássio KCNQ/fisiologia , Sistema Límbico/fisiologia , Fenilenodiaminas/farmacologia , Transmissão Sináptica/fisiologia , Animais , Antracenos/farmacologia , Carbamatos/administração & dosagem , Canais de Potássio KCNQ/antagonistas & inibidores , Canais de Potássio KCNQ/efeitos dos fármacos , Sistema Límbico/efeitos dos fármacos , Masculino , Microdiálise/métodos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Fenilenodiaminas/administração & dosagem , Ratos , Ratos Wistar , Transmissão Sináptica/efeitos dos fármacos
20.
J Pharmacol Exp Ther ; 329(1): 368-76, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19151245

RESUMO

Potassium channels are central to the regulation of pulmonary vascular tone. The smooth muscle cells of pulmonary artery display a background K(+) conductance with biophysical properties resembling those of KCNQ (K(V)7) potassium channels. Therefore, we investigated the expression and functional role of KCNQ channels in pulmonary artery. The effects of selective KCNQ channel modulators were investigated on K(+) current and membrane potential in isolated pulmonary artery smooth muscle cells (PASMCs), on the tension developed by intact pulmonary arteries, and on pulmonary arterial pressure in isolated perfused lungs and in vivo. The KCNQ channel blockers, linopirdine and XE991 [10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone], inhibited the noninactivating background K(+) conductance in PASMCs and caused depolarization, vasoconstriction, and raised pulmonary arterial pressure without constricting several systemic arteries or raising systemic pressure. The KCNQ channel openers, retigabine and flupirtine, had the opposite effects. PASMCs were found to express KCNQ4 mRNA, at higher levels than mesenteric artery, along with smaller amounts of KCNQ1 and 5. It is concluded that KCNQ channels, most probably KCNQ4, make an important contribution to the regulation of pulmonary vascular tone, with a greater contribution in pulmonary compared with systemic vessels. The pulmonary vasoconstrictor effect of KCNQ blockers is a potentially serious side effect, but the pulmonary vasodilator effect of the openers may be useful in the treatment of pulmonary hypertension.


Assuntos
Canais de Potássio KCNQ/efeitos dos fármacos , Tono Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , Animais , Membrana Celular/efeitos dos fármacos , Eletrofisiologia , Hemodinâmica/efeitos dos fármacos , Técnicas In Vitro , Canais de Potássio KCNQ/agonistas , Canais de Potássio KCNQ/antagonistas & inibidores , Pulmão/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Miografia , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA