Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 170(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38456839

RESUMO

Candida maltosa is closely related to important pathogenic Candida species, especially C. tropicalis and C. albicans, but it has been rarely isolated from humans. For this reason, through comparative studies, it could be a powerful model to understand the genetic underpinnings of the pathogenicity of Candida species. Here, we generated a cohesive assembly of the C. maltosa genome and developed genetic engineering tools that will facilitate studying this species at a molecular level. We used a combination of short and long-read sequencing to build a polished genomic draft composed of 14 Mbp, 45 contigs and close to 5700 genes. This assembly represents a substantial improvement from the currently available sequences that are composed of thousands of contigs. Genomic comparison with C. albicans and C. tropicalis revealed a substantial reduction in the total number of genes in C. maltosa. However, gene loss seems not to be associated to the avirulence of this species given that most genes that have been previously associated with pathogenicity were also present in C. maltosa. To be able to edit the genome of C. maltosa we generated a set of triple auxotrophic strains so that gene deletions can be performed similarly to what has been routinely done in pathogenic Candida species. As a proof of concept, we generated gene knockouts of EFG1, a gene that encodes a transcription factor that is essential for filamentation and biofilm formation in C. albicans and C. tropicalis. Characterization of these mutants showed that Efg1 also plays a role in biofilm formation and filamentous growth in C. maltosa, but it seems to be a repressor of filamentation in this species. The genome assembly and auxotrophic mutants developed here are a key step forward to start using C. maltosa for comparative and evolutionary studies at a molecular level.


Assuntos
Candida albicans , Candida , Humanos , Candida/genética , Candida albicans/genética , Candida tropicalis/genética , Evolução Biológica
2.
Biochem Biophys Res Commun ; 710: 149876, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38579537

RESUMO

1,2,4-Butanetriol serves as a precursor in the manufacture of diverse pharmaceuticals and the energetic plasticizer 1,2,4-butanetriol trinitrate. The study involved further modifications to an engineered Candida tropicalis strain, aimed at improving the production efficiency of 1,2,4-butanetriol. Faced with the issue of xylonate accumulation due to the low activity of heterologous xylonate dehydratase, we modulated iron metabolism at the transcriptional level to boost intracellular iron ion availability, thus enhancing the enzyme activity by 2.2-fold. Addressing the NADPH shortfall encountered during 1,2,4-butanetriol biosynthesis, we overexpressed pivotal genes in the NADPH regeneration pathway, achieving a 1,2,4-butanetriol yield of 3.2 g/L. The introduction of calcium carbonate to maintain pH balance led to an increased yield of 4 g/L, marking a 111% improvement over the baseline strain. Finally, the use of corncob hydrolysate as a substrate culminated in 1,2,4-butanetriol production of 3.42 g/L, thereby identifying a novel host for the conversion of corncob hydrolysate to 1,2,4-butanetriol.


Assuntos
Butanóis , Candida tropicalis , Escherichia coli , Escherichia coli/metabolismo , Candida tropicalis/genética , Candida tropicalis/metabolismo , Engenharia Metabólica , Ferro/metabolismo , Xilose/metabolismo
3.
Appl Microbiol Biotechnol ; 108(1): 447, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190181

RESUMO

Perillic acid has been studied as an anticancer and antimicrobial drug. Production of perillic acid has attracted considerable attention. Meanwhile, Candida tropicalis is an unconventional diploid yeast, most significantly characterized by its ability to metabolize alkanes or fatty acids for growth and proliferation. Therefore, perillic acid's precursor (L-limonene) in C. tropicalis was firstly synthesized by expressing a Mentha spicata L-limonene synthase gene, LS_Ms in this work. Expression of a gene which encoded for a truncated version of tLS_Ms increased the production of L-limonene with a 2.78-fold increase in the titer over C. tropicalis GJR-LS-01. Compartmentalized expression of the gene tLS_Ms inhibited the production of L-limonene in C. tropicalis compared to cytoplasmic expression. Cytoplasmic overexpression of seven precursor synthesis genes significantly enhanced the production of L-limonene in C. tropicalis compared to their compartmentalized expression (mitochondria or peroxisomes), which increased by 31.7-fold in C. tropicalis GJR-tLS-01. The L-limonene titer in C. tropicalis GJR-EW-tLS-04 overexpressing the mutant gene ERG20WW in the cytoplasm was significantly increased, 11.33-fold higher than the control. The titer of L-limonene for 60 g/L glucose was increased by 1.40-fold compared to the control. Finally, a Salvia miltiorrhiza cytochrome P450 enzyme gene CYP7176 and an Arabidopsis thaliana NADPH cytochrome P450 reductase gene CPR were heterologously expressed in C. tropicalis GJR-EW-tLS-04C for the synthesis of perillic acid, which reached a titer of 106.69 mg/L in a 5-L fermenter. This is the first report of de novo synthesis of perillic acid in engineered microorganisms. The results also showed that other chemicals may be efficiently produced in C. tropicalis. KEY POINTS: • Key genes cytoplasmic expression was conducive to L-limonene production in C. tropicalis. • Perillic acid was first synthesized de novo in engineered microorganisms. • The titer of perillic acid reached 106.69 mg/L in a 5-L fermenter.


Assuntos
Candida tropicalis , Limoneno , Engenharia Metabólica , Monoterpenos , Candida tropicalis/genética , Candida tropicalis/metabolismo , Engenharia Metabólica/métodos , Limoneno/metabolismo , Monoterpenos/metabolismo , Mentha spicata/genética , Mentha spicata/metabolismo , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Terpenos/metabolismo , Cicloexenos
4.
Biochem Biophys Res Commun ; 649: 101-109, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764112

RESUMO

Candida tropicalis is often reported as the second or third most common pathogen causing fungal infections. Antimicrobial peptides (AMPs) have attracted increasing attention for their broad-spectrum antimicrobial properties and low cytotoxicity. Our previous studies have shown that CGA-N9, a non-membrane-rupturing AMP, crosses the cell membrane to exert anticandidal activity. We speculate that there are some related transporters that assist in the transmembrane transport of CGA-N9. In this study, the relationship between CGA-N9 lethality kinetics and its real-time transmembrane amount in C. tropicalis cells was investigated. The results demonstrated that there was a positive correlation between its candicidal activity and transmembrane amount. A total of 12 oligopeptide transporter (OPT) coding sequences (CDSs) were cloned from C. tropicalis by using the conservative OPT gene sequences of Candida spp. to design primers and were named C. tropicalis OPTs (CtOPTs). The results of RT‒qPCR demonstrated that the expression levels of CtOPT1, CtOPT9 and CtOPT12 were correlated with the CGA-N9 transmembrane amount in a time-dependent manner. The results of molecular docking demonstrated that CtOPT1, CtOPT9 and CtOPT12 interact strongly with CGA-N9. Therefore, CtOPT1, CtOPT9 and CtOPT12 were predicted to assist in the transmembrane transport of the AMP CGA-N9.


Assuntos
Peptídeos Antimicrobianos , Candida tropicalis , Candida tropicalis/genética , Candida tropicalis/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Oligopeptídeos/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo
5.
PLoS Pathog ; 17(3): e1009138, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33788904

RESUMO

Candida tropicalis is a human pathogen that primarily infects the immunocompromised. Whereas the genome of one isolate, C. tropicalis MYA-3404, was originally sequenced in 2009, there have been no large-scale, multi-isolate studies of the genetic and phenotypic diversity of this species. Here, we used whole genome sequencing and phenotyping to characterize 77 isolates of C. tropicalis from clinical and environmental sources from a variety of locations. We show that most C. tropicalis isolates are diploids with approximately 2-6 heterozygous variants per kilobase. The genomes are relatively stable, with few aneuploidies. However, we identified one highly homozygous isolate and six isolates of C. tropicalis with much higher heterozygosity levels ranging from 36-49 heterozygous variants per kilobase. Our analyses show that the heterozygous isolates represent two different hybrid lineages, where the hybrids share one parent (A) with most other C. tropicalis isolates, but the second parent (B or C) differs by at least 4% at the genome level. Four of the sequenced isolates descend from an AB hybridization, and two from an AC hybridization. The hybrids are MTLa/α heterozygotes. Hybridization, or mating, between different parents is therefore common in the evolutionary history of C. tropicalis. The new hybrids were predominantly found in environmental niches, including from soil. Hybridization is therefore unlikely to be associated with virulence. In addition, we used genotype-phenotype correlation and CRISPR-Cas9 editing to identify a genome variant that results in the inability of one isolate to utilize certain branched-chain amino acids as a sole nitrogen source.


Assuntos
Candida tropicalis/genética , Candida/genética , Candidíase/genética , Genoma/genética , Virulência/genética , Antifúngicos/farmacologia , Candida tropicalis/classificação , Candida tropicalis/patogenicidade , Farmacorresistência Fúngica , Meio Ambiente , Metagenômica/métodos , Testes de Sensibilidade Microbiana
6.
Microb Cell Fact ; 22(1): 201, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803395

RESUMO

BACKGROUND: Xylitol has a wide range of applications in the pharmaceuticals, cosmetic, food and beverage industry. Microbial xylitol production reduces the risk of contamination and is considered as environment friendly and sustainable compared to the chemical method. In this study, random mutagenesis and genetic engineering approaches were employed to develop Candida tropicalis strains with reduced xylitol dehydrogenase (XDH) activity to eliminate co-substrate requirement for corn cob-based xylitol-ethanol biorefinery. RESULTS: The results suggest that when pure xylose (10% w/v) was fermented in bioreactor, the Ethyl methane sulfonate (EMS) mutated strain (C. tropicalis K2M) showed 9.2% and XYL2 heterozygous (XYL2/xyl2Δ::FRT) strain (C. tropicalis K21D) showed 16% improvement in xylitol production compared to parental strain (C. tropicalis K2). Furthermore, 1.5-fold improvement (88.62 g/L to 132 g/L) in xylitol production was achieved by C. tropicalis K21D after Response Surface Methodology (RSM) and one factor at a time (OFAT) applied for media component optimization. Finally, corncob hydrolysate was tested for xylitol production in biorefinery mode, which leads to the production of 32.6 g/L xylitol from hemicellulosic fraction, 32.0 g/L ethanol from cellulosic fraction and 13.0 g/L animal feed. CONCLUSIONS: This work, for the first time, illustrates the potential of C. tropicalis K21D as a microbial cell factory for efficient production of xylitol and ethanol via an integrated biorefinery framework by utilising lignocellulosic biomass with minimum waste generation.


Assuntos
Candida tropicalis , Xilitol , Candida tropicalis/genética , Zea mays , Fermentação , Etanol , Hidrólise , Xilose
7.
Med Mycol ; 61(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37777835

RESUMO

Candida tropicalis, a human conditionally pathogenic yeast, is distributed globally, especially in Asia-Pacific. The increasing morbidity and azole resistance of C. tropicalis have made clinical treatment difficult. The correlation between clonality and antifungal susceptibility of clinical C. tropicalis isolates has been reported. To study the putative correlation in C. tropicalis isolated from normally sterile body fluid specimens and explore the distinct clonal complex (CC) in Hefei, 256 clinical C. tropicalis isolates were collected from four teaching hospitals during 2016-2019, of which 30 were fluconazole-resistant (FR). Genetic profiles of 63 isolates, including 30 FR isolates and 33 fluconazole-susceptible (FS) isolates, were characterized using multilocus sequence typing (MLST). Phylogenetic analysis of the data was conducted using UPGMA (unweighted pair group method with arithmetic averages) and the minimum spanning tree algorithm. MLST clonal complexes (CCs) were analyzed using the goeBURST package. Among 35 differentiated diploid sequence types (DSTs), 16 DSTs and 1 genotype were identified as novel. A total of 35 DSTs were assigned to five major CCs based on goeBURST analysis. CC1 (containing DST376, 505, 507, 1221, 1222, 1223, 1226, and 1229) accounted for 86.7% (26/30) of the FR isolates. However, the genetic relationships among the FS isolates were relatively decentralized. The local FR CC1 belongs to a large fluconazole non-susceptible CC8 in global isolates, of which the putative founder genotype was DST225. The putative correlation between MLST types and antifungal susceptibility of clinical C. tropicalis isolates in Hefei showed that DSTs are closely related to FR clones.


A local prevalent FR CC1, accounted for 86.7% of the FR isolates in Hefei, China, which showed that fluconazole resistance is closely related to the genetic background, a finding of great value to local medical treatment and possible reasons for the increase in azole resistance of Candida tropicalis.


Assuntos
Líquidos Corporais , Fluconazol , Humanos , Fluconazol/farmacologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida tropicalis/genética , Tipagem de Sequências Multilocus/veterinária , Filogenia , Farmacorresistência Fúngica , China , Células Clonais , Testes de Sensibilidade Microbiana/veterinária
8.
Med Mycol ; 61(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37505455

RESUMO

Candida tropicalis is a notable species of the Candida genus representing an impressive epidemiology in tropical regions, especially in South America and Asia, where India already presents the species as the first in Candida epidemiology. Candida tropicalis has also shown a worrying antifungal resistance profile in recent years. It is essential to highlight that each pathogenic species of the Candida genus has a particular biology; however, Candida virulence factors are almost entirely based on studies with C. albicans. The intrinsic resistance of C. krusei to some azoles, the intrinsic osmotolerance of C. tropicalis, and the multidrug resistance of C. auris are just a few examples of how the biology of each Candida species is unique. Despite being a phylogenetically close species, C. tropicalis can support 15% NaCl, antagonistically metabolize and signal N-acetylglucosamine, encode 16 reported ALS genes, and other specificities discussed here compared to C. albicans. It is essential to clarify the details of the C. tropicalis infectious process, including identifying the participating secreted enzyme(s), the factors responsible for tissue damage, and the mechanisms underlying the morphogenesis and tolerance signaling pathways. In this review, we thoroughly assembled what is known about the main virulence factors of C. tropicalis, highlighting the missing pieces to stimulate further research with C. tropicalis and other non-Candida albicans species.


Assuntos
Antifúngicos , Candida tropicalis , Animais , Candida tropicalis/genética , Antifúngicos/uso terapêutico , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Candida , Candida albicans , Farmacorresistência Fúngica , Testes de Sensibilidade Microbiana/veterinária
9.
Appl Microbiol Biotechnol ; 107(21): 6553-6571, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37688595

RESUMO

The Big Grain1 (BG1) gene of rice (Oryza sativa L.) is reported to increase the yield of rice crops; however, its molecular mechanism is largely concealed. To explore its functional prospects, we have taken a structure-function-based approach. In silico analyses suggest OsBG1 is a DNA- and phytohormone-binding protein. Heterologous expression of OsBG1 with galactose-inducible promoter GAL1p in the rhizospheric yeast Candida tropicalis SY005 revealed 7.9- and 1.5-fold higher expression of the gene at 12 and 24 h, respectively, compared to the expression at 36 h post-galactose induction. Functional activity of the induced OsBG1 in engineered yeast increased cell density, specific growth rate, and biomass by 28.5%, 29.8%, and 14.1%, respectively, and decreased the generation time by 21.25%. Flow cytometry-based cell cycle analysis of OsBG1-expressing yeast cells exhibited an increase in the cells of the G2/M population by 15.8% after 12 h of post-galactose induction. The gene expression study of yeast transformants disclosed that OsBG1 regulates cell division by upregulating the expression of the endogenous gene cyclin B1 (CtCYB1) by 1.3- and 1.9-folds at 10 and 12 h, respectively, compared to the control, and is positively influenced by the phytohormone indole acetic acid (IAA). Further, the study revealed that OsBG1 significantly increases biofilm formation, stress tolerance, and IAA production in C. tropicalis SY005, implying its prospective role in enhancing plant growth-promoting traits in microbes. OsBG1-expressing rhizospheric yeast cells significantly improved the germination and growth parameters of the bio-inoculated rice seeds. Altogether, this study suggests OsBG1 can be employed to genetically improve suitable bio-inoculants for their plant growth-promoting traits to augment crop productivity. KEY POINTS: • In silico analyses suggested OsBG1 is a phytohormone-binding transcription factor. • OsBG1 enhanced growth in rhizospheric Candida tropicalis by upregulating CtCYB1. • OsBG1 improved plant growth-promoting traits of the rhizospheric yeast C. tropicalis.


Assuntos
Oryza , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Candida tropicalis/genética , Candida tropicalis/metabolismo , Biomassa , Galactose/metabolismo , Leveduras/metabolismo
10.
Biotechnol Appl Biochem ; 70(6): 2069-2087, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37694532

RESUMO

Candida tropicalis is a nonconventional yeast with medical and industrial significance, belonging to the CTG clade. Recent advancements in whole-genome sequencing and genetic analysis revealed its close relation to other unconventional yeasts of biotechnological importance. C. tropicalis is known for its immense potential in synthesizing various valuable biomolecules such as ethanol, xylitol, biosurfactants, lipids, enzymes, α,ω-dicarboxylic acids, single-cell proteins, and more, making it an attractive target for biotechnological applications. This review provides an update on C. tropicalis biological characteristics and its efficiency in producing a diverse range of biomolecules with industrial significance from various feedstocks. The information presented in this review contributes to a better understanding of C. tropicalis and highlights its potential for biotechnological applications and market viability.


Assuntos
Biotecnologia , Candida tropicalis , Candida tropicalis/genética , Candida tropicalis/metabolismo
11.
Can J Microbiol ; 69(6): 207-218, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36809069

RESUMO

Candida tropicalis is among the most important Candida species in terms of epidemiology, virulence and resistance. Considering the increase in C. tropicalis incidence and high rates of mortality associated with this species, knowledge of its adhesion and biofilm formation abilities is needed. These traits determine the persistence and survival of yeast on different indwelling medical devices and host sites. C. tropicalis is among the most adherent Candida species, and it has been described as a strong biofilm producer. Environmental factors, phenotypic switching and quorum sensing molecules can affect adhesion and biofilm growth. C. tropicalis can form sexual biofilms, which are promoted by mating pheromones. C. tropicalis biofilms are regulated by a wide and complex network of genes and signaling pathways that are currently poorly understood. Morphological studies showed improved biofilm architecture, which was related to the expression of several hypha-specific genes. Based on recent updates, research is still needed to increase our knowledge on the genetic network of adhesion and biofilm formation by C. tropicalis, as well as the protein diversity that mediates interactions with inert materials and biological surfaces. Here, we have reviewed the main aspects related to adhesion and biofilm formation in C. tropicalis and summarized current knowledge on the significance of these virulence factors in this opportunistic species.


Assuntos
Candida tropicalis , Redes Reguladoras de Genes , Candida tropicalis/genética , Biofilmes , Percepção de Quorum , Fenótipo
12.
Environ Res ; 212(Pt D): 113471, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35613633

RESUMO

Aerobic and anaerobic continuous stirred-tank reactor (CSTR), up-flow anaerobic sludge blanket (UASB) were set up and inoculated with newly isolated Candida tropicalis. Reactors were operated at high concentrations of chemical oxygen demand (COD) (8000 mg/L), the modified UASB expressed better COD removal rate simultaneously removal of nitrogen and phosphate than other two reactors. Notably, under both aerobic or anaerobic conditions, large amounts of organic acids and alcohol were generated. Transcriptomic analysis showed that carbon metabolism under anaerobic conditions shared the same pathway with aerobic conditions by regulating and inhibiting some functional genes. Experiments utilizing different carbon sources proved that our strain has excellent performances in utilizing organic materials, which were verified by transcriptomic analysis. Finally, the strain was applied to treat four types of sugar-containing wastewaters. Among them, our strain exerts the best removal capability of COD (90%), nitrogen (89%), and phosphate (82%) for brewery wastewater.


Assuntos
Nitrogênio , Purificação da Água , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Candida tropicalis/genética , Carbono , Fosfatos , Fósforo , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias
13.
Appl Microbiol Biotechnol ; 106(12): 4587-4606, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35708749

RESUMO

The transport of substrates across the cell membrane plays an essential role in nutrient assimilation by yeasts. The establishment of an efficient microbial cell factory, based on the maximum use of available carbon sources, can generate new technologies that allow the full use of lignocellulosic constituents. These technologies are of interest because they could promote the formation of added-value products with economic feasibility. In silico analyses were performed to investigate gene sequences capable of encoding xylose transporter proteins in the Candida tropicalis genome. The current study identified 11 putative transport proteins that have not yet been functionally characterized. A phylogenetic tree highlighted the potential C. tropicalis xylose-transporter proteins CtXUT1, CtXUT4, CtSTL1, CtSTL2, and CtGXT2, which were homologous to previously characterized and reported xylose transporters. Their expression was quantified through real-time qPCR at defined times, determined through a kinetic analysis of the microbial growth curve in the absence/presence of glucose supplemented with xylose as the main carbon source. The results indicated different mRNA expression levels for each gene. CtXUT1 mRNA expression was only found in the absence of glucose in the medium. Maximum CtXUT1 expression was observed in intervals of the highest xylose consumption (21 to 36 h) that corresponded to consumption rates of 1.02 and 0.82 g/L/h in the formulated media, with xylose as the only carbon source and with glucose addition. These observations indicate that CtXUT1 is an important xylose transporter in C. tropicalis. KEY POINTS: • Putative xylose transporter proteins were identified in Candida tropicalis; • The glucose concentration in the cultivation medium plays a key role in xylose transporter regulation; • The transporter gene CtXUT1 has an important role in xylose consumption by Candida tropicalis.


Assuntos
Candida tropicalis , Xilose , Candida tropicalis/genética , Candida tropicalis/metabolismo , Carbono/metabolismo , Proteínas de Transporte/genética , Biologia Computacional , Fermentação , Expressão Gênica , Glucose/metabolismo , Cinética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Pentoses/metabolismo , Filogenia , RNA Mensageiro/metabolismo , Xilitol , Xilose/metabolismo
14.
J Infect Chemother ; 28(5): 643-650, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35115240

RESUMO

BACKGROUND: Although oxygen concentrations inside of the human body vary depending on organs or tissues, few reports describe the relationships between biofilm formation of Candida species and oxygen concentrations. In this study, we investigated the biofilm-forming capabilities of Candida species under various oxygen conditions. METHODS: We evaluated the adhesion and biofilm formation of Candida albicans and C. tropicalis under aerobic, microaerobic (oxygen concentration 5%), or anaerobic conditions. We also examined how oxygen concentration affects adhesion/maturation by changing adhesion/maturation phase conditions. We used crystal violet assay to estimate the approximate biofilm size, performed microscopic observation of biofilm morphology, and evaluated adhesion-associated gene expression. RESULTS: The adhered amount was relatively small except for a clinical strain of C. tropicalis. Our biofilm-formation analysis showed that C. albicans formed a higher-size biofilm under aerobic conditions, while C. tropicalis favored microaerobic conditions to form mature biofilms. Our microscopic observations were consistent with these biofilm-formation analysis results. In particular, C. tropicalis exhibited more hyphal formation under microaerobic conditions. By changing the adhesion/maturation phase conditions, we represented that C. albicans had favorable biofilm-formation capability under aerobic conditions, while C. tropicalis showed enhanced biofilm formation under microaerobic adhesion conditions. In good agreement with these results, the C. tropicalis adhesion-associated gene expression tended to be higher under microaerobic or anaerobic conditions. CONCLUSIONS: C. albicans favored aerobic conditions to form biofilms, whereas C. tropicalis showed higher biofilm-formation ability and promoted hyphal growth under microaerobic conditions. These results indicate that favorable oxygen conditions significantly differ for each Candida species.


Assuntos
Candida albicans , Candida , Biofilmes , Candida/genética , Candida albicans/genética , Candida tropicalis/genética , Humanos , Oxigênio
15.
Mycoses ; 65(11): 989-1000, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35713604

RESUMO

BACKGROUND: Candida tropicalis is a human pathogenic yeast frequently isolated in Latin America and Asian-Pacific regions, although recent studies showed that it is also becoming increasingly widespread throughout several African and south-European countries. Nevertheless, relatively little is known about its global patterns of genetic variation as most of existing multilocus sequence typing (MLST) data come from Asia and there are no genotyped African isolates. OBJECTIVES: We report detailed genotyping data from a large set of C. tropicalis isolates recovered from different clinical sources in Italy, Egypt and Cameroon in order to expand the allele/genotype library of MLST database (https://pubmlst.org/ctropicalis), and to explore the genetic diversity in this species. METHODS: A total of 103 C. tropicalis isolates were genotyped using the MLST scheme developed for this species. All isolates were also tested for in vitro susceptibility to various antifungals to assess whether certain genotypes were associated with drug-resistance. RESULTS AND CONCLUSIONS: A total of 104 different alleles were detected across the MLST-loci investigated. The allelic diversity found at these loci resulted in 51 unique MLST genotypes of which 36 (70.6%) were novel. Global optimal eBURST analysis identified 18 clonal complexes (CCs) and confirm the existence of a specific Italian-cluster (CC36). Three CCs were also statistically associated with fluconazole resistance, which was elevated in Cameroon and Egypt. Our data show high genetic diversity in our isolates suggesting that the global population structure of C. tropicalis is still poorly understood. Moreover, its clinical impact in Italy, Egypt and Cameroon appears to be relevant and should be carefully considered.


Assuntos
Candida tropicalis , Candidíase , Antifúngicos/farmacologia , Camarões , Candida tropicalis/genética , Candidíase/epidemiologia , Farmacorresistência Fúngica , Fluconazol , Variação Genética , Genótipo , Humanos , Tipagem de Sequências Multilocus/métodos
16.
Nucleic Acids Res ; 48(D1): D642-D649, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31586406

RESUMO

The YEASTRACT+ information system (http://YEASTRACT-PLUS.org/) is a wide-scope tool for the analysis and prediction of transcription regulatory associations at the gene and genomic levels in yeasts of biotechnological or human health relevance. YEASTRACT+ is a new portal that integrates the previously existing YEASTRACT (http://www.yeastract.com/) and PathoYeastract (http://pathoyeastract.org/) databases and introduces the NCYeastract (Non-Conventional Yeastract) database (http://ncyeastract.org/), focused on the so-called non-conventional yeasts. The information in the YEASTRACT database, focused on Saccharomyces cerevisiae, was updated. PathoYeastract was extended to include two additional pathogenic yeast species: Candida parapsilosis and Candida tropicalis. Furthermore, the NCYeastract database was created, including five biotechnologically relevant yeast species: Zygosaccharomyces baillii, Kluyveromyces lactis, Kluyveromyces marxianus, Yarrowia lipolytica and Komagataella phaffii. The YEASTRACT+ portal gathers 289 706 unique documented regulatory associations between transcription factors (TF) and target genes and 420 DNA binding sites, considering 247 TFs from 10 yeast species. YEASTRACT+ continues to make available tools for the prediction of the TFs involved in the regulation of gene/genomic expression. In this release, these tools were upgraded to enable predictions based on orthologous regulatory associations described for other yeast species, including two new tools for cross-species transcription regulation comparison, based on multi-species promoter and TF regulatory network analyses.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Genômica , Leveduras/genética , Sítios de Ligação , Candida tropicalis/genética , Redes Reguladoras de Genes , Kluyveromyces/genética , Filogenia , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Software , Especificidade da Espécie , Fatores de Transcrição/genética , Transcrição Gênica , Yarrowia/genética , Zygosaccharomyces/genética
17.
Mycopathologia ; 187(5-6): 509-516, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36057915

RESUMO

BACKGROUND: Phenotypic switching generates fungal colonies with altered morphology and allows pathogens to adapt to changing environments. OBJECTIVE: This study investigated the structure and genetic factors of switched morphotypes colonies in Candida tropicalis. METHODS: Morphotypes of C. tropicalis comprised the clinical strain 49.07 that exhibited smooth colony phenotype and switched (crepe and rough) morphotypes that showed colonies with marked structural variations, including wrinkled surface, depressions areas, and irregular edges (structured morphology). The morphotypes were analyzed for the presence and distribution of the extracellular matrix (ECM) at the ultrastructural level-SEM. The composition of the ECM and the percentage of hyphae in colonies were evaluated. The expression of EFG1 (Enhanced filamentous growth protein 1), WOR1 (White-opaque regulator 1), and BCR1 (Biofilm and cell wall regulator 1) in the morphotypes was measured by RT-qPCR. RESULTS: Colonies of the switched variants exhibited distinct arrangements of ECM compared to the smooth phenotype (clinical strain). In addition, rough variant colonies showed higher amounts of total carbohydrates and proteins in ECM (p < 0.05). Switched (crepe and rough) colonies exhibited a higher percentage of hyphae throughout their development (p < 0.05). The mRNA expression levels of EFG1, WOR1, and BCR1 in the rough morphotype were significantly higher than they were in the smooth morphotype. In addition, there was a positive correlation between the expression of these genes and filamentation (hyphae formation) of the rough morphotype (r2 > 0.9472, p < 0.05). CONCLUSION: Structural variations in switched morphotypes colonies of C. tropicalis seem to be associated with increased hyphae growth and the amount and distribution of ECM. Switched colonies have distinct expressions of the EFG1, WOR1, and BCR1 master regulators genes.


Assuntos
Candida tropicalis , Hifas , Candida tropicalis/genética , Fenótipo , Hifas/genética , Matriz Extracelular , Biofilmes
18.
Curr Genet ; 67(2): 249-254, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33388851

RESUMO

Morphological transitions in Candida species are key factors in facilitating invasion and adapting to environmental changes. N-acetylglucosamine (GlcNAc) is a monosaccharide signalling molecule that can regulate morphological transitions in Candida albicans and Candida tropicalis. Interestingly, although the uptake and metabolic pathways of GlcNAc and GlcNAc-mediated white-to-opaque cell switching are similar between the two Candida species, GlcNAc induces hyphal development in C. albicans, whereas it suppresses hyphal development in C. tropicalis. These findings indicate that the characteristics of C. albicans and C. tropicalis in response to GlcNAc are remarkably different. Here, we compare the conserved and divergent GlcNAc-mediated signalling pathways and catabolism between the two Candida species. Deletion of NGT1, a GlcNAc transportation gene, inhibited hyphal formation in C. albicans but promoted hyphal development in C. tropicalis. To further understand these opposite effects on filamentous growth in response to GlcNAc in the two Candida species, the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) signalling pathways in both C. albicans and C. tropicalis were compared. Interestingly, GlcNAc activated the cAMP/PKA signalling pathway of the two Candida species, suggesting that the hyphal development-regulated circuit is remarkably diverse between the two species. Indeed, the Ndt80-like gene REP1, which is critical for regulating GlcNAc catabolism, exhibits distinct roles in the hyphal development of C. albicans and C. tropicalis. These data suggest possible reasons for the divergent hyphal growth response in C. albicans and C. tropicalis upon GlcNAc induction.


Assuntos
Acetilglucosamina/genética , Proteínas Fúngicas/genética , Hifas/genética , N-Acetilglucosaminiltransferases/genética , Acetilglucosamina/metabolismo , Transporte Biológico/genética , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Candida tropicalis/genética , Candida tropicalis/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica/genética , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Transdução de Sinais/genética
19.
Microb Pathog ; 155: 104889, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33878395

RESUMO

BACKGROUND: Biofilm formation by Candida species is an influential virulence factor in candidemia pathogenesis. We investigated the relationship between biofilm formation of Candida tropicalis isolates with the clinical characteristics and mortality outcomes in patients with candidemia. MATERIALS AND METHODS: Thirty-nine C. tropicalis isolates were recovered from patients with candidemia admitted to two university hospitals in Tehran, Iran. Biofilm mass and metabolic activity of C. tropicalis biofilms were assessed in vitro with two colorimetric methods. The sessile minimum inhibitory concentrations (SMICs) were evaluated in vitro by treating preformed biofilms with diluted concentrations of azoles according to CLSI-M27 A3/S4 protocol, followed by metabolic activity quantification. The expressions of ERG11, UPC2, MDR1, and CDR1 genes were also evaluated. RESULTS: All C. tropicalis isolates produced biofilm. Respectively, higher <7-day and ≥7-day mortality rates were found among cases with high metabolic activity (46.7% vs. 13%, P = 0.03) and high biofilm mass (31.8% vs. 0, P = 0.029). Sessile cells had high resistance to fluconazole, voriconazole, and itraconazole. The azole minimum inhibitory concentrations (MICs) of C. tropicalis sessile were significantly greater than the planktonic minimum inhibitory concentrations (PMICs). In fluconazole-treated biofilms, the expression of ERG11 and UPC2 genes was increased. CONCLUSION: Our findings highlight the importance of C. tropicalis biofilm formation as an important factor in candidemia pathogenesis and the clinical outcome of patients with candidemia.


Assuntos
Candida tropicalis , Candidemia , Antifúngicos/farmacologia , Biofilmes , Candida tropicalis/genética , Farmacorresistência Fúngica , Fluconazol/farmacologia , Humanos , Irã (Geográfico) , Testes de Sensibilidade Microbiana
20.
Microb Cell Fact ; 20(1): 167, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446015

RESUMO

BACKGROUND: Biodiesel is an eco-friendly and renewable energy source and a valuable substitute for petro-diesel. Sago processing wastewater (SWW), a by-product of the cassava processing industry, has starch content ranging from 4 to 7 g L-1 and serves as an outstanding source for producing microbial lipids by the oleaginous microorganisms. In the present study, Candida tropicalis ASY2 was employed to optimize single-cell oil (SCO) production using SWW and subsequent transesterification by response surface methodology. Variables such as starch content, yeast extract, airflow rate, pH, and temperature significantly influenced lipid production in a preliminary study. The lipid production was scaled up to 5 L capacity airlift bioreactor and its optimization was done by response surface methodology. The dried yeast biomass obtained under optimized conditions from 5 L bioreactor was subjected to a direct transesterification process. Biomass: methanol ratio, catalyst concentration, and time were the variables used to attain higher FAME yield in the transesterification optimization process. RESULTS: Under optimized conditions, the highest lipid yield of 2.68 g L-1 was obtained with 15.33 g L-1 of starch content, 0.5 g L-1 of yeast extract, and 5.992 L min-1 of airflow rate in a bioreactor. The optimized direct transesterification process yielded a higher FAME yield of 86.56% at 1:20 biomass: methanol ratio, 0.4 M catalyst concentration, and a time of 6.85 h. CONCLUSIONS: Thus, this optimized process rendered the microbial lipids derived from C. tropicalis ASY2 as potentially alternative oil substitutes for sustainable biodiesel production to meet the rising energy demands.


Assuntos
Biocombustíveis/análise , Candida tropicalis/metabolismo , Lipídeos/biossíntese , Manihot/metabolismo , Águas Residuárias/microbiologia , Biocatálise , Biomassa , Reatores Biológicos , Candida tropicalis/genética , Esterificação , Ácidos Graxos/biossíntese , Concentração de Íons de Hidrogênio , Metanol , Temperatura , Águas Residuárias/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA