Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 630
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(8): e18301, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652212

RESUMO

X-linked nephrogenic diabetes insipidus (X-NDI) is a rare congenital disease caused by inactivating mutations of the vasopressin type-2 receptor (AVPR2), characterized by impaired renal concentrating ability, dramatic polyuria, polydipsia and risk of dehydration. The disease, which still lacks a cure, could benefit from the pharmacologic stimulation of other GPCRs, activating the cAMP-intracellular pathway in the kidney cells expressing the AVPR2. On the basis of our previous studies, we here hypothesized that the ß3-adrenergic receptor could be such an ideal candidate. We evaluated the effect of continuous 24 h stimulation of the ß3-AR with the agonist BRL37344 and assessed the effects on urine output, urine osmolarity, water intake and the abundance and activation of the key renal water and electrolyte transporters, in the mouse model of X-NDI. Here we demonstrate that the ß3-AR agonism exhibits a potent antidiuretic effect. The strong improvement in symptoms of X-NDI produced by a single i.p. injection of BRL37344 (1 mg/kg) was limited to 3 h but repeated administrations in the 24 h, mimicking the effect of a slow-release preparation, promoted a sustained antidiuretic effect, reducing the 24 h urine output by 27%, increasing urine osmolarity by 25% and reducing the water intake by 20%. At the molecular level, we show that BRL37344 acted by increasing the phosphorylation of NKCC2, NCC and AQP2 in the renal cell membrane, thereby increasing electrolytes and water reabsorption in the kidney tubule of X-NDI mice. Taken together, these data suggest that human ß3-AR agonists might represent an effective possible treatment strategy for X-NDI.


Assuntos
Agonistas de Receptores Adrenérgicos beta 3 , Masculino , Animais , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Agonistas de Receptores Adrenérgicos beta 3/uso terapêutico , Antidiuréticos/farmacologia , Antidiuréticos/uso terapêutico , Capacidade de Concentração Renal/efeitos dos fármacos , Polidipsia/tratamento farmacológico , Polidipsia/etiologia
2.
Am J Physiol Renal Physiol ; 326(6): F1091-F1100, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38695074

RESUMO

We have previously shown that kidney collecting ducts make vasopressin. However, the physiological role of collecting duct-derived vasopressin is uncertain. We hypothesized that collecting duct-derived vasopressin is required for the appropriate concentration of urine. We developed a vasopressin conditional knockout (KO) mouse model wherein Cre recombinase expression induces deletion of arginine vasopressin (Avp) exon 1 in the distal nephron. We then used age-matched 8- to 12-wk-old Avp fl/fl;Ksp-Cre(-) [wild type (WT)] and Avp fl/fl;Ksp-Cre(+) mice for all experiments. We collected urine, serum, and kidney lysates at baseline. We then challenged both WT and knockout (KO) mice with 24-h water restriction, water loading, and administration of the vasopressin type 2 receptor agonist desmopressin (1 µg/kg ip) followed by the vasopressin type 2 receptor antagonist OPC-31260 (10 mg/kg ip). We performed immunofluorescence and immunoblot analysis at baseline and confirmed vasopressin KO in the collecting duct. We found that urinary osmolality (UOsm), plasma Na+, K+, Cl-, blood urea nitrogen, and copeptin were similar in WT vs. KO mice at baseline. Immunoblots of the vasopressin-regulated proteins Na+-K+-2Cl- cotransporter, NaCl cotransporter, and water channel aquaporin-2 showed no difference in expression or phosphorylation at baseline. Following 24-h water restriction, WT and KO mice had no differences in UOsm, plasma Na+, K+, Cl-, blood urea nitrogen, or copeptin. In addition, there were no differences in the rate of urinary concentration or dilution as in WT and KO mice UOsm was nearly identical after desmopressin and OPC-31260 administration. We conclude that collecting duct-derived vasopressin is not essential to appropriately concentrate or dilute urine.NEW & NOTEWORTHY Hypothalamic vasopressin is required for appropriate urinary concentration. However, whether collecting duct-derived vasopressin is involved remains unknown. We developed a novel transgenic mouse model to induce tissue-specific deletion of vasopressin and showed that collecting duct-derived vasopressin is not required to concentrate or dilute urine.


Assuntos
Desamino Arginina Vasopressina , Túbulos Renais Coletores , Camundongos Knockout , Animais , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/efeitos dos fármacos , Desamino Arginina Vasopressina/farmacologia , Capacidade de Concentração Renal/efeitos dos fármacos , Arginina Vasopressina/metabolismo , Masculino , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Camundongos , Aquaporina 2/metabolismo , Aquaporina 2/genética , Antidiuréticos/farmacologia , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Camundongos Endogâmicos C57BL , Privação de Água , Concentração Osmolar , Sódio/urina , Sódio/metabolismo , Vasopressinas/metabolismo , Benzazepinas
3.
Am J Physiol Renal Physiol ; 317(3): F547-F559, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31241990

RESUMO

The collecting duct (CD) concentrates the urine, thereby maintaining body water volume and plasma osmolality within a normal range. The endocrine hormone arginine vasopressin acts in the CD to increase water permeability via the vasopressin 2 receptor (V2R)-aquaporin (AQP) axis. Recent studies have suggested that autocrine factors may also contribute to the regulation of CD water permeability. Nitric oxide is produced predominantly by nitric oxide synthase 1 (NOS1) in the CD and acts as a diuretic during salt loading. The present study sought to determine whether CD NOS1 regulates diuresis during changes in hydration status. Male and female control and CD NOS1 knockout (CDNOS1KO) mice were hydrated (5% sucrose water), water deprived, or acutely challenged with the V2R agonist desmopressin. In male mice, water deprivation resulted in decreased urine flow and increased plasma osmolality, copeptin concentration, and kidney AQP2 abundance independent of CD NOS1. In female control mice, water deprivation reduced urine flow, increased plasma osmolality and copeptin, but did not significantly change total AQP2; however, there was increased basolateral AQP3 localization. Surprisingly, female CDNOS1KO mice while on the sucrose water presented with symptoms of dehydration. Fibroblast growth factor 21, an endocrine regulator of sweetness preference, was significantly higher in female CDNOS1KO mice, suggesting that this was reducing their drive to drink the sucrose water. With acute desmopressin challenge, female CDNOS1KO mice failed to appropriately concentrate their urine, resulting in higher plasma osmolality than controls. In conclusion, CD NOS1 plays only a minor role in urine-concentrating mechanisms.


Assuntos
Desidratação/enzimologia , Diurese , Capacidade de Concentração Renal , Túbulos Renais Coletores/enzimologia , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico/metabolismo , Animais , Antidiuréticos/farmacologia , Aquaporina 2/genética , Aquaporina 2/metabolismo , Aquaporina 3/genética , Aquaporina 3/metabolismo , Desamino Arginina Vasopressina/farmacologia , Desidratação/fisiopatologia , Modelos Animais de Doenças , Diurese/efeitos dos fármacos , Feminino , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Capacidade de Concentração Renal/efeitos dos fármacos , Túbulos Renais Coletores/efeitos dos fármacos , Masculino , Camundongos Knockout , Óxido Nítrico Sintase Tipo I/deficiência , Óxido Nítrico Sintase Tipo I/genética , Estado de Hidratação do Organismo , Concentração Osmolar , Fatores Sexuais , Transdução de Sinais , Urodinâmica , Privação de Água
4.
Am J Physiol Renal Physiol ; 314(2): F306-F316, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29046300

RESUMO

Aquaporin-2 (AQP2) is a water channel protein expressed in principal cells (PCs) of the kidney collecting ducts (CDs) and plays a critical role in mediating water reabsorption and urine concentration. AQP2 undergoes both regulated trafficking mediated by vasopressin (VP) and constitutive recycling, which is independent of VP. For both pathways, actin cytoskeletal dynamics is a key determinant of AQP2 trafficking. We report here that manganese chloride (MnCl2) is a novel and potent regulator of AQP2 trafficking in cultured cells and in the kidney. MnCl2 treatment promoted internalization and intracellular accumulation of AQP2. The effect of MnCl2 on the intracellular accumulation of AQP2 was associated with activation of RhoA and actin polymerization without modification of AQP2 phosphorylation. Although the level of total and phosphorylated AQP2 did not change, MnCl2 treatment impeded VP-induced phosphorylation of AQP2 at its serine-256, -264, and -269 residues and dephosphorylation at serine 261. In addition, MnCl2 significantly promoted F-actin polymerization along with downregulation of RhoA activity and prevented VP-induced membrane accumulation of AQP2. Finally, MnCl2 treatment in mice resulted in significant polyuria and reduced urinary concentration, likely due to intracellular relocation of AQP2 in the PCs of kidney CDs. More importantly, the reduced urinary concentration caused by MnCl2 treatment in animals was not corrected by VP. In summary, our study identified a novel effect of MnCl2 on AQP2 trafficking through modifying RhoA activity and actin polymerization and uncovered its potent impact on water diuresis in vivo.


Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Actinas/metabolismo , Aquaporina 2/metabolismo , Cloretos/toxicidade , Capacidade de Concentração Renal/efeitos dos fármacos , Túbulos Renais Coletores/efeitos dos fármacos , Poliúria/induzido quimicamente , Citoesqueleto de Actina/metabolismo , Animais , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/fisiopatologia , Células LLC-PK1 , Masculino , Compostos de Manganês , Camundongos Endogâmicos C57BL , Fosforilação , Polimerização , Poliúria/metabolismo , Poliúria/fisiopatologia , Transporte Proteico , Transdução de Sinais/efeitos dos fármacos , Suínos , Vasopressinas/farmacologia , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP
5.
Am J Physiol Renal Physiol ; 314(5): F1020-F1025, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357422

RESUMO

Lithium is widely used in treatment of bipolar affective disorders but often causes nephrogenic diabetes insipidus (NDI), a disorder characterized by severe urinary-concentrating defects. Lithium-induced NDI is caused by lithium uptake by collecting duct principal cells and altered expression of aquaporin-2 (AQP2), which are essential for water reabsorption of tubular fluid in the collecting duct. Sex hormones have previously been shown to affect the regulation of AQP2, so we tested whether tamoxifen (TAM), a selective estrogen receptor modulator, would attenuate lithium-induced alterations on renal water homeostasis. Rats were treated for 14 days with lithium, and TAM treatment was initiated 1 wk after onset of lithium administration. Lithium treatment resulted in severe polyuria and reduced AQP2 expression, which were ameliorated by TAM. Consistent with this, TAM attenuated downregulation of AQP2 and increased phosphorylation of the cAMP-responsive element-binding protein, which induced AQP2 expression in freshly isolated inner-medullary collecting duct suspension prepared from lithium-treated rats. In conclusion, TAM attenuated polyuria dose dependently and impaired urine concentration and downregulation of AQP2 protein expression in rats with lithium-induced NDI. These findings suggest that TAM is likely to be a novel therapeutic option for lithium-induced NDI.


Assuntos
Diabetes Insípido Nefrogênico/prevenção & controle , Hipoglicemiantes/farmacologia , Capacidade de Concentração Renal/efeitos dos fármacos , Túbulos Renais Coletores/efeitos dos fármacos , Cloreto de Lítio , Tamoxifeno/farmacologia , Animais , Aquaporina 2/genética , Aquaporina 2/metabolismo , Proteína de Ligação a CREB/metabolismo , Diabetes Insípido Nefrogênico/induzido quimicamente , Diabetes Insípido Nefrogênico/metabolismo , Diabetes Insípido Nefrogênico/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Receptor alfa de Estrogênio/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/efeitos dos fármacos , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/fisiopatologia , Masculino , Fosforilação , Poliúria/induzido quimicamente , Poliúria/fisiopatologia , Poliúria/prevenção & controle , Ratos Sprague-Dawley , Fatores de Tempo
6.
Eur J Clin Pharmacol ; 74(3): 297-305, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29198064

RESUMO

PURPOSE: For a new formulation of a drug, only pharmacokinetic bioequivalence with the original formulation has to be demonstrated in healthy, young adults. However, "children are not small adults," and to guarantee a safe and effective treatment, age-adapted drug development is required. Desmopressin, a vasopressin analogue prescribed for nocturnal enuresis in children, was studied as an example formulation first developed in adults and then extrapolated to a pediatric indication. METHODS: Population pharmacokinetic and pharmacodynamic modeling was used to analyze previously published desmopressin data of 18 children suffering from nocturnal enuresis. The main objective was the comparison of the therapeutic equivalence of two desmopressin formulations: tablet and lyophilisate. The measurements for pharmacokinetics and pharmacodynamics were respectively plasma desmopressin concentration and urine osmolality and diuresis. RESULTS: The half maximal inhibitory concentration for inhibition of urine production was 0.7 pg/mL lower for the lyophilisate than for the tablet. The effect of formulation on the half maximal inhibitory concentration seems to suggest that the 120-µg lyophilisate has a more pronounced effect on the urine volume and osmolality than the 200-µg tablet, even when the same exposure is achieved. CONCLUSIONS: A new indirect response model for desmopressin was constructed and validated, using a previously built pharmacokinetic model and additional pharmacodynamic data. In order to draw solid conclusions regarding the efficacy and safety of desmopressin in children, pharmacokinetics and pharmacodynamics data should be analyzed together. This study adds proof to potential differences in pediatric and adult pharmacokinetic and pharmacodynamic properties of desmopressin and exemplifies the need for pediatric clinical trials, not only for every new drug but also for every new formulation.


Assuntos
Antidiuréticos/administração & dosagem , Desamino Arginina Vasopressina/administração & dosagem , Composição de Medicamentos , Modelos Biológicos , Enurese Noturna/tratamento farmacológico , Administração Sublingual , Adolescente , Fatores Etários , Antidiuréticos/sangue , Antidiuréticos/farmacocinética , Antidiuréticos/uso terapêutico , Criança , Estudos Cross-Over , Desamino Arginina Vasopressina/sangue , Desamino Arginina Vasopressina/farmacocinética , Desamino Arginina Vasopressina/uso terapêutico , Feminino , Liofilização , Humanos , Capacidade de Concentração Renal/efeitos dos fármacos , Masculino , Avaliação das Necessidades , Enurese Noturna/sangue , Enurese Noturna/urina , Concentração Osmolar , Projetos Piloto , Comprimidos , Urinálise
7.
Am J Physiol Renal Physiol ; 313(3): F669-F676, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28615247

RESUMO

Lithium is the mainstay treatment for patients with bipolar disorder, but it generally causes nephrogenic diabetes insipidus (NDI), a disorder in which the renal urine concentrating ability has become vasopressin insensitive. Li-NDI is caused by lithium uptake by collecting duct principal cells and downregulation of aquaporin-2 (AQP2) water channels, which are essential for water uptake from tubular urine. Recently, we found that the prophylactic administration of acetazolamide to mice effectively attenuated Li-NDI. To evaluate whether acetazolamide might benefit lithium-treated patients, we administered acetazolamide to mice with established Li-NDI and six patients with a lithium-induced urinary concentrating defect. In mice, acetazolamide partially reversed lithium-induced polyuria and increased urine osmolality, which, however, did not coincide with increased AQP2 abundances. In patients, acetazolamide led to the withdrawal of two patients from the study due to side effects. In the four remaining patients acetazolamide did not lead to clinically relevant changes in maximal urine osmolality. Urine output was also not affected, although none of these patients demonstrated overt lithium-induced polyuria. In three out of four patients, acetazolamide treatment increased serum creatinine levels, indicating a decreased glomerular filtration rate (GFR). Strikingly, these three patients also showed a decrease in systemic blood pressure. All together, our data reveal that acetazolamide does not improve the urinary concentrating defect caused by lithium, but it lowers the GFR, likely explaining the reduced urine output in our mice and in a recently reported patient with lithium-induced polyuria. The reduced GFR in patients prone to chronic kidney disease development, however, warrants against application of acetazolamide in Li-NDI patients without long-term (pre)clinical studies.


Assuntos
Acetazolamida/uso terapêutico , Diabetes Insípido Nefrogênico/tratamento farmacológico , Diuréticos/uso terapêutico , Capacidade de Concentração Renal/efeitos dos fármacos , Rim/efeitos dos fármacos , Cloreto de Lítio , Poliúria/tratamento farmacológico , Acetazolamida/efeitos adversos , Idoso , Animais , Aquaporina 2/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Diabetes Insípido Nefrogênico/induzido quimicamente , Diabetes Insípido Nefrogênico/fisiopatologia , Modelos Animais de Doenças , Diuréticos/efeitos adversos , Feminino , Taxa de Filtração Glomerular/efeitos dos fármacos , Humanos , Rim/metabolismo , Rim/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Países Baixos , Nova Zelândia , Concentração Osmolar , Projetos Piloto , Poliúria/induzido quimicamente , Poliúria/fisiopatologia , Estudos Prospectivos , Fatores de Tempo , Resultado do Tratamento
8.
Int J Urol ; 24(9): 698-702, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28636262

RESUMO

OBJECTIVES: To investigate renal concentrating ability after long-term fast-melting oral desmopressin lyophilisate treatment in children with monosymptomatic nocturnal enuresis. METHODS: The present retrospective study involved 58 children (43 boys, 15 girls; aged 6-12 years) with nocturnal enuresis receiving oral desmopressin lyophilisate. After treatment for 4 weeks with a complete response, patients were placed on a reduced dose of 120 µg on alternate days. Moring urine osmolality was measured using urine samples obtained after medication and non-medication dry nights. Patients who experienced ≥1 wet nights/month during alternate-day oral desmopressin lyophilisate treatment or within 6 months after its cessation were assigned to the relapse group, whereas those who experienced <1 wet night/month were assigned to the continued success group. RESULTS: The continued success and relapse groups included 41 and 17 patients, respectively. The mean duration of treatment was 18.5 and 18.3 months in the continued success group and relapse group, respectively. There was no significant difference in morning urine osmolality after medication nights between the continued success and relapse groups; however, morning urine osmolality after non-medication nights was significantly higher in the continued success group than in the relapse group (P < 0.0001). Similarly, nocturnal urine volume was significantly higher in the relapse group than in the continued success group (P = 0.046). CONCLUSIONS: These results suggest that patients receiving long-term oral desmopressin lyophilisate treatment develop increased nocturnal renal concentrating ability, which results in sustained dryness even after treatment cessation.


Assuntos
Antidiuréticos/uso terapêutico , Desamino Arginina Vasopressina/uso terapêutico , Capacidade de Concentração Renal/efeitos dos fármacos , Rim/fisiopatologia , Enurese Noturna/tratamento farmacológico , Administração Oral , Antidiuréticos/farmacologia , Criança , Desamino Arginina Vasopressina/farmacologia , Feminino , Humanos , Rim/efeitos dos fármacos , Capacidade de Concentração Renal/fisiologia , Masculino , Enurese Noturna/fisiopatologia , Concentração Osmolar , Recidiva , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento , Urina/química
9.
J Am Soc Nephrol ; 26(12): 2978-87, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25855780

RESUMO

P2Y12 receptor (P2Y12-R) signaling is mediated through Gi, ultimately reducing cellular cAMP levels. Because cAMP is a central modulator of arginine vasopressin (AVP)-induced water transport in the renal collecting duct (CD), we hypothesized that if expressed in the CD, P2Y12-R may play a role in renal handling of water in health and in nephrogenic diabetes insipidus. We found P2Y12-R mRNA expression in rat kidney, and immunolocalized its protein and aquaporin-2 (AQP2) in CD principal cells. Administration of clopidogrel bisulfate, an irreversible inhibitor of P2Y12-R, significantly increased urine concentration and AQP2 protein in the kidneys of Sprague-Dawley rats. Notably, clopidogrel did not alter urine concentration in Brattleboro rats that lack AVP. Clopidogrel administration also significantly ameliorated lithium-induced polyuria, improved urine concentrating ability and AQP2 protein abundance, and reversed the lithium-induced increase in free-water excretion, without decreasing blood or kidney tissue lithium levels. Clopidogrel administration also augmented the lithium-induced increase in urinary AVP excretion and suppressed the lithium-induced increase in urinary nitrates/nitrites (nitric oxide production) and 8-isoprostane (oxidative stress). Furthermore, selective blockade of P2Y12-R by the reversible antagonist PSB-0739 in primary cultures of rat inner medullary CD cells potentiated the expression of AQP2 and AQP3 mRNA, and cAMP production induced by dDAVP (desmopressin). In conclusion, pharmacologic blockade of renal P2Y12-R increases urinary concentrating ability by augmenting the effect of AVP on the kidney and ameliorates lithium-induced NDI by potentiating the action of AVP on the CD. This strategy may offer a novel and effective therapy for lithium-induced NDI.


Assuntos
Arginina Vasopressina/metabolismo , Diabetes Insípido Nefrogênico/metabolismo , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/fisiopatologia , Receptores Purinérgicos P2Y12/metabolismo , Animais , Aquaporina 2/análise , Aquaporina 2/efeitos dos fármacos , Aquaporina 2/urina , Arginina Vasopressina/efeitos dos fármacos , Arginina Vasopressina/urina , Clopidogrel , Desamino Arginina Vasopressina/metabolismo , Diabetes Insípido Nefrogênico/induzido quimicamente , Diabetes Insípido Nefrogênico/fisiopatologia , Capacidade de Concentração Renal/efeitos dos fármacos , Medula Renal/química , Túbulos Renais Coletores/química , Lítio , Masculino , Antagonistas do Receptor Purinérgico P2Y/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Brattleboro , Ratos Sprague-Dawley , Receptores Purinérgicos P2Y12/análise , Receptores Purinérgicos P2Y12/genética , Ticlopidina/análogos & derivados , Ticlopidina/farmacologia , Água/metabolismo
10.
FASEB J ; 28(9): 3878-90, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24843071

RESUMO

Urea transport (UT) proteins of the UT-A class are expressed in epithelial cells in kidney tubules, where they are required for the formation of a concentrated urine by countercurrent multiplication. Here, using a recently developed high-throughput assay to identify UT-A inhibitors, a screen of 50,000 synthetic small molecules identified UT-A inhibitors of aryl-thiazole, γ-sultambenzosulfonamide, aminocarbonitrile butene, and 4-isoxazolamide chemical classes. Structure-activity analysis identified compounds that inhibited UT-A selectively by a noncompetitive mechanism with IC50 down to ∼1 µM. Molecular modeling identified putative inhibitor binding sites on rat UT-A. To test compound efficacy in rats, formulations and administration procedures were established to give therapeutic inhibitor concentrations in blood and urine. We found that intravenous administration of an indole thiazole or a γ-sultambenzosulfonamide at 20 mg/kg increased urine output by 3-5-fold and reduced urine osmolality by ∼2-fold compared to vehicle control rats, even under conditions of maximum antidiuresis produced by 1-deamino-8-D-arginine vasopressin (DDAVP). The diuresis was reversible and showed urea > salt excretion. The results provide proof of concept for the diuretic action of UT-A-selective inhibitors. UT-A inhibitors are first in their class salt-sparing diuretics with potential clinical indications in volume-overload edemas and high-vasopressin-associated hyponatremias.


Assuntos
Transporte Biológico/efeitos dos fármacos , Diurese/efeitos dos fármacos , Capacidade de Concentração Renal/efeitos dos fármacos , Proteínas de Membrana Transportadoras/química , Bibliotecas de Moléculas Pequenas/farmacologia , Urina/química , Animais , Cromatografia Líquida , Diurese/fisiologia , Cães , Ensaios de Triagem em Larga Escala , Células Madin Darby de Rim Canino , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Concentração Osmolar , Ratos , Ratos Wistar , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacocinética , Cloreto de Sódio , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade , Distribuição Tecidual , Sistema Urinário/efeitos dos fármacos , Sistema Urinário/metabolismo , Transportadores de Ureia
11.
Am J Physiol Cell Physiol ; 307(7): C597-605, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24944200

RESUMO

A reduction or loss of plasma membrane aquaporin 2 (AQP2) in kidney principal cells due to defective vasopressin (VP) signaling through the VP receptor causes excessive urine production, i.e., diabetes insipidus. The amount of AQP2 on the plasma membrane is regulated by a balance of exocytosis and endocytosis and is the rate limiting step for water reabsorption in the collecting duct. We describe here a systematic approach using high-throughput screening (HTS) followed by in vitro and in vivo assays to discover novel compounds that enhance vasopressin-independent AQP2 membrane expression. We performed initial chemical library screening with a high-throughput exocytosis fluorescence assay using LLC-PK1 cells expressing soluble secreted yellow fluorescent protein and AQP2. Thirty-six candidate exocytosis enhancers were identified. These compounds were then rescreened in AQP2-expressing cells to determine their ability to increase AQP2 membrane accumulation. Effective drugs were then applied to kidney slices in vitro. Three compounds, AG-490, ß-lapachone, and HA14-1 increased AQP2 membrane accumulation in LLC-PK1 cells, and both AG-490 and ß-lapachone were also effective in MDCK cells and principal cells in rat kidney slices. Finally, one compound, AG-490 (an EGF receptor and JAK-2 kinase inhibitor), decreased urine volume and increased urine osmolality significantly in the first 2-4 h after a single injection into VP-deficient Brattleboro rats. In conclusion, we have developed a systematic procedure for identifying new compounds that modulate AQP2 trafficking using initial HTS followed by in vitro assays in cells and kidney slices, and concluding with in vivo testing in an animal model.


Assuntos
Aquaporina 2/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Capacidade de Concentração Renal/efeitos dos fármacos , Rim/efeitos dos fármacos , Tirfostinas/farmacologia , Agentes Urológicos/farmacologia , Animais , Aquaporina 2/genética , Aquaporina 2/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Cães , Exocitose/efeitos dos fármacos , Técnicas In Vitro , Rim/metabolismo , Células LLC-PK1 , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Células Madin Darby de Rim Canino , Microscopia de Fluorescência , Concentração Osmolar , Transporte Proteico , Ratos Brattleboro , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Suínos , Fatores de Tempo , Transfecção , Regulação para Cima
12.
Am J Physiol Renal Physiol ; 306(9): F952-69, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24553433

RESUMO

We have developed a whole kidney model of the urine concentrating mechanism and renal autoregulation. The model represents the tubuloglomerular feedback (TGF) and myogenic mechanisms, which together affect the resistance of the afferent arteriole and thus glomerular filtration rate. TGF is activated by fluctuations in macula densa [Cl(-)] and the myogefnic mechanism by changes in hydrostatic pressure. The model was used to investigate the relative contributions of medullary blood flow autoregulation and inhibition of transport in the proximal convoluted tubule to pressure natriuresis in both diuresis and antidiuresis. The model predicts that medullary blood flow autoregulation, which only affects the interstitial solute composition in the model, has negligible influence on the rate of NaCl excretion. However, it exerts a significant effect on urine flow, particularly in the antidiuretic kidney. This suggests that interstitial washout has significant implications for the maintenance of hydration status but little direct bearing on salt excretion, and that medullary blood flow may only play a signaling role for stimulating a pressure-natriuresis response. Inhibited reabsorption in the model proximal convoluted tubule is capable of driving pressure natriuresis when the known actions of vasopressin on the collecting duct epithelium are taken into account.


Assuntos
Antidiuréticos/metabolismo , Diurese , Capacidade de Concentração Renal , Rim/metabolismo , Modelos Biológicos , Natriurese , Absorção , Animais , Antidiuréticos/administração & dosagem , Água Corporal/metabolismo , Diurese/efeitos dos fármacos , Taxa de Filtração Glomerular , Homeostase , Pressão Hidrostática , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Capacidade de Concentração Renal/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Natriurese/efeitos dos fármacos , Ratos , Circulação Renal , Cloreto de Sódio/metabolismo , Vasopressinas/metabolismo
13.
Am J Physiol Renal Physiol ; 307(12): F1363-72, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25298523

RESUMO

Urea transporters (UT) play an important role in the urine concentration mechanism by mediating intrarenal urea recycling, suggesting that UT inhibitors could have therapeutic use as a novel class of diuretic. Recently, we found a thienoquinolin UT inhibitor, PU-14, that exhibited diuretic activity. The purpose of this study was to identify more potent UT inhibitors that strongly inhibit UT-A isoforms in the inner medullary collecting duct (IMCD). Efficient thienoquinolin UT inhibitors were identified by structure-activity relationship analysis. Urea transport inhibition activity was assayed in perfused rat terminal IMCDs. Diuretic activity of the compound was determined in rats and mice using metabolic cages. The results show that the compound PU-48 exhibited potent UT-A inhibition activity. The inhibition was 69.5% with an IC50 of 0.32 µM. PU-48 significantly inhibited urea transport in perfused rat terminal IMCDs. PU-48 caused significant diuresis in UT-B null mice, which indicates that UT-A is the target of PU-48. The diuresis caused by PU-48 did not change blood Na(+), K(+), or Cl(-) levels or nonurea solute excretion in rats and mice. No toxicity was detected in cells or animals treated with PU-48. The results indicate that thienoquinolin UT inhibitors induce a diuresis by inhibiting UT-A in the IMCD. This suggests that they may have the potential to be developed as a novel class of diuretics with fewer side effects than classical diuretics.


Assuntos
Diurese/efeitos dos fármacos , Diuréticos/farmacologia , Túbulos Renais Coletores/efeitos dos fármacos , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Quinolinas/farmacologia , Ureia/metabolismo , Animais , Transporte Biológico , Biomarcadores/sangue , Cloretos/sangue , Diuréticos/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Feminino , Humanos , Capacidade de Concentração Renal/efeitos dos fármacos , Túbulos Renais Coletores/metabolismo , Masculino , Proteínas de Membrana Transportadoras/deficiência , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Concentração Osmolar , Potássio/sangue , Isoformas de Proteínas , Quinolinas/química , Ratos Sprague-Dawley , Sódio/sangue , Relação Estrutura-Atividade , Fatores de Tempo
14.
Pediatr Nephrol ; 29(3): 487-90, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24337364

RESUMO

BACKGROUND: Nephrogenic diabetes insipidus (NDI) is characterized by the kidney's inability to concentrate urine, which causes intense polyuria that may lead to urinary tract dilation. We report the morphological findings of the urinary tract in ten boys with NDI specifically addressing the presence and changes of urinary tract dilation during treatment. DIAGNOSIS/TREATMENT: Patients were diagnosed at a median age of 1.6 years (range, 0.16-6.33 years) and treated with a low osmotic diet, hydrochlorothiazide-amiloride and indomethacin, which decreased the diuresis from a median of 10.5 ml/kg/h to 4.4 ml/kg/h (p < 0.001). Three patients showed normal renal ultrasound before treatment until last control, while the remaining seven showed urinary tract dilation. In this second group, dilation was reduced with treatment in four patients and disappeared in the remaining three. Children without dilation or in whom the dilation disappeared were diagnosed and treated earlier than those with persistent dilation (median 1.66 versus 4.45 years, respectively). After a median of 10.4 (range, 2.3-20.3) years of follow-up, no patients showed urological complications. CONCLUSIONS: Medical treatment of the disease improved the dilation in all cases, preventing its potential complications. Regardless of the good outcome of our patients, periodic urologic follow-up is recommended in NDI patients.


Assuntos
Amilorida/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Diabetes Insípido Nefrogênico/terapia , Diuréticos/uso terapêutico , Hidroclorotiazida/uso terapêutico , Indometacina/uso terapêutico , Sistema Urinário/efeitos dos fármacos , Criança , Pré-Escolar , Terapia Combinada , Diabetes Insípido Nefrogênico/diagnóstico , Diabetes Insípido Nefrogênico/dietoterapia , Diabetes Insípido Nefrogênico/tratamento farmacológico , Diabetes Insípido Nefrogênico/fisiopatologia , Dilatação Patológica , Diurese/efeitos dos fármacos , Combinação de Medicamentos , Humanos , Lactente , Capacidade de Concentração Renal/efeitos dos fármacos , Masculino , Estudos Retrospectivos , Resultado do Tratamento , Ultrassonografia , Sistema Urinário/diagnóstico por imagem , Sistema Urinário/patologia , Sistema Urinário/fisiopatologia
15.
Am J Physiol Renal Physiol ; 304(1): F103-11, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23136000

RESUMO

The regulation of the inner medullary collecting duct (IMCD) urea transporters (UT-A1, UT-A3) and aquaporin-2 (AQP2) and their interactions in diabetic animals is unknown. We investigated whether the urine concentrating defect in diabetic animals was a function of AQP2, the UT-As, or both transporters. UT-A1/UT-A3 knockout (UT-A1/A3 KO) mice produce dilute urine. We gave wild-type (WT) and UT-A1/A3 KO mice vasopressin via minipump for 7 days. In WT mice, vasopressin increased urine osmolality from 3,000 to 4,550 mosmol/kgH(2)O. In contrast, urine osmolality was low (800 mosmol/kgH(2)O) in the UT-A1/A3 KOs and remained low following vasopressin. Surprisingly, AQP2 protein abundance increased in UT-A1/A3 KO (114%) and WT (92%) mice. To define the role of UT-A1 and UT-A3 in the diabetic responses, WT and UT-A1/A3 KO mice were injected with streptozotocin (STZ). UT-A1/A3 KO mice showed only 40% survival at 7 days post-STZ injection compared with 70% in WT. AQP2 did not increase in the diabetic UT-A1/A3 KO mice compared with a 133% increase in WT diabetic mice. Biotinylation studies in rat IMCDs showed that membrane accumulation of UT-A1 increased by 68% in response to vasopressin in control rats but was unchanged by vasopressin in diabetic rat IMCDs. We conclude that, even with increased AQP2, UT-A1/UT-A3 is essential to optimal urine concentration. Furthermore, UT-A1 may be maximally membrane associated in diabetic rat inner medulla, making additional stimulation by vasopressin ineffective.


Assuntos
Aquaporina 2/fisiologia , Diabetes Mellitus Experimental/fisiopatologia , Capacidade de Concentração Renal/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Animais , Arginina Vasopressina/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Diabetes Mellitus Experimental/urina , Rim , Capacidade de Concentração Renal/efeitos dos fármacos , Túbulos Renais Coletores/fisiologia , Masculino , Proteínas de Membrana Transportadoras/deficiência , Camundongos , Camundongos Knockout , Tamanho do Órgão , Concentração Osmolar , Ratos , Transportadores de Ureia
16.
Kidney Int ; 83(6): 1076-86, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23486518

RESUMO

Urea transporters (UTs) are a family of membrane channel proteins that are specifically permeable to urea and play an important role in intrarenal urea recycling and in urine concentration. Using an erythrocyte osmotic lysis assay, we screened a small-molecule library for inhibitors of UT-facilitated urea transport. A novel class of thienoquinolin UT-B inhibitors were identified, of which PU-14 had potent inhibition activity on human, rabbit, rat, and mouse UT-B. The half-maximal inhibitory concentration of PU-14 on rat UT-B-mediated urea transport was ∼0.8 µmol/l, and it did not affect urea transport in mouse erythrocytes lacking UT-B but inhibited UT-A-type urea transporters, with 36% inhibition at 4 µmol/l. PU-14 showed no significant cellular toxicity at concentrations up to its solubility limit of 80 µmol/l. Subcutaneous delivery of PU-14 (at 12.5, 50, and 100 mg/kg) to rats caused an increase of urine output and a decrease of the urine urea concentration and subsequent osmolality without electrolyte disturbances and liver or renal damages. This suggests that PU-14 has a diuretic effect by urea-selective diuresis. Thus, PU-14 or its analogs might be developed as a new diuretic to increase renal fluid clearance in diseases associated with water retention without causing electrolyte imbalance. PU-14 may establish 'chemical knockout' animal models to study the physiological functions of UTs.


Assuntos
Diurese/efeitos dos fármacos , Diuréticos/farmacologia , Eritrócitos/efeitos dos fármacos , Rim/efeitos dos fármacos , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Quinolinas/farmacologia , Ureia/metabolismo , Animais , Permeabilidade da Membrana Celular/efeitos dos fármacos , Diuréticos/administração & dosagem , Diuréticos/toxicidade , Cães , Relação Dose-Resposta a Droga , Eritrócitos/metabolismo , Humanos , Rim/metabolismo , Capacidade de Concentração Renal/efeitos dos fármacos , Cinética , Células Madin Darby de Rim Canino , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Quinolinas/administração & dosagem , Quinolinas/toxicidade , Coelhos , Ratos , Ratos Sprague-Dawley , Transfecção , Micção/efeitos dos fármacos , Equilíbrio Hidroeletrolítico/efeitos dos fármacos , Transportadores de Ureia
17.
Ren Fail ; 35(7): 978-88, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23822648

RESUMO

This study investigated the effects of tempol, a superoxide dismutase (SOD) mimetic and L-NAME, a nitric oxide (NO) synthase inhibitor on the renal function and hemodynamics in cyclosporine A (CsA) induced renal insufficiency rats. Male Sprague-Dawley rats were treated with either vehicle (C), tempol (T, 1 mmol/L in drinking fluid), L-NAME (L, 1 mmol/L in drinking fluid), CsA (Cs, 25 mg/kg/day via gavage), CsA plus tempol (TCs), CsA plus L-NAME (LCs) or CsA plus a combination of tempol and L-NAME (TLCs) for 21 consecutive days. At the end of treatment regimen, the renal responses to noradrenaline (NA), phenylephrine (PE), methoxamine and angiotensin II (Ang II) were determined. Cs and LCs rats had lower creatinine clearance (0.7 ± 0.1 and 0.6 ± 0.5 vs. 1.3 ± 0.2 mL/min/kg) and fractional excretion of sodium (0.12 ± 0.02 and 0.17 ± 0.01 vs. 0.67 ± 0.04%) but higher systolic blood pressure (145 ± 2 and 178 ± 4 vs. 116 ± 2) compared to the control (all p < 0.05), respectively. Tempol treatment in TCs or TLCs prevented the increase in blood pressure and improved creatinine clearance and sodium excretion compared to untreated Cs. The renal vasoconstriction in Cs or LCs to NA, PE and Ang II were lower than control by ∼35-48% (all p < 0.05). In TCs or TLCs, there was enhanced renal vasoconstriction to all agonist by ∼39-114% compared to Cs. SOD is important to counterbalance the hypertensive effect of a defective NO system and to allow the normal vasoconstrictor response of the renal vasculature to adrenergic agonists and Ang II in a model of CsA-induced renal insufficiency.


Assuntos
Óxidos N-Cíclicos/farmacologia , Ciclosporina/farmacologia , Hemodinâmica/efeitos dos fármacos , Hipertensão/prevenção & controle , Capacidade de Concentração Renal/efeitos dos fármacos , Insuficiência Renal , Animais , Antioxidantes/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Hipertensão/etiologia , Hipertensão/fisiopatologia , Rim/irrigação sanguínea , Masculino , NG-Nitroarginina Metil Éster/administração & dosagem , NG-Nitroarginina Metil Éster/metabolismo , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/metabolismo , Ratos , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional/efeitos dos fármacos , Insuficiência Renal/induzido quimicamente , Insuficiência Renal/fisiopatologia , Marcadores de Spin , Superóxido Dismutase/administração & dosagem , Superóxido Dismutase/metabolismo
18.
Am J Physiol Renal Physiol ; 303(6): F900-5, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22791344

RESUMO

Chloroquine, a widely used anti-malaria drug, has gained popularity for the treatment of rheumatoid arthritis, systemic lupus erythematosus (SLE), and human immunodeficiency virus (HIV). Unfortunately, chloroquine may also negatively impact renal function for patients whose fluid and electrolyte homeostasis is already compromised by diseases. Chronic administration of chloroquine also results in polyuria, which may be explained by suppression of the antidiuretic response of vasopressin. Several of the transporters responsible for concentrating urine are vasopressin-sensitive including the urea transporters UT-A1 and UT-A3, the water channel aquaporin-2 (AQP2), and the Na(+)-K(+)-2Cl(-) cotransporter (NKCC2). To examine the effect of chloroquine on these transporters, Sprague-Dawley rats received daily subcutaneous injections of 80 mg·kg(-1)·day(-1) of chloroquine for 4 days. Twenty-four hour urine output was twofold higher, and urine osmolality was decreased by twofold in chloroquine-treated rats compared with controls. Urine analysis of treated rats detected the presence chloroquine as well as decreased urine urea and cAMP levels compared with control rats. Western blot analysis showed a downregulation of AQP2 and NKCC2 transporters; however, UT-A1 and UT-A3 abundances were unaffected by chloroquine treatment. Immunohistochemistry showed a marked reduction of UT-A1 and AQP2 in the apical membrane in inner medullary collecting ducts of chloroquine-treated rats. In conclusion, chloroquine-induced polyuria likely occurs as a result of lowered cAMP production. These findings suggest that chronic chloroquine treatment would exacerbate the already compromised fluid homeostasis observed in diseases like chronic kidney disease.


Assuntos
Cloroquina/efeitos adversos , AMP Cíclico/metabolismo , Capacidade de Concentração Renal/efeitos dos fármacos , Poliúria/induzido quimicamente , Animais , Aquaporina 2/metabolismo , Cloroquina/urina , AMP Cíclico/análise , Regulação para Baixo , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Concentração Osmolar , Ratos , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto , Ureia/urina , Transportadores de Ureia
19.
Am J Physiol Renal Physiol ; 303(1): F37-44, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22492943

RESUMO

Regulation of water and urea transport in the inner medullary collecting duct is essential for urine concentration. Aquaporin (AQP)2 water channels and urea transporter (UT)-A1 are inserted into the apical membrane upon phosphorylation of the channels to allow the transcellular movement of water and urea. Since ANG II activates PKC in many cell types, we tested the hypothesis that ANG II-induced regulation of water and urea transport is mediated by PKC. Osmotic minipumps delivered ANG II to wild-type (WT) or PKC-α(-/-) mice for 7 days. Inner medullas were harvested, and protein abundance was determined by immunoblot. ANG II increased systolic blood pressure to a similar degree in WT and PKC-α(-/-) mice. ANG II had no effect on the urine output of WT mice but increased that of PKC-α(-/-) mice. In accordance with observed differences in urine output, AQP2 abundance was unchanged in ANG II-treated WT animals but was decreased in PKC-α(-/-) mice. No change in membrane accumulation was seen. Phosphorylation of the cAMP-induced transcription factor CREB was decreased in PKC-α(-/-) mice in response to ANG II with no change in overall CREB abundance. ANG II did not alter the abundance of UT-A1 protein in WT or PKC-α(-/-) mice. Phosphorylation and overall abundance of tonicity-responsive enhancer-binding protein, a transcription factor that regulates UT-A1, were also unaltered by ANG II in either group. We conclude that PKC-α protects against ANG II-induced decreases in urine concentrating ability by maintaining AQP2 levels through CREB phosphorylation.


Assuntos
Angiotensina II/toxicidade , Aquaporina 2/metabolismo , Hipertensão/metabolismo , Capacidade de Concentração Renal/genética , Rim/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteína Quinase C-alfa/genética , Animais , Aquaporina 2/genética , Pressão Sanguínea/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/genética , Rim/efeitos dos fármacos , Capacidade de Concentração Renal/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Knockout , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Fosforilação , Proteína Quinase C-alfa/metabolismo , Transportadores de Ureia
20.
Am J Physiol Renal Physiol ; 303(3): F420-30, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22622462

RESUMO

Ectonucleoside triphosphate diphosphohydrolase-1 hydrolyzes extracellular ATP and ADP to AMP. Previously, we showed that CD39 is expressed at several sites within the kidney and thus may impact the availability of type 2 purinergic receptor (P2-R) ligands. Because P2-Rs appear to regulate urinary concentrating ability, we have evaluated renal water handling in transgenic mice (TG) globally overexpressing hCD39. Under basal conditions, TG mice exhibited significantly impaired urinary concentration and decreased protein abundance of AQP2 in the kidney compared with wild-type (WT) mice. Urinary excretion of total nitrates/nitrites was significantly higher in TG mice, but the excretion of AVP or PGE(2) was equivalent to control WT mice. There were no significant differences in electrolyte-free water clearance or fractional excretion of sodium. Under stable hydrated conditions (gelled diet feeding), the differences between the WT and TG mice were negated, but the decrease in urine osmolality persisted. When water deprived, TG mice failed to adequately concentrate urine and exhibited impaired AVP responses. However, the increases in urinary osmolalities in response to subacute dDAVP or chronic AVP treatment were similar in TG and WT mice. These observations suggest that TG mice have impaired urinary concentrating ability despite normal AVP levels. We also note impaired AVP release in response to water deprivation but that TG kidneys are responsive to exogenous dDAVP or AVP. We infer that heightened nucleotide scavenging by increased levels of CD39 altered the release of endogenous AVP in response to dehydration. We propose that ectonucleotidases and modulated purinergic signaling impact urinary concentration and indicate potential utility of targeted therapy for the treatment of water balance disorders.


Assuntos
Antígenos CD/biossíntese , Apirase/biossíntese , Água/metabolismo , Animais , Antígenos CD/genética , Apirase/genética , Western Blotting , Primers do DNA , Desamino Arginina Vasopressina/farmacologia , Ingestão de Líquidos/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Capacidade de Concentração Renal/efeitos dos fármacos , Capacidade de Concentração Renal/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nucleotidases/metabolismo , Concentração Osmolar , Reação em Cadeia da Polimerase em Tempo Real , Receptores Purinérgicos P1/biossíntese , Receptores Purinérgicos P2Y/biossíntese , Fármacos Renais/farmacologia , Privação de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA