Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 117(5): 1377-1391, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38017590

RESUMO

Plant NAC transcription factors play a crucial role in enhancing cold stress tolerance, yet the precise molecular mechanisms underlying cold stress remain elusive. In this study, we identified and characterized CaNAC035, an NAC transcription factor isolated from pepper (Capsicum annuum) leaves. We observed that the expression of the CaNAC035 gene is induced by both cold and abscisic acid (ABA) treatments, and we elucidated its positive regulatory role in cold stress tolerance. Overexpression of CaNAC035 resulted in enhanced cold stress tolerance, while knockdown of CaNAC035 significantly reduced resistance to cold stress. Additionally, we discovered that CaSnRK2.4, a SnRK2 protein, plays an essential role in cold tolerance. In this study, we demonstrated that CaSnRK2.4 physically interacts with and phosphorylates CaNAC035 both in vitro and in vivo. Moreover, the expression of two ABA biosynthesis-related genes, CaAAO3 and CaNCED3, was significantly upregulated in the CaNAC035-overexpressing transgenic pepper lines. Yeast one-hybrid, Dual Luciferase, and electrophoretic mobility shift assays provided evidence that CaNAC035 binds to the promoter regions of both CaAAO3 and CaNCED3 in vivo and in vitro. Notably, treatment of transgenic pepper with 50 µm Fluridone (Flu) enhanced cold tolerance, while the exogenous application of ABA at a concentration of 10 µm noticeably reduced cold tolerance in the virus-induced gene silencing line. Overall, our findings highlight the involvement of CaNAC035 in the cold response of pepper and provide valuable insights into the molecular mechanisms underlying cold tolerance. These results offer promising prospects for molecular breeding strategies aimed at improving cold tolerance in pepper and other crops.


Assuntos
Ácido Abscísico , Capsicum , Ácido Abscísico/metabolismo , Resposta ao Choque Frio , Capsicum/fisiologia , Estresse Fisiológico/genética , Fosforilação , Folhas de Planta/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética
2.
Plant Physiol ; 195(1): 812-831, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38270532

RESUMO

High temperature stress (HTS) is a serious threat to plant growth and development and to crop production in the context of global warming, and plant response to HTS is largely regulated at the transcriptional level by the actions of various transcription factors (TFs). However, whether and how homeodomain-leucine zipper (HD-Zip) TFs are involved in thermotolerance are unclear. Herein, we functionally characterized a pepper (Capsicum annuum) HD-Zip I TF CaHDZ15. CaHDZ15 expression was upregulated by HTS and abscisic acid in basal thermotolerance via loss- and gain-of-function assays by virus-induced gene silencing in pepper and overexpression in Nicotiana benthamiana plants. CaHDZ15 acted positively in pepper basal thermotolerance by directly targeting and activating HEAT SHOCK FACTORA6a (HSFA6a), which further activated CaHSFA2. In addition, CaHDZ15 interacted with HEAT SHOCK PROTEIN 70-2 (CaHsp70-2) and glyceraldehyde-3-phosphate dehydrogenase1 (CaGAPC1), both of which positively affected pepper thermotolerance. CaHsp70-2 and CaGAPC1 promoted CaHDZ15 binding to the promoter of CaHSFA6a, thus enhancing its transcription. Furthermore, CaHDZ15 and CaGAPC1 were protected from 26S proteasome-mediated degradation by CaHsp70-2 via physical interaction. These results collectively indicate that CaHDZ15, modulated by the interacting partners CaGAPC1 and CaHsp70-2, promotes basal thermotolerance by directly activating the transcript of CaHSFA6a. Thus, a molecular linkage is established among CaHsp70-2, CaGAPC1, and CaHDZ15 to transcriptionally modulate CaHSFA6a in pepper thermotolerance.


Assuntos
Capsicum , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Termotolerância , Fatores de Transcrição , Capsicum/genética , Capsicum/fisiologia , Termotolerância/genética , Termotolerância/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Nicotiana/genética , Nicotiana/fisiologia , Plantas Geneticamente Modificadas , Resposta ao Choque Térmico/genética , Temperatura Alta , Ácido Abscísico/metabolismo
3.
Plant Physiol ; 195(2): 924-939, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38366641

RESUMO

Far-red radiation affects many plant processes, including reproductive organ abortion. Our research aimed to determine the role of apical dominance in far-red light-induced flower and fruit abortion in sweet pepper (Capsicum annuum L.). We conducted several climate room experiments where plants were grown under white- or red-rich LED light, with or without additional far-red light. Additional far-red light enhanced apical dominance: it increased auxin levels in the apices of dominant shoots, and caused a greater difference in internode length and apical auxin levels between dominant and subordinate shoots. Additional far-red light stimulated fruit abortion in intact plants but not in decapitated plants, suggesting a crucial role of shoot apices in this effect. However, reducing basipetal auxin transport in the stems with N-1-naphthylphthalamic acid did not influence far-red light-stimulated fruit abortion, although auxin levels in the stem were largely reduced. Applying the synthetic auxin 1-naphthaleneacetic acid on decapitated apices did not influence fruit abortion. However, applying the auxin biosynthesis inhibitor yucasin to shoot apices reduced fruit abortion regardless of the light conditions, accompanied by slight shoot growth retardation. These findings suggest that the basipetal auxin stream does not mediate far-red light-stimulated fruit abortion. Far-red light-stimulated fruit abortion was associated with reduced sucrose accumulation and lower invertase activities in flowers. We suggest that under additional far-red light conditions, increased auxin levels in shoot apices promote fruit abortion probably through enhanced competition for assimilates between apices and flowers, which limits assimilate import into flowers.


Assuntos
Capsicum , Flores , Frutas , Ácidos Indolacéticos , Luz , Capsicum/crescimento & desenvolvimento , Capsicum/fisiologia , Capsicum/efeitos da radiação , Capsicum/metabolismo , Flores/fisiologia , Flores/crescimento & desenvolvimento , Flores/efeitos da radiação , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Frutas/efeitos da radiação , Frutas/fisiologia , Ácidos Indolacéticos/metabolismo , Luz Vermelha
4.
Plant Cell ; 34(1): 535-556, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34609518

RESUMO

Grafting has been adopted for a wide range of crops to enhance productivity and resilience; for example, grafting of Solanaceous crops couples disease-resistant rootstocks with scions that produce high-quality fruit. However, incompatibility severely limits the application of grafting and graft incompatibility remains poorly understood. In grafts, immediate incompatibility results in rapid death, but delayed incompatibility can take months or even years to manifest, creating a significant economic burden for perennial crop production. To gain insight into the genetic mechanisms underlying this phenomenon, we developed a model system using heterografting of tomato (Solanum lycopersicum) and pepper (Capsicum annuum). These grafted plants express signs of anatomical junction failure within the first week of grafting. By generating a detailed timeline for junction formation, we were able to pinpoint the cellular basis for this delayed incompatibility. Furthermore, we inferred gene regulatory networks for compatible self-grafts and incompatible heterografts based on these key anatomical events, which predict core regulators for grafting. Finally, we examined the role of vascular development in graft formation and uncovered SlWOX4 as a potential regulator of graft compatibility. Following this predicted regulator up with functional analysis, we show that Slwox4 homografts fail to form xylem bridges across the junction, demonstrating that indeed, SlWOX4 is essential for vascular reconnection during grafting, and may function as an early indicator of graft failure.


Assuntos
Capsicum/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Proteínas de Plantas/genética , Solanum lycopersicum/fisiologia , Capsicum/genética , Proteínas de Homeodomínio/metabolismo , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo
5.
Plant J ; 113(3): 521-535, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36534067

RESUMO

Male sterility provides an efficient approach for commercial exploitation of heterosis. Despite more than 20 genic male sterile (GMS) mutants documented in pepper (Capsicum annuum L.), only two causal genes have been successfully identified. Here, a novel spontaneous recessive GMS mutant, designated msc-3, is identified and characterized at both phenotypic and histological levels. Pollen abortion of msc-3 mutant may be due to the delayed tapetum degradation, leading to the non-degeneration of tetrads callosic wall. Then, a modified MutMap method and molecular marker linkage analysis were employed to fine mapping the msc-3 locus, which was delimited to the ~139.91-kb region harboring 10 annotated genes. Gene expression and structure variation analyses indicate the Capana10g000198, encoding a R2R3-MYB transcription factor, is the best candidate gene for the msc-3 locus. Expression profiling analysis shows the Capana10g000198 is an anther-specific gene, and a 163-bp insertion in the Capana10g000198 is highly correlated with the male sterile (MS) phenotype. Additionally, downregulation of Capana10g000198 in male fertile plants through virus-induced gene silencing resulted in male sterility. Finally, possible regulatory relationships of the msc-3 gene with the other two reported pepper GMS genes, msc-1 and msc-2, have been studied, and comparative transcriptome analysis reveals the expression of 16 GMS homologs are significantly downregulated in the MS anthers. Overall, our results reveal that Capana10g000198 is the causal gene underlying the msc-3 locus, providing important theoretical clues and basis for further in-depth study on the regulatory mechanisms of pollen development in pepper.


Assuntos
Capsicum , Infertilidade das Plantas , Masculino , Capsicum/genética , Capsicum/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Infertilidade das Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
BMC Plant Biol ; 24(1): 553, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877414

RESUMO

BACKGROUND: The study offers insightful information about the adaptability of local and imported Chili cultivars. This experiment examines how three different chili cultivars Tanjung, Unpad, and Osaka perform in the germination and early growth phases while considering a wide range of environmental conditions. Research conducted in Jatinangor, Sumedang Regency, Indonesia, highlights the differences between cultivars and the varied possibilities for adaptability each variation possesses. RESULTS: Among them, Tanjung stands out as the most promising cultivar; its robust performance is demonstrated by its high germination index 91.7. Notable features of Osaka include the highest biomass output (1.429 g), the best water usage efficiency (WUE) at 0.015 g/liter, and the best distribution uniformity (91.2%) and application efficiency (73.6%) under different irrigation conditions. Tanjung's competitiveness is further evidenced by the fact that it trails Osaka closely on several metrics. Lower performance across criteria for Unpad suggests possible issues with flexibility. CONCLUSION: The value of this information becomes apparent when it comes to well-informed breeding programs and cultivation techniques, especially considering uncertain climate patterns and global climate change. This research contributes significantly to the body of knowledge, enabling well-informed choices for environmentally dynamic, sustainable chili farming.


Assuntos
Capsicum , Germinação , Capsicum/crescimento & desenvolvimento , Capsicum/fisiologia , Mudança Climática , Clima , Indonésia , Adaptação Fisiológica , Biomassa
7.
BMC Plant Biol ; 24(1): 116, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38365618

RESUMO

Water deficit stress is one of the most significant environmental abiotic factors influencing plant growth and metabolism globally. Recently, encouraging outcomes for the use of nanomaterials in agriculture have been shown to reduce the adverse effects of drought stress on plants. The present study aimed to investigate the impact of various carbon nanomaterials (CNMs) on the physiological, morphological, and biochemical characteristics of bell pepper plants subjected to water deficit stress conditions. The study was carried out as a factorial experiment using a completely randomized design (CRD) in three replications with a combination of three factors. The first factor considered was irrigation intensity with three levels [(50%, 75%, and 100% (control) of the field capacity (FC)] moisture. The second factor was the use of carbon nanomaterials [(fullerene C60, multi-walled carbon nanotubes (MWNTs) and graphene nanoplatelets (GNPs)] at various concentrations [(control (0), 100, 200, and 1000 mg/L)]. The study confirmed the foliar uptake of CNMs using the Scanning Electron Microscopy (SEM) technique. The effects of the CNMs were observed in a dose-dependent manner, with both stimulatory and toxicity effects being observed. The results revealed that exposure to MWNTs (1000 mg/L) under well-watered irrigation, and GNPs treatment (1000 mg/L) under severe drought stress (50% FC) significantly (P < 0.01) improved fruit production and fruit dry weight by 76.2 and 73.2% as compared to the control, respectively. Also, a significant decrease (65.9%) in leaf relative water content was obtained in plants subjected to soil moisture of 50% FC over the control. Treatment with GNPs at 1000 mg/L under 50% FC increased electrolyte leakage index (83.6%) compared to control. Foliar applied MWNTs enhanced the leaf gas exchange, photosynthesis rate, and chlorophyll a and b concentrations, though decreased the oxidative shock in leaves which was demonstrated by the diminished electrolyte leakage index and upgrade in relative water content and antioxidant capacity compared to the control. Plants exposed to fullerene C60 at 100 and 1000 mg/L under soil moisture of 100 and 75% FC significantly increased total flavonoids and phenols content by 63.1 and 90.9%, respectively, as compared to the control. A significant increase (184.3%) in antioxidant activity (FRAP) was observed in plants exposed to 200 mg/L MWCNTs under irrigation of 75% FC relative to the control. The outcomes proposed that CNMs could differentially improve the plant and fruit characteristics of bell pepper under dry conditions, however, the levels of changes varied among CNMs concentrations. Therefore, both stimulatory and toxicity effects of employed CNMs were observed in a dose-dependent manner. The study concludes that the use of appropriate (type/dose) CNMs through foliar application is a practical tool for controlling the water shortage stress in bell pepper. These findings will provide the basis for more research on CNMs-plant interactions, and with help to ensure their safe and sustainable use within the agricultural chains.


Assuntos
Capsicum , Fulerenos , Grafite , Nanotubos de Carbono , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/química , Capsicum/fisiologia , Clorofila A , Grafite/química , Desidratação , Antioxidantes/metabolismo , Água/metabolismo , Solo
8.
BMC Plant Biol ; 24(1): 367, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38711041

RESUMO

BACKGROUND: The formation of shoots plays a pivotal role in plant organogenesis and productivity. Despite its significance, the underlying molecular mechanism of de novo regeneration has not been extensively elucidated in Capsicum annuum 'Dempsey', a bell pepper cultivar. To address this, we performed a comparative transcriptome analysis focusing on the differential expression in C. annuum 'Dempsey' shoot, callus, and leaf tissue. We further investigated phytohormone-related biological processes and their interacting genes in the C. annuum 'Dempsey' transcriptome based on comparative transcriptomic analysis across five species. RESULTS: We provided a comprehensive view of the gene networks regulating shoot formation on the callus, revealing a strong involvement of hypoxia responses and oxidative stress. Our comparative transcriptome analysis revealed a significant conservation in the increase of gene expression patterns related to auxin and defense mechanisms in both callus and shoot tissues. Consequently, hypoxia response and defense mechanism emerged as critical regulators in callus and shoot formation in C. annuum 'Dempsey'. Current transcriptome data also indicated a substantial decline in gene expression linked to photosynthesis within regenerative tissues, implying a deactivation of the regulatory system governing photosynthesis in C. annuum 'Dempsey'. CONCLUSION: Coupled with defense mechanisms, we thus considered spatial redistribution of auxin to play a critical role in the shoot morphogenesis via primordia outgrowth. Our findings shed light on shoot formation mechanisms in C. annuum 'Dempsey' explants, important information for regeneration programs, and have broader implications for precise molecular breeding in recalcitrant crops.


Assuntos
Capsicum , Perfilação da Expressão Gênica , Brotos de Planta , Transcriptoma , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Capsicum/fisiologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo
9.
BMC Plant Biol ; 24(1): 580, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38890606

RESUMO

BACKGROUND: Tropospheric ozone is an air pollutant that causes negative effects on vegetation, leading to significant losses in crop productivity. It is generated by chemical reactions in the presence of sunlight between primary pollutants resulting from human activity, such as nitrogen oxides and volatile organic compounds. Due to the constantly increasing emission of ozone precursors, together with the influence of a warming climate on ozone levels, crop losses may be aggravated in the future. Therefore, the search for solutions to mitigate these losses becomes a priority. Ozone-induced abiotic stress is mainly due to reactive oxygen species generated by the spontaneous decomposition of ozone once it reaches the apoplast. In this regard, compounds with antioxidant activity offer a viable option to alleviate ozone-induced damage. Using enzymatic technology, we have developed a process that enables the production of an extract with biostimulant properties from okara, an industrial soybean byproduct. The biostimulant, named as OEE (Okara Enzymatic Extract), is water-soluble and is enriched in bioactive compounds present in okara, such as isoflavones. Additionally, it contains a significant fraction of protein hydrolysates contributing to its functional effect. Given its antioxidant capacity, we aimed to investigate whether OEE could alleviate ozone-induced damage in plants. For that, pepper plants (Capsicum annuum) exposed to ozone were treated with a foliar application of OEE. RESULTS: OEE mitigated ozone-induced damage, as evidenced by the net photosynthetic rate, electron transport rate, effective quantum yield of PSII, and delayed fluorescence. This protection was confirmed by the level of expression of genes associated with photosystem II. The beneficial effect was primarily due to its antioxidant activity, as evidenced by the lipid peroxidation rate measured through malondialdehyde content. Additionally, OEE triggered a mild oxidative response, indicated by increased activities of antioxidant enzymes in leaves (catalase, superoxide dismutase, and guaiacol peroxidase) and the oxidative stress index, providing further protection against ozone-induced stress. CONCLUSIONS: The present results support that OEE protects plants from ozone exposure. Taking into consideration that the promotion of plant resistance against abiotic damage is an important goal of biostimulants, we assume that its use as a new biostimulant could be considered.


Assuntos
Antioxidantes , Glycine max , Ozônio , Estresse Fisiológico , Ozônio/farmacologia , Glycine max/efeitos dos fármacos , Glycine max/fisiologia , Glycine max/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Antioxidantes/metabolismo , Capsicum/efeitos dos fármacos , Capsicum/fisiologia , Capsicum/metabolismo , Fotossíntese/efeitos dos fármacos , Extratos Vegetais/farmacologia
10.
Physiol Plant ; 176(3): e14379, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38853306

RESUMO

Drought stress threatens the productivity of numerous crops, including chilli pepper (Capsicum annuum). DnaJ proteins are known to play a protective role against a wide range of abiotic stresses. This study investigates the regulatory mechanism of the chloroplast-targeted chaperone protein AdDjSKI, derived from wild peanut (Arachis diogoi), in enhancing drought tolerance in chilli peppers. Overexpressing AdDjSKI in chilli plants increased chlorophyll content, reflected in the maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm) compared with untransformed control (UC) plants. This enhancement coincided with the upregulated expression of PSII-related genes. Our subsequent investigations revealed that transgenic chilli pepper plants expressing AdDjSKI showed reduced accumulation of superoxide and hydrogen peroxide and, consequently, lower malondialdehyde levels and decreased relative electrolyte leakage percentage compared with UC plants. The mitigation of ROS-mediated oxidative damage was facilitated by heightened activities of antioxidant enzymes, including superoxide dismutase, catalase, ascorbate peroxidase, and peroxidase, coinciding with the upregulation of the expression of associated antioxidant genes. Additionally, our observations revealed that the ectopic expression of the AdDjSKI protein in chilli pepper plants resulted in diminished ABA sensitivity, consequently promoting seed germination in comparison with UC plants under different concentrations of ABA. All of these collectively contributed to enhancing drought tolerance in transgenic chilli plants with improved root systems when compared with UC plants. Overall, our study highlights AdDjSKI as a promising biotechnological solution for enhancing drought tolerance in chilli peppers, addressing the growing global demand for this economically valuable crop.


Assuntos
Ácido Abscísico , Capsicum , Secas , Fotossíntese , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio , Capsicum/fisiologia , Capsicum/genética , Capsicum/metabolismo , Fotossíntese/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Arachis/genética , Arachis/fisiologia , Arachis/metabolismo , Regulação da Expressão Gênica de Plantas , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila/metabolismo , Antioxidantes/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Resistência à Seca
11.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902276

RESUMO

High temperature stress (HTS), with growth and development impairment, is one of the most important abiotic stresses frequently encountered by plants, in particular solanacaes such as pepper, that mainly distribute in tropical and subtropical regions. Plants activate thermotolerance to cope with this stress; however, the underlying mechanism is currently not fully understood. SWC4, a shared component of SWR1- and NuA4 complexes implicated in chromatin remodeling, was previously found to be involved in the regulation of pepper thermotolerance, but the underlying mechanism remains poorly understood. Herein, PMT6, a putative methyltranferase was originally found to interact with SWC4 by co-immunoprecipitation (Co-IP)-combined LC/MS assay. This interaction was further confirmed by bimolecular fluorescent complimentary (BiFC) and Co-IP assay, and PMT6 was further found to confer SWC4 methylation. By virus-induced gene silencing, it was found that PMT6 silencing significantly reduced pepper basal thermotolerance and transcription of CaHSP24 and significantly reduced the enrichment of chromatin-activation-related H3K9ac, H4K5ac, and H3K4me3 in TSS of CaHSP24, which was previously found to be positively regulated by CaSWC4. By contrast, the overexpression of PMT6 significantly enhanced basal thermotolerance of pepper plants. All these data indicate that PMT6 acts as a positive regulator in pepper thermotolerance, likely by methylating SWC4.


Assuntos
Capsicum , Metiltransferases , Proteínas de Plantas , Estresse Fisiológico , Termotolerância , Capsicum/genética , Capsicum/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metiltransferases/genética , Metiltransferases/fisiologia , Montagem e Desmontagem da Cromatina
12.
Plant J ; 107(4): 1148-1165, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34145668

RESUMO

Abscisic acid (ABA) is a plant hormone that activates adaptive mechanisms to environmental stress conditions. Plant adaptive mechanisms are complex and highly modulated processes induced by stress-responsive proteins; however, the precise mechanisms by which these processes function under adverse conditions remain unclear. Here, we isolated CaUBP12 (Capsicum annuum ubiquitin-specific protease 12) from pepper (C. annuum) leaves. We show that CaUBP12 expression is significantly induced after exposure to abiotic stress treatments. We conducted loss-of-function and gain-of-function genetic studies to elucidate the biological functions of CaUBP12 in response to ABA and dehydration stress. CaUBP12-silenced pepper plants and CaUBP12-overexpressing Arabidopsis plants displayed dehydration-sensitive and dehydration-tolerant phenotypes, respectively; these phenotypes were characterized by regulation of transpirational water loss and stomatal aperture. Under dehydration stress conditions, CaUBP12-silenced pepper plants and CaUBP12-overexpressing Arabidopsis plants exhibited lower and higher expression levels of stress-related genes, respectively, than the control plants. We isolated a CaUBP12 interaction protein, CaSnRK2.6, which is a homolog of Arabidopsis OST1; degradation of this protein was partially inhibited by CaUBP12. Similar to CaUBP12-silenced pepper plants and CaUBP12-overexpressing Arabidopsis plants, CaSnRK2.6-silenced pepper plants and CaSnRK2.6-overexpressing Arabidopsis displayed dehydration-sensitive and dehydration-tolerant phenotypes, respectively. Our findings suggest that CaUBP12 positively modulates the dehydration stress response by suppressing CaSnRK2.6 protein degradation.


Assuntos
Capsicum/fisiologia , Desidratação/genética , Proteínas de Plantas/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Germinação/efeitos dos fármacos , Mutação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Estabilidade Proteica , Sementes/efeitos dos fármacos , Sementes/fisiologia , Proteases Específicas de Ubiquitina/genética
13.
BMC Plant Biol ; 22(1): 79, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193520

RESUMO

BACKGROUND: Anthocyanins have distinct biological functions in plant coloring, plant defense against strong light, UV irradiation, and pathogen infection. Aromatic hydroxyl groups and ortho-dihydroxyl groups in anthocyanins are able to inhibit free-radical chain reactions and hydroxyl radicals. Thus, anthocyanins play an antioxidative role by removing various types of ROS. Pepper is one of the solanaceous vegetables with the largest cultivation area in China. The purple-fruited pepper is rich in anthocyanins, which not only increases the ornamental nature of the pepper fruit but also benefits the human body. In this experiment, light-induced regulatory pathways and related specific regulators of anthocyanin biosynthesis were examined through integrative transcriptomic and metabolomic analysis. RESULTS: Results revealed that delphinium 3-O-glucoside significantly accumulated in light exposed surface of pepper fruit after 48 h as compared to shaded surface. Furthermore, through strand-specific sequencing technology, 1341 differentially expressed genes, 172 differentially expressed lncRNAs, 8 differentially expressed circRNAs, and 28 differentially expressed miRNAs were identified significantly different among both surfaces. The flavonoid synthesis pathway was significantly enriched by KEGG analysis including SHT (XM_016684802.1), AT-like (XM_016704776.1), CCoAOMT (XM_016698340.1, XM_016698341.1), CHI (XM_016697794.1, XM_016697793.1), CHS2 (XM_016718139.1), CHS1B (XM_016710598.1), CYP98A2-like (XM_016688489.1), DFR (XM_016705224.1), F3'5'H (XM_016693437.1), F3H (XM_016705025.1), F3'M (XM_016707872.1), LDOX (XM_016712446.1), TCM (XM_016722116.1) and TCM-like (XM_016722117.1). Most of these significantly enriched flavonoid synthesis pathway genes may be also regulated by lncRNA. Some differentially expressed genes encoding transcription factors were also identified including MYB4-like (XM_016725242.1), MYB113-like (XM_016689220.1), MYB308-like (XM_016696983.1, XM_016702244.1), and EGL1 (XM_016711673.1). Three 'lncRNA-miRNA-mRNA' regulatory networks with sly-miR5303, stu-miR5303g, stu-miR7997a, and stu-miR7997c were constructed, including 28 differentially expressed mRNAs and 6 differentially expressed lncRNAs. CONCLUSION: Possible light regulated anthocyanin biosynthesis and transport genes were identified by transcriptome analysis, and confirmed by qRT-PCR. These results provide important data for further understanding of the anthocyanin metabolism in response to light in pepper.


Assuntos
Antocianinas/biossíntese , Capsicum/genética , Capsicum/metabolismo , MicroRNAs/genética , Antocianinas/análise , Antocianinas/genética , Capsicum/fisiologia , Frutas/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Luz , Pigmentação , Proteínas de Plantas/genética , RNA Longo não Codificante/genética , Fatores de Transcrição/genética
14.
Plant Physiol ; 186(4): 2169-2189, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-33905518

RESUMO

Plant responses to pathogen attacks and high-temperature stress (HTS) are distinct in nature but generally share several signaling components. How plants produce specific responses through these common signaling intermediates remains elusive. With the help of reverse-genetics approaches, we describe here the mechanism underlying trade-offs in pepper (Capsicum annuum) between growth, immunity, and thermotolerance. The NAC-type transcription factor CaNAC2c was induced by HTS and Ralstonia solanacearum infection (RSI). CaNAC2c-inhibited pepper growth, promoted immunity against RSI by activating jasmonate-mediated immunity and H2O2 accumulation, and promoted HTS responses by activating Heat shock factor A5 (CaHSFA5) transcription and blocking H2O2 accumulation. We show that CaNAC2c physically interacts with CaHSP70 and CaNAC029 in a context-specific manner. Upon HTS, CaNAC2c-CaHSP70 interaction in the nucleus protected CaNAC2c from degradation and resulted in the activation of thermotolerance by increasing CaNAC2c binding and transcriptional activation of its target promoters. CaNAC2c did not induce immunity-related genes under HTS, likely due to the degradation of CaNAC029 by the 26S proteasome. Upon RSI, CaNAC2c interacted with CaNAC029 in the nucleus and activated jasmonate-mediated immunity but was prevented from activating thermotolerance-related genes. In non-stressed plants, CaNAC2c was tethered outside the nucleus by interaction with CaHSP70, and thus was unable to activate either immunity or thermotolerance. Our results indicate that pepper growth, immunity, and thermotolerance are coordinately and tightly regulated by CaNAC2c via its inducible expression and differential interaction with CaHSP70 and CaNAC029.


Assuntos
Capsicum/fisiologia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Capsicum/imunologia , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
15.
Plant Cell Environ ; 45(1): 236-247, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34708407

RESUMO

Upon sensing attack by pathogens and insect herbivores, plants release complex mixtures of volatile compounds. Here, we show that the infection of lima bean (Phaseolus lunatus L.) plants with the non-host bacterial pathogen Pseudomonas syringae pv. tomato led to the production of microbe-induced plant volatiles (MIPVs). Surprisingly, the bacterial type III secretion system, which injects effector proteins directly into the plant cytosol to subvert host functions, was found to prime both intra- and inter-specific defense responses in neighbouring wild tobacco (Nicotiana benthamiana) plants. Screening of each of 16 effectors using the Pseudomonas fluorescens effector-to-host analyser revealed that an effector, HopP1, was responsible for immune activation in receiver tobacco plants. Further study demonstrated that 1-octen-3-ol, 3-octanone and 3-octanol are novel MIPVs emitted by the lima bean plant in a HopP1-dependent manner. Exposure to synthetic 1-octen-3-ol activated immunity in tobacco plants against a virulent pathogen Pseudomonas syringae pv. tabaci. Our results show for the first time that a bacterial type III effector can trigger the emission of C8 plant volatiles that mediate defense priming via plant-plant interactions. These results provide novel insights into the role of airborne chemicals in bacterial pathogen-induced inter-specific plant-plant interactions.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Imunidade Vegetal , Pseudomonas syringae/patogenicidade , Sistemas de Secreção Tipo III/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Ar , Capsicum/fisiologia , Cucumis sativus/fisiologia , Regulação da Expressão Gênica de Plantas , Octanóis/farmacologia , Phaseolus/fisiologia , Imunidade Vegetal/efeitos dos fármacos , Transdução de Sinais , Nicotiana/fisiologia , Compostos Orgânicos Voláteis/farmacologia
16.
Theor Appl Genet ; 135(2): 591-604, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34762177

RESUMO

KEY MESSAGE: Genome-wide association study, bulked segregant analysis, and genetic analysis delimited the LG locus controlling light-green immature pepper fruits into a 35.07 kbp region on chromosome 10. A strong candidate gene, CaPP2C35, was identified in this region. In pepper (Capsicum annuum L.), the common colors of immature fruits are yellowish white, milky yellow, green, purple, and purplish black. Genes related to dark green, white, and purple immature fruits have been cloned; however, only a few studies have investigated light-green immature fruits. Here, we performed a genetic study using light-green (17C827) and green (17C658) immature fruits. The light-green color of immature fruits was controlled by a single locus-dominant genetic trait compared with the green color of immature fruits. We also performed a genome-wide association study and bulked segregant analysis of immature-fruit color and mapped the LG locus to a 35.07 kbp region on chromosome 10. Only one gene, Capana10g001710, was found in this region. A G-A substitution occurred at the 313th base of the Capana10g001710 coding sequence in 17C827, resulting in the conversion of the α-helix of its encoded PP2C35 protein into a ß-fold. The expression of Capana10g001710 (termed CaPP2C35) in 17C827 was significantly higher than in 17C658. Silencing CaPP2C35 in 17C827 resulted in an increase in chlorophyll content in the exocarp and the appearance of green stripes on the surface of the fruit. These results indicate that CaPP2C35 may be involved in the formation of light-green immature fruits by regulating the accumulation of chlorophyll content in the exocarp. Thus, these findings lay the foundation for further studies and genetic improvement of immature-fruit color in pepper.


Assuntos
Capsicum , Capsicum/fisiologia , Clorofila/metabolismo , Frutas/fisiologia , Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Bull Environ Contam Toxicol ; 108(5): 917-925, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35032178

RESUMO

In this study, the interactive effect of Cd and Pb on the growth of Capsicum annuum L. was studied through pot experiments, and the indicators of photosynthesis efficiency (PE) and antioxidant defense system (ADS) were measured at different plant ages. Single Pb stress on PE and ADS was stronger than single Cd stress at the first month. Both the PE and ADS response showed a significant decrease under the combined stress of Cd and Pb, which was primarily dependent on the Pb concentration. With increasing plant age, the PE and response of non-enzymatic ADS exhibited dramatic decreases under Cd and/or Pb stress, and the activities of enzymatic ADS showed increases to some extent. The factorial analysis showed that Cd and Pb had an interactive effect to reduce PE, while slightly enhanced the activities of enzymatic ADS. Those results are useful to explore the interaction between Cd and Pb in the combined stress and understand their accumulation in the plants.


Assuntos
Capsicum , Poluentes do Solo , Antioxidantes/metabolismo , Cádmio/análise , Cádmio/toxicidade , Capsicum/fisiologia , Chumbo/toxicidade , Fotossíntese , Poluentes do Solo/análise
18.
Plant J ; 101(3): 543-554, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31571298

RESUMO

While the adverse effects of elevated salinity levels on leaf gas exchange in many crops are not in dispute, representing such effects on leaf photosynthetic rates (A) continues to draw research attention. Here, an optimization model for stomatal conductance (gc ) that maximizes A while accounting for mesophyll conductance (gm ) was used to interpret new leaf gas exchange measurements collected for five irrigation water salinity levels. A function between chloroplastic CO2 concentration (cc ) and intercellular CO2 concentration (ci ) modified by salinity stress to estimate gm was proposed. Results showed that with increased salinity, the estimated gm and maximum photosynthetic capacity were both reduced, whereas the marginal water use efficiency λ increased linearly. Adjustments of gm , λ and photosynthetic capacity were shown to be consistent with a large corpus of drought-stress experiments. The inferred model parameters were then used to evaluate the combined effects of elevated salinity and atmospheric CO2 concentration (ca ) on leaf gas exchange. For a given salinity level, increasing ca increased A linearly, but these increases were accompanied by mild reductions in gc and transpiration. The ca level needed to ameliorate A reductions due to increased salinity is also discussed using the aforementioned model calculations.


Assuntos
Capsicum/fisiologia , Dióxido de Carbono/metabolismo , Fotossíntese , Estresse Fisiológico , Água/química , Irrigação Agrícola , Cloroplastos/fisiologia , Secas , Células do Mesofilo/fisiologia , Pressão Osmótica , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Salinidade
19.
BMC Plant Biol ; 21(1): 169, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33832439

RESUMO

BACKGROUND: Pepper is one of the most cultivated crops worldwide, but is sensitive to salinity. This sensitivity is dependent on varieties and our knowledge about how they can face such stress is limited, mainly according to a molecular point of view. This is the main reason why we decided to develop this transcriptomic analysis. Tolerant and sensitive accessions, respectively called A25 and A6, were grown for 14 days under control conditions and irrigated with 70 mM of NaCl. Biomass, different physiological parameters and differentially expressed genes were analysed to give response to differential salinity mechanisms between both accessions. RESULTS: The genetic changes found between the accessions under both control and stress conditions could explain the physiological behaviour in A25 by the decrease of osmotic potential that could be due mainly to an increase in potassium and proline accumulation, improved growth (e.g. expansins), more efficient starch accumulation (e.g. BAM1), ion homeostasis (e.g. CBL9, HAI3, BASS1), photosynthetic protection (e.g. FIB1A, TIL, JAR1) and antioxidant activity (e.g. PSDS3, SnRK2.10). In addition, misregulation of ABA signalling (e.g. HAB1, ERD4, HAI3) and other stress signalling genes (e.g. JAR1) would appear crucial to explain the different sensitivity to NaCl in both accessions. CONCLUSIONS: After analysing the physiological behaviour and transcriptomic results, we have concluded that A25 accession utilizes different strategies to cope better salt stress, being ABA-signalling a pivotal point of regulation. However, other strategies, such as the decrease in osmotic potential to preserve water status in leaves seem to be important to explain the defence response to salinity in pepper A25 plants.


Assuntos
Capsicum/fisiologia , Tolerância ao Sal/genética , Transcriptoma/fisiologia , Capsicum/genética
20.
BMC Plant Biol ; 21(1): 382, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34412592

RESUMO

BACKGROUND: Cysteine-rich receptor-like kinases (CRKs) represent a large subfamily of receptor-like kinases and play vital roles in diverse physiological processes in regulating plant growth and development. RESULTS: CaCRK5 transcripts were induced in pepper upon the infection of Ralstonia solanacearum and treatment with salicylic acid. The fusions between CaCRK5 and green fluorescence protein were targeted to the plasma membrane. Suppression of CaCRK5 via virus-induced gene silencing (VIGS) made pepper plants significantly susceptible to R. solanacearum infection, which was accompanied with decreased expression of defense related genes CaPR1, CaSAR8.2, CaDEF1 and CaACO1. Overexpression of CaCRK5 increased resistance against R. solanacearum in Nicotiana benthamiana. Furthermore, electrophoretic mobility shift assay and chromatin immunoprecipitation coupled with quantitative real-time PCR analysis revealed that a homeodomain zipper I protein CaHDZ27 can active the expression of CaCRK5 through directly binding to its promoter. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) analyses suggested that CaCRK5 heterodimerized with the homologous member CaCRK6 on the plasma membrane. CONCLUSIONS: Our data revealed that CaCRK5 played a positive role in regulating immune responses against R. solanacearum infection in pepper.


Assuntos
Capsicum/genética , Capsicum/microbiologia , Cisteína/genética , Cisteína/metabolismo , Resistência à Doença/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ralstonia solanacearum/patogenicidade , Capsicum/fisiologia , China , Resistência à Doença/fisiologia , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA