Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.162
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 368, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38711001

RESUMO

Chilli peppers are widely consumed for their pungency, as used in flavoring the food and has many pharmaceutical and medicinal properties. Based on these properties an experiment was held using 83 varieties of chilli (Hot pepper and sweet pepper) were grown in suitable environment using Augment Block design and evaluated for fruit pungency and phytochemical contents using high proficiency liquid chromatography. Analysis of variance (ANOVA) of traits showed highly significant for all traits except for fruit length and capsaicin contents. The value of Least significant increase (LSI)was ranged 0.27-1289.9 for all traits showed high variation among varieties. Highly significant correlation was found among fruit diameter to fruit weight 0.98, while moderate to high correlation was present among all traits. The most pungent genotype 24,634 was 4.8 g in weight, while the least pungent genotypes i.e. PPE-311 (32.8 g), green wonder (40.67) had higher in weight. The genotypes 24,627, 32,344, 32,368 and 1108 marked as higher number of seeds in their placental region. It was observed that chilli genotype 24,621 had maximum length with considerable high amount of pungency act as novel cultivar. Principal component analysis (PCA) showed the high variability of 46.97 for two PCs with the eigen value 2.6 and 1.63 was recorded. Biplot analysis showed a considerable variability for fruit pungency, while huge variability was found for all traits among given varieties. PPE-311, T5 and T3 are found as highly divergent for all traits. The findings of this study are instrumental for selecting parents to improve desirable traits in future chilli pepper breeding programs. It will help plant/vegetable breeders for development of highly nutrient and pungent varieties and attractive for the consumer of food sector.


Assuntos
Capsicum , Frutas , Variação Genética , Compostos Fitoquímicos , Frutas/genética , Frutas/química , Cromatografia Líquida de Alta Pressão , Capsicum/genética , Capsicum/química , Genótipo , Sementes/genética , Sementes/química
2.
Environ Res ; 251(Pt 2): 118727, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490629

RESUMO

Agriculture plays a vital role in the food security and economies of Asian countries. Annually, numerous metric tons of vegetable and fruit wastes are disposed of. This research aimed to convert the food wastes encompassing the vegetable and fruit wastes into solid and liquid organic fertilizer and to evaluate their influence on the growth (germination, phytochemicals, and biomolecules) of Solanum lycopersicum and Capsicum annum. Solanum lycopersicum, known as tomato, and Capsicum annum, known as bell pepper or chili pepper, are globally significant crops valued for their medicinal properties and economic importance. The pot experiment was performed with organic fertilizers (solid and liquid organic fertilizer) and compared with the influence of chemical fertilizer and control soil without fertilizers. Interestingly, the liquid organic fertilizer effectively enhanced the biometric profile and chlorophyll content of S. lycopersicum and C. annum Viz., 1.23 mg g-1 and 0.89 mg g-1, respectively. The results of a 30-days pot experiment with various fertilizer treatments showed significant influence of liquid organic fertilizer on the fresh and dry weight biomass of both S. lycopersicum and C. annum. Subsequently, the solid organic fertilizer showed considerable influence on test crops, and the influence of these organic fertilizers was more significant than the chemical fertilizer on crop growth in 30-days experiment. These results suggest that the sustainable approach can effectively convert vegetables and fruit waste into valuable organic fertilizer enriched with plant growth supporting essential nutritional elements.


Assuntos
Capsicum , Fertilizantes , Frutas , Solanum lycopersicum , Verduras , Fertilizantes/análise , Capsicum/crescimento & desenvolvimento , Capsicum/química , Solanum lycopersicum/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Frutas/química , Verduras/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/métodos
3.
Chem Biodivers ; 21(6): e202400581, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38619505

RESUMO

For the first time, kinetic thermomagnetic extraction is a novel approach presented in this work. It required the application of four distinct variables: rotation speed (50, 75, and 100 rpm), magnetic field (0.8, 1.2, and 1.6 T), time interval (30, 60, and 90 min), and temperature (45, 55, and 65 °C). Numerous phytochemical categories were detected in the 81 crude chloroform extracts of green sweet bell pepper seeds that were collected, according to phytochemical analysis. Nine extracts were discovered to be linked to the coumarin chemical class and to have the same two extraction parameters: a 90-minute extraction duration and a 55 °C extraction temperature. To enable their coumarin contents to be chemically separated and chromatographically purified, two of these extracts containing coumarin were chosen. Four new phytocoumarins have been identified and their molecular structures distinguished using FTIR spectra, 1H-NMR, 13C-NMR, and mass analysis. By using MTT probing, it was discovered that these phytocoumarins exhibited anticancer activities against eight malignant populations and reduced oxidative stress in human SH-SY5Y populations. Similarly, the anti-inflammatory and antidiabetic properties were determined using three and two associated enzymes, respectively. The results demonstrated that the extracted phytocoumarins have exceptional oxidative stress-mitigating characteristics, ranging from 71.51 to 81.48 %, when compared to a positive control. Furthermore, they showed excellent cytotoxicity against the test malignant populations (IC50 values of 46.76-81.45 µg/ml). The isolates need to be taken into account as dual COX-2/5-LOX antagonists because they also showed a fascinating selective anti-inflammatory effect. The phytocoumarins under investigation have selectivity indices that are higher than those of the standards used, suggesting that they may have the ability to selectively block the COX2 enzyme that induces harmful inflammation. Compared to the standards, the phytocoumarins have a higher ability to block the catalytic activity of 5-LOX. This observation suggests that the phytocoumarins are powerful 5-LOX agents. Finally, they had a modest antidiabetic impact when tested against two blood-controlling enzymes. The authors came to the conclusion that the technique adopted is flexible and successful for extraction after modifying its components. Moreover, isolated phytocoumarins in general and natural-B1 in particular provide naturally derived solutions for oxidative stress and its associated diseases.


Assuntos
Antineoplásicos Fitogênicos , Capsicum , Cumarínicos , Extratos Vegetais , Sementes , Humanos , Capsicum/química , Sementes/química , Cumarínicos/isolamento & purificação , Cumarínicos/química , Cumarínicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Ensaios de Seleção de Medicamentos Antitumorais , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Relação Estrutura-Atividade
4.
J Environ Sci Health B ; 59(7): 361-367, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774990

RESUMO

Field and lab experiments explored tetraniliprole dissipation in chili plants. A supervised trial in Devarayapuram village, Coimbatore, assessed the CO2 chili variety (December-March 2018-2019). Using the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method and ultra-high-performance liquid chromatography (UHPLC), samples were collected up to 15 d post-application. Initial tetraniliprole deposits on chili fruits, 1-h post-spray, were 0.898 and 1.271 µg g-1 at single and double doses. Over 80% dissipated within 5 d, reaching below detection limits by day 7 and 10 for single and double doses, respectively. Transformation analysis favored first-order kinetics. Tetraniliprole half-life on chili fruit was 1.49 and 1.53 d at recommended and double doses. The safe waiting period was 4.16 and 5.04 d for 60 and 120 g a.i ha-1. This study provides insights into tetraniliprole dynamics in chili plants, crucial for effective pesticide management.


Assuntos
Capsicum , Capsicum/química , Frutas/química , Cromatografia Líquida de Alta Pressão , Meia-Vida , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/química , Contaminação de Alimentos/análise , Cinética
5.
Microb Cell Fact ; 22(1): 70, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055827

RESUMO

Alternaria alternata that threatens pepper production and causes major economic harm is responsible for the leaf spot/blight disease. Chemical fungicides have been widely employed; unfortunately, fungicidal resistance is a current concern. Therefore, finding new environmentally friendly biocontrol agents is a future challenge. One of these friendly solutions is the use of bacterial endophytes that have been identified as a source of bioactive compounds. The current study investigates the in vivo and in vitro fungicidal potential of Bacillus amyloliquefaciens RaSh1 (MZ945930) against pathogenic A. alternata. In vitro, the results revealed that RaSh1 exhibited strong antagonistic activity against A. alternata. In addition to this, we inoculated pepper (Capsicum annuum L.) plants with B. amyloliquefaciens RaSh1 and infected them with A. alternata. As a result of A. alternata infection, which generated the highest leaf spot disease incidence (DI), the plant's growth indices and physio-biochemical characteristics significantly decreased, according to our findings. Our results also showed the abnormal and deformed cell structure using light and electron microscopy of A. alternata-infected leaves compared with other treatments. However, DI was greatly reduced with B. amyloliquefaciens RaSh1 application (40%) compared to pepper plants infected with A. alternata (80%), and this led to the largest increases in all identified physio-biochemical parameters, including the activity of the defense-related enzymes. Moreover, inoculation of pepper plants with B. amyloliquefaciens RaSh1 decreased electrolyte leakage by 19.53% and MDA content by 38.60% as compared to A. alternata infected ones. Our results show that the endophyte B. amyloliquefaciens RaSh1 has excellent potential as a biocontrol agent and positively affects pepper plant growth.


Assuntos
Bacillus amyloliquefaciens , Capsicum , Fungicidas Industriais , Antifúngicos/farmacologia , Capsicum/química , Capsicum/microbiologia , Alternaria
6.
Photochem Photobiol Sci ; 22(10): 2401-2412, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37468787

RESUMO

Sweet peppers are popular worldwide due to their nutrition and taste. Conventional vegetable tracing methods have been trialed, but the application of such labels or tags can be laborious and expensive, making their commercial application impractical. What is needed is a label-free method that can identify features unique to each individual fruit. Our research team has noted that sweet peppers have unique textural fluorescence features when observed under UV light that could potentially be used as a label-free signature for identification of individual fruit as it travels through the postharvest supply chain. The objective of this research was to assess the feature of these sweet pepper features for identification purposes. The macroscopic and microscopic images were taken to characterize the fluorescence. The results indicate that all sweet peppers possess dot-like fluorescence features on their surface. Furthermore, it was observed that 93.60% of these features exhibited changes in fluorescence intensity within the cuticle layer during the growth of a pepper. These features on the macro-image are visible under 365 nm UV light, but challenging to be seen under white LEDs and to be classified from the fluorescence spectrum under 365 nm light. This research reported the fluorescence feature on the sweet pepper, which is invisible under white light. The results show that the uniqueness of fluorescent features on the surface of sweet peppers has the potential to become a traceability technology due to the presence of its unique physical modality.


Assuntos
Capsicum , Capsicum/química , Raios Ultravioleta , Fluorescência , Luz , Frutas
7.
Environ Sci Technol ; 57(26): 9773-9781, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37334664

RESUMO

Orthogonal techniques were used to track manganese nanoparticles (MnNPs) in Capsicum annuum L. leaf tissue and cell compartments and subsequently to explain the mechanism of uptake, translocation, and cellular interaction. C. annuum L was cultivated and foliarly exposed to MnNPs (100 mg/L, 50 mL/per leaf) before analysis by using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS) as well as dark-field hyperspectral and two-photon microscopy. We visualized the internalization of MnNP aggregates from the leaf surface and observed particle accumulation in the leaf cuticle and epidermis as well as spongy mesophyll and guard cells. These techniques enabled a description of how MnNPs cross different plant tissues as well as selectively accumulate and translocate in specific cells. We also imaged abundant fluorescent vesicles and vacuoles containing MnNPs, indicating likely induction of autophagy processes in C. annuum L., which is the bio-response upon storing or transforming the particles. These findings highlight the importance of utilizing orthogonal techniques to characterize nanoscale material fate and distribution with complex biological matrices and demonstrate that such an approach offers a significant mechanistic understanding that can inform both risk assessment and efforts aimed at applying nanotechnology to agriculture.


Assuntos
Capsicum , Nanopartículas , Capsicum/química , Manganês , Microscopia Eletrônica de Varredura , Autofagia
8.
Biomed Chromatogr ; 37(9): e5695, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37406633

RESUMO

Fipronil is a broad-spectrum phenyl pyrazole insecticide that has a high degree of environmental toxicity. Commonly available chilies in the market are treated with fipronil insecticides. Demand for insecticide-free chili has thus been increasing globally. This needs various sustainable and economical methods to remove insecticides from chilies. The present study examined the effectiveness of several cleaning methods to remove pesticide residues in chili fruits. A supervised field trial was conducted in randomized block design at Rajasthan Agricultural Research Institute, Durgapura, Jaipur, India. Chili samples were subjected to seven different household methods. The samples were extracted using the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method. The residues were analyzed using a gas chromatograph-electron capture detector and confirmed by GC-MS. Of the seven methods, the acetic acid treatment removes the maximum residue effect of fipronil and its metabolites (desulfinyl [MB046513]), sulfide (MB045950), and sulfone (MB046136) on chili fruits. By contrast, the tap water treatment was the least effective. The Food Safety and Standards Authority of India (FSSAI) have set the maximum residue limit value of 0.001 mg kg-1 for fipronil on green chili.


Assuntos
Capsicum , Inseticidas , Resíduos de Praguicidas , Capsicum/química , Frutas/química , Descontaminação , Índia , Inseticidas/análise , Pirazóis/química , Resíduos de Praguicidas/análise
9.
Phytother Res ; 37(3): 965-1002, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36255140

RESUMO

Capsicum annuum L., commonly known as chili pepper, is used as an important spice globally and as a crude drug in many traditional medicine systems. The fruits of C. annuum have been used as a tonic, antiseptic, and stimulating agent, to treat dyspepsia, appetites, and flatulence, and to improve digestion and circulation. The article aims to critically review the phytochemical and pharmacological properties of C. annuum and its major compounds. Capsaicin, dihydrocapsaicin, and some carotenoids are reported as the major active compounds with several pharmacological potentials especially as anticancer and cardioprotectant. The anticancer effect of capsaicinoids is mainly mediated through mechanisms involving the interaction of Ca2+ -dependent activation of the MAPK pathway, suppression of NOX-dependent reactive oxygen species generation, and p53-mediated activation of mitochondrial apoptosis in cancer cells. Similarly, the cardioprotective effects of capsaicinoids are mediated through their interaction with cellular transient receptor potential vanilloid 1 channel, and restoration of calcitonin gene-related peptide via Ca2+ -dependent release of neuropeptides and suppression of bradykinin. In conclusion, this comprehensive review presents detailed information about the traditional uses, phytochemistry, and pharmacology of major bioactive principles of C. annuum with special emphasis on anticancer, cardioprotective effects, and plausible toxic adversities along with food safety.


Assuntos
Capsicum , Capsicum/química , Especiarias , Capsaicina , Extratos Vegetais/química , Frutas/química , Cânfora/análise
10.
Chem Biodivers ; 20(8): e202300691, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37329501

RESUMO

Three new compounds, including two new sesquiterpenes (1-2), named Annuumine E-F, and one new natural product, 3-hydroxy-2,6-dimethylbenzenemethanol (3), together with seventeen known compounds (4-20) were isolated from the ethanol extract of the roots of Capsicum annuum L. Among them, five compounds (4, 5, 9, 10 and 20) were isolated from this plant for the first time. The structures of new compounds (1-3) were determined via detailed analysis of the IR, HR-ESI-MS and 1D and 2D NMR spectra. The anti-inflammatory activities of the isolated compounds were evaluated by their ability to reduce NO release by LPS-induced RAW 264.7 cells. Notably, compound 11 exhibited moderate anti-inflammatory activity (IC50 =21.11 µM). Moreover, the antibacterial activities of the isolated compounds were also evaluated.


Assuntos
Capsicum , Animais , Camundongos , Capsicum/química , Estrutura Molecular , Células RAW 264.7 , Anti-Inflamatórios/química , Antibacterianos/farmacologia
11.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068976

RESUMO

Fruits and vegetables processing produces significant amounts of by-products rich in valuable bioactive compounds such as polyphenols and dietary fiber. Food by-product re-use promotes the eco-sustainability of several crops. This study aimed to apply green extractions of bioactive compounds from by-products of basil, tomato, and red bell pepper production. Tests were performed by applying extraction procedures both at laboratory scale and using the Timatic® extractor. Water and ethanol 10% and 20% were used for extraction of red bell pepper and tomato, testing different temperatures (30, 50, and 90 °C; water at 90 °C and ethanol 20% were applied for basil. The obtained phenolic extracts were analyzed by HPLC-DAD-MS. Polysaccharides of tomato and red bell pepper were extracted at laboratory scale and chemically characterized using 1H-NMR to define the methylation and acylation degree, and DLS to estimate the hydrodynamic volume. Laboratory extraction tests allowed efficient scaling-up of the process on the Timatic® extractor. Phenolic content in the dried extracts (DE) ranged 8.0-11.2 mg/g for tomato and red bell pepper and reached 240 mg/g for basil extracts. Polysaccharide yields (w/w on DM) reached 6.0 and 10.4% for dried tomato and red bell pepper, respectively. Dry extracts obtained using the Timatic® extractor and water can be useful sources of bioactive phenols. The study provided new data on tomato and red bell pepper polysaccharides that may be useful for future applications.


Assuntos
Capsicum , Ocimum basilicum , Solanum lycopersicum , Capsicum/química , Polifenóis , Etanol , Água
12.
Molecules ; 28(14)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37513310

RESUMO

Paprika Capsicum annuum L. contains useful molecules such as carotenoids and polyunsaturated fatty acids, which are considered high-value functional and health ingredients. To obtain these compounds, paprika was extracted using different methods (Soxhlet, SC-CO2, and SC-CO2 with co-extractant) and at different parameters. The results showed that the carotenoid content decreased with the addition of the co-extractant while the fatty acid content and yield increased. It was found that the highest carotenoid content (capsanthin > ß-carotene > capsorubin > zeaxanthin > ß-cryptoxanthin > violaxanthin) was obtained at 50 °C/45 MPa for SC-CO2 extraction. Paprika extract rich in polyunsaturated fatty acids (linoleic, oleic, and α-linolenic acid) was obtained at 40 °C/25 MPa for SC-CO2 with co-extractant. The PUFA/SFA ratios for paprika extract were in agreement with the recommendations of nutritional guidelines. The use of SC-CO2 for the extraction of Capsicum annuum allowed us to obtain a high-quality, rich in carotenoids and polyunsaturated fatty acids, extract that can be used as a substrate in the industry.


Assuntos
Capsicum , Carotenoides , Capsicum/química , Dióxido de Carbono , Etanol , Ácidos Graxos , Extratos Vegetais
13.
Molecules ; 28(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36903607

RESUMO

For the better standardization and widespread application of the determination method of carotenoids in both chili peppers and their products, this work reports for the first time the simultaneous determination of five main carotenoids, including capsanthin, zeaxanthin, lutein, ß-cryptoxanthin and ß-carotene in chili peppers and their products, with optimized extraction and the high-performance liquid chromatography (HPLC) method. All parameters in the methodological evaluation were found to be in good stability, recovery and accuracy compliance with the reference values; the R coefficients for the calibration curves were more than 0.998; and the LODs and LOQs varied from 0.020 to 0.063 and from 0.067 to 0.209 mg/L, respectively. The characterization of five carotenoids in chili peppers and their products passed all the required validation criteria. The method was applied in the determination of carotenoids in nine fresh chili peppers and seven chili pepper products.


Assuntos
Capsicum , beta Caroteno , beta Caroteno/análise , Luteína/análise , Zeaxantinas/análise , Capsicum/química , Cromatografia Líquida de Alta Pressão/métodos , beta-Criptoxantina/análise , Carotenoides/química
14.
Molecules ; 28(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37836615

RESUMO

The affinity of specific phenolic compounds (PCs) and capsaicinoids (CAPs) present in three Capsicum annuum varieties (Friariello, Cayenne and Dzuljunska Sipka) to the transient receptor potential vanilloid member 1 (TRPV1) was investigated by integrating an analytic approach for the simultaneous extraction and analysis through high-performance liquid chromatography coupled with ion trap mass spectrometry (HPLC/ITMS) and UV detection (HPLC-UV) of PCs and CAPs and structural bioinformatics based on the protein modelling and molecular simulations of protein-ligand docking. Overall, a total of 35 compounds were identified in the different samples and CAPs were quantified. The highest content of total polyphenols was recorded in the pungent Dzuljunska Sipka variety (8.91 ± 0.05 gGAE/Kg DW) while the lowest was found in the non-pungent variety Friariello (3.58 ± 0.02 gGAE/Kg DW). Protein modelling generated for the first time a complete model of the homotetrameric human TRPV1, and it was used for docking simulations with the compounds detected via the analytic approach, as well as with other compounds, as an inhibitor reference. The simulations indicate that different capsaicinoids can interact with the receptor, providing details on the molecular interaction, with similar predicted binding energy values. These results offer new insights into the interaction of capsaicinoids with TRPV1 and their possible actions.


Assuntos
Capsicum , Humanos , Capsicum/química , Capsaicina/farmacologia , Capsaicina/análise , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/química , Espectrometria de Massas , Fenóis/farmacologia , Fenóis/análise , Frutas/química
15.
Molecules ; 28(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37175071

RESUMO

Cancer is a relevant health problem worldwide. In 2020, leukemias represented the 13th most commonly reported cancer cases worldwide but the 10th most likely to cause deaths. There has been a progressive increase in the efficacy of treatments for leukemias; however, these still generate important side effects, so it is imperative to search for new alternatives. Defensins are a group of antimicrobial peptides with activity against cancer cells. However, the cytotoxic mechanism of these peptides has been described mainly for animal defensins. This study shows that defensin γ-thionin (Capsicum chinense) is cytotoxic to the K562 leukemia cells with an IC50 = 290 µg/mL (50.26 µM) but not for human peripheral blood mononuclear cells. Results showed that γ-thionin did not affect the membrane potential; however, the peptide modified the mitochondrial membrane potential (ΔΨm) and the intracellular calcium release. In addition, γ-thionin induced apoptosis in K562 cells, but the activation of caspases 8 and 9 was not detected. Moreover, the activation of calpains was detected at one hour of treatment, suggesting that γ-thionin activates the caspase-independent apoptosis. Furthermore, the γ-thionin induced epigenetic modifications on histone 3 in K562 cells, increased global acetylation (~2-fold), and specific acetylation marks at lysine 9 (H3K9Ac) (~1.5-fold). In addition, γ-thionin increased the lysine 9 methylation (H3K9me) and dimethylation marks (H3K9me2) (~2-fold), as well as the trimethylation mark (H3K9me3) (~2-fold). To our knowledge, this is the first report of a defensin that triggers caspase-independent apoptosis in cancer cells via calpains and regulating chromatin remodelation, a novel property for a plant defensin.


Assuntos
Antineoplásicos , Capsicum , Leucemia Mielogênica Crônica BCR-ABL Positiva , Tioninas , Animais , Humanos , Tioninas/farmacologia , Células K562 , Capsicum/química , Peptídeos Antimicrobianos , Chile , Leucócitos Mononucleares/metabolismo , Lisina/farmacologia , Apoptose , Peptídeos/farmacologia , Antineoplásicos/farmacologia , Caspases/metabolismo , Defensinas/farmacologia , Epigênese Genética
16.
J Sci Food Agric ; 103(5): 2593-2601, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36624038

RESUMO

BACKGROUND: Seasonal low light intensity and short photoperiods lead to decreased yield, size, and quality of fruits in the Northern Hemisphere. Recently, supplemental lighting using light-emitting diodes (LEDs) has been introduced to overcome such problems. However, most studies have focused on plant growth or fruit yield but not on taste. This study aimed to evaluate the quality and volatile compounds of greenhouse sweet pepper fruits under three different lighting conditions: natural light only (NL), NL with red/blue interlighting (RB), and NL with red/blue/far-red interlighting (RBFR). RESULTS: The size, color, firmness, and soluble sugar concentration of the sweet pepper fruit were investigated, and sensory evaluation was conducted by nine trained panelists. Individual fruit fresh weights were higher in the order of RBFR, NL, and RB, with mean values of 219.1, 201.7, and 197.4 g, respectively. Additionally, the composition of volatile compounds demonstrated a distinct clustering pattern by light treatment, implying that the LED interlighting spectra affected the overall taste of sweet pepper fruits. Sensory evaluation indicated that sweetness was higher in the order of RBFR, RB, and NL, with values of 5.28, 4.36, and 3.72, respectively. The soluble sugar results showed the same order as that for the sensory evaluation of sweetness, i.e., RBFR, RB, and NL, with values of 5071, 4647, and 3978 µg -1 fresh weight, respectively. CONCLUSION: Adding far-red to RB interlighting could improve the fruit quality attributes, fruit taste perception, and soluble sugars of sweet peppers compared to those under RB or solely NL. © 2023 Society of Chemical Industry.


Assuntos
Capsicum , Frutas , Frutas/química , Capsicum/química , Luz , Percepção Gustatória , Açúcares/análise
17.
J Sci Food Agric ; 103(7): 3701-3713, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36325913

RESUMO

BACKGROUND: Antioxidant and anti-inflammatory effects of natural products on skin cells have been proved to be effective in improving skin damage. Capsicum species contain capsaicinoids that have antioxidant and anti-inflammatory properties, and various subspecies are cultivated. In this study, the effects of four Capsicum fruits and major constituents on oxidative stress and inflammatory reactions were measured using human dermal fibroblasts (HDFs) to verify their effects on skin damage. RESULTS: The inhibitory effects of nitric oxide (NO), reactive oxygen species (ROS), and prostaglandin E2 (PGE2 ) by cucumber hot pepper, red pepper (RDP), Shishito pepper (SSP), and Cheongyang pepper were determined in HDFs. RDP and SSP inhibited the production of NO, ROS, and PGE2 in tumor necrosis factor-alpha-stimulated HDFs. Additionally, SSP seeds restored tumor necrosis factor-alpha-induced increase in matrix metalloproteinase-1 and decreased procollagen I α1 (COLIA1). In high-performance liquid chromatography analysis of the capsaicinoids capsaicin (CAP) and dihydrocapsaicin (DHC), CAP was detected at a higher level than DHC in the peel and seeds of all four types of Capsicum fruits, and the total amount of capsaicinoids was the highest in SSP. CAP and DHC, which are major constituents of Capsicum fruits, also inhibited NO, ROS, and PGE2 and restored matrix metalloproteinase-1 and procollagen I α1. CONCLUSION: RDP and SSP were shown to have a significant protective effect on skin damage, including oxidative stress, inflammatory reactions, and reduction of collagens. Capsaicinoids CAP and DHC were proved as active constituents. This research may provide basic data for developing Capsicum fruits as ingredients to improve skin damage, such as inflammation and skin aging. © 2022 Society of Chemical Industry.


Assuntos
Capsicum , Humanos , Capsicum/química , Fator de Necrose Tumoral alfa , Frutas/química , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/análise , Antioxidantes/farmacologia , Antioxidantes/análise , Pró-Colágeno/análise , Espécies Reativas de Oxigênio/análise , Capsaicina/análise , Verduras , Cânfora/análise , Mentol/análise , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/análise
18.
Compr Rev Food Sci Food Saf ; 22(4): 3011-3052, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37184378

RESUMO

The use of natural food items as antioxidants has gained increasing popularity and attention in recent times supported by scientific studies validating the antioxidant properties of natural food items. Peppers (Capsicum spp.) are also important sources of antioxidants and several studies published during the last few decades identified and quantified various groups of phytochemicals with antioxidant capacities as well as indicated the influence of several pre- and postharvest factors on the antioxidant capacity of pepper. Therefore, this review summarizes the research findings on the antioxidant activity of pepper published to date and discusses their potential health benefits as well as the factors influencing the antioxidant activity in pepper. The major antioxidant compounds in pepper include capsaicinoids, capsinoids, vitamins, carotenoids, phenols, and flavonoids, and these antioxidants potentially modulate oxidative stress related to aging and diseases by targeting reactive oxygen and nitrogen species, lipid peroxidation products, as well as genes for transcription factors that regulate antioxidant response elements genes. The review also provides a systematic understanding of the factors that maintain or improve the antioxidant capacity of peppers and the application of these strategies offers options to pepper growers and spices industries for maximizing the antioxidant activity of peppers and their health benefits to consumers. In addition, the efficacy of pepper antioxidants, safety aspects, and formulations of novel products with pepper antioxidants have also been covered with future perspectives on potential innovative uses of pepper antioxidants in the future.


Assuntos
Antioxidantes , Capsicum , Antioxidantes/química , Carotenoides , Capsicum/química , Flavonoides/farmacologia , Extratos Vegetais/química
19.
Trop Anim Health Prod ; 55(2): 114, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928365

RESUMO

Dairy bulls in feedlots have been a viable alternative for dairy producers to reinforce the family's income. Aspects such as balanced diets and proper management are essential for these animals to develop and allow an economic return fully. Plant extracts are performance enhancers and ruminal and intestinal health promoters. Therefore, this study aims to evaluate whether the addition of encapsulated pepper (EP) blend (Capsicum annuum, Capsicum frutescens, and Capsicum chinense - rich in capsaicin) interferes with the volatile fatty acid profile in the rumen and enhances the growth performance of Holstein bullocks in a feedlot. For the experiment, 24 whole bullocks were used, distributed into three treatments, with eight replicates per treatment (one animal as an experimental unit, kept in an individual stall): groups T0, T200, and T400, receiving 0 mg, 200 mg, and 400 mg EP/kg of concentrate, respectively. Knowing the intake of concentrate and the average body weight during the experiment, we calculated the dose in mg/kg/day of the EP; that is, the T200 animals consumed 2.45 mg EP/kg (body weight -BW)/day; and T400 consumed 4.9 mg EP/kg BW/day. The animals from T400 presented a more significant weight gain between days 15 and 45 of confinement compared to T0 (P=0.05). This same treatment (T400) had a trend of lower weight gain between days 46 and 90 (P=0.09). Likewise, the T400 group had higher feed efficiency than T0 between days 15 and 45. Furthermore, the treatments affected the white blood cell count, with the T400 bullocks showing a higher number of neutrophils and lymphocytes. Higher levels of C-reactive protein (CRP) were measured in the serum of steers from both groups that consumed pepper (P<0.01). Interaction between treatment × day was observed for the activity of glutathione enzymes (GST and GPx) and levels of lipoperoxidation (LPO) (characterized by antioxidant stimulation) associated with the reduction in serum LPO; similar antioxidant enzymes behavior was observed in the liver. In the small intestine (jejunum), the activities of antioxidant enzymes (GST and GPx) were lower in the two groups of cattle that consumed EP, and LPO was lower. The treatments affected the concentration of acetic acid in the rumen fluid, presenting lower levels in T400 compared to T200 and similar T0 (P≤0.05). There was an interaction of day vs. treatment for propionic acid, presenting a higher concentration on day 45 at T400 than T0. These results, therefore, allow us to conclude that adding 400 mg of pepper extract can be an excellent additive for weight gain at the beginning of the experiment; however, over time, this dose of additive negatively affects weight gain. Both EP doses stimulated serum and tissue antioxidant responses, reducing lipoperoxidation. However, the 400 mg EP/kg concentrate suggests a pro-inflammatory response (leukocytosis and elevated CRP), s probably related to the high dose (i.e., between 1.7 and 2.4 g/animal/day).


Assuntos
Ração Animal , Antioxidantes , Capsicum , Suplementos Nutricionais , Animais , Bovinos , Masculino , Ração Animal/análise , Antioxidantes/metabolismo , Peso Corporal , Dieta/veterinária , Ácidos Graxos Voláteis/metabolismo , Fermentação , Rúmen/metabolismo , Aumento de Peso , Capsicum/química
20.
Funct Integr Genomics ; 22(6): 1189-1209, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36173582

RESUMO

To date, several transcriptomic studies during fruit development have been reported; however, no comprehensive integrated study on expression diversity, alternative splicing, and metabolomic profiling was reported in Capsicum. This study analyzed RNA-seq data and untargeted metabolomic profiling from early green (EG), mature green (MG), and breaker (Br) fruit stages from two Capsicum species, i.e., C. annuum (Cann) and C. frutescens (Cfrut) from Northeast India. A total of 117,416 and 96,802 alternatively spliced events (AltSpli-events) were identified from Cann and Cfrut, respectively. Among AltSpli-events, intron retention (IR; 32.2% Cann and 25.75% Cfrut) followed by alternative acceptor (AA; 15.4% Cann and 18.9% Cfrut) were the most abundant in Capsicum. Around 7600 genes expressed in at least one fruit stage of Cann and Cfrut were AltSpli. The study identified spliced variants of genes including transcription factors (TFs) potentially involved in fruit development/ripening (Aux/IAA 16-like, ETR, SGR1, ARF, CaGLK2, ETR, CaAGL1, MADS-RIN, FUL1, SEPALLATA1), carotenoid (PDS, CA1, CCD4, NCED3, xanthoxin dehydrogenase, CaERF82, CabHLH100, CaMYB3R-1, SGR1, CaWRKY28, CaWRKY48, CaWRKY54), and capsaicinoids or flavonoid biosynthesis (CaMYB48, CaWRKY51), which were significantly differentially spliced (DS) between consecutive Capsicum fruit stages. Also, this study observed that differentially expressed isoforms (DEiso) from 38 genes with differentially spliced events (DSE) were significantly enriched in various metabolic pathways such as starch and sucrose metabolism, amino acid metabolism, cysteine cutin suberin and wax biosynthesis, and carotenoid biosynthesis. Furthermore, the metabolomic profiling revealed that metabolites from aforementioned pathways such as carbohydrates (mainly sugars such as D-fructose, D-galactose, maltose, and sucrose), organic acids (carboxylic acids), and peptide groups significantly altered during fruit development. Taken together, our findings could help in alternative splicing-based targeted studies of candidate genes involved in fruit development and ripening in Capsicum crop.


Assuntos
Capsicum , Capsicum/genética , Capsicum/química , Capsicum/metabolismo , Frutas/genética , Carotenoides/metabolismo , Transcriptoma , Sacarose/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA