Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 775
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Appl Opt ; 63(13): 3712-3724, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856558

RESUMO

This study aimed to evaluate the effects of herbicide 2, 4-D-dichlorophenoxy acetic acid on golden apple snail eggs and embryos. Additionally, the study assessed the applicability of optical coherence tomography (OCT), a non-invasive depth cross-sectional microscopic imaging technique, as a novel method, to the best of our knowledge, for studying morphological changes in golden apple snail eggs and embryos, in comparison to the conventional approach of using white light microscopy. The study revealed that the herbicide 2,4-D-dichlorophenoxy acetic acid affected the hatchery rate and morphological changes of the eggs and embryos. The lethal concentration (LC50), representing the concentration of a substance that is expected to cause death in half of the population being studied, of the golden apple eggs and embryos increased with longer exposure time and higher concentrations. The estimated median effective concentration (EC50), which denotes the concentration producing the desired effect in 50% of the exposed golden apple embryos, exhibited a similar trend of change as the LC50. When compared to the microscopic study, it was observed that OCT could be employed to investigate morphological changes of golden apple snail eggs and embryos, enabling evaluation of alterations in both 2D and 3D structures.


Assuntos
Ácido 2,4-Diclorofenoxiacético , Embrião não Mamífero , Herbicidas , Tomografia de Coerência Óptica , Animais , Ácido 2,4-Diclorofenoxiacético/farmacologia , Ácido 2,4-Diclorofenoxiacético/toxicidade , Tomografia de Coerência Óptica/métodos , Herbicidas/farmacologia , Herbicidas/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/embriologia , Caramujos/embriologia , Caramujos/efeitos dos fármacos , Óvulo/efeitos dos fármacos
2.
Parasitol Res ; 123(7): 257, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940835

RESUMO

As ecosystem disruptors and intermediate hosts for various parasites, freshwater snails have significant socioeconomic impacts on human health, livestock production, and aquaculture. Although traditional molluscicides have been widely used to mitigate these effects, their environmental impact has encouraged research into alternative, biologically based strategies to create safer, more effective molluscicides and diminish the susceptibility of snails to parasites. This review focuses on alterations in glucose metabolism in snails under the multifaceted stressors of parasitic infections, drug exposure, and environmental changes and proposes a novel approach for snail management. Key enzymes within the glycolytic pathway, such as hexokinase and pyruvate kinase; tricarboxylic acid (TCA) cycle; and electron transport chains, such as succinate dehydrogenase and cytochrome c oxidase, are innovative targets for molluscicide development. These targets can affect both snails and parasites and provide an important direction for parasitic disease prevention research. For the first time, this review summarises the reverse TCA cycle and alternative oxidase pathway, which are unique metabolic bypasses in invertebrates that have emerged as suitable targets for the formulation of low-toxicity molluscicides. Additionally, it highlights the importance of other metabolic pathways, including lactate, alanine, glycogenolysis, and pentose phosphate pathways, in snail energy supply, antioxidant stress responses, and drug evasion mechanisms. By analysing the alterations in key metabolic enzymes and their products in stressed snails, this review deepens our understanding of glucose metabolic alterations in snails and provides valuable insights for identifying new pharmacological targets.


Assuntos
Glucose , Moluscocidas , Caramujos , Animais , Moluscocidas/farmacologia , Caramujos/efeitos dos fármacos , Caramujos/metabolismo , Caramujos/parasitologia , Glucose/metabolismo , Água Doce
3.
Ecotoxicol Environ Saf ; 282: 116728, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39029218

RESUMO

To find a high-efficiency and environment-friendly biogenic molluscicide against Oncomelania hupensis, and prevent aquatic ecosystem from being contaminated by chemical molluscicides and being toxic. We extracted and purified raphides from the tubers of Arisaema erubescent, and determined the active constituents and molluscicidal activity of the raphides, detoxification enzyme activity, and liver damage. The results showed that the raphides had a strong molluscicidal activity. O. hupensis snails were exposed to the lethal concentration (LC50) of 70.95 mg/L and 44.25 mg/L for treatment with raphides for 48 h and 72 h, respectively. The raphides of molluscicidal activity of the main constituents was as follows: intact raphides > calcium oxalate crystals > AEL (Arisaema erubescens Lectin). The activities of peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) in the snail livers increased significantly at the early stage of treatment (24 h), but decreased sharply in the later stage (120 h), compared with that in the control group. The results indicated that after treatment with 1/2 LC50 raphides for 120 h, the activities of POD, SOD, and CAT in the snail livers decreased by 82.5 %, 62.9 %, and 84.7 %, respectively. In addition, electron micrographs have shown that the raphides were needle-shaped crystals and tended to be sharp at both ends (with a groove down both sides) and some were barbed, which caused damage to the snail livers to different extent. Overall, our results indicate that the mechanism of toxicity of raphides against O. hupensis may be that the calcium oxalate crystals pricked the liver surface of snail and produced mechanical damage; and then the harmful protease AEL in the raphides was injected into the liver, which reduced the activities of detoxification enzymes, produced severe toxic reactions and eventually killed the O. hupensis snails.


Assuntos
Catalase , Moluscocidas , Caramujos , Animais , Moluscocidas/toxicidade , Caramujos/efeitos dos fármacos , Catalase/metabolismo , Fígado/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Peroxidase/metabolismo , Tubérculos/química , Dose Letal Mediana
4.
Ecotoxicol Environ Saf ; 280: 116549, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38852467

RESUMO

Roundup®, a prominent glyphosate-based herbicide (GBH), holds a significant position in the global market. However, studies of its effects on aquatic invertebrates, including molluscs are limited. Pomacea canaliculata, a large freshwater snail naturally thrives in agricultural environments where GBH is extensively employed. Our investigation involved assessing the impact of two concentrations of GBH (at concentrations of 19.98 mg/L and 59.94 mg/L, corresponding to 6 mg/L and 18 mg/L glyphosate) during a 96 h exposure experiment on the intestinal bacterial composition and metabolites of P. canaliculata. Analysis of the 16 S rRNA gene demonstrated a notable reduction in the alpha diversity of intestinal bacteria due to GBH exposure. Higher GBH concentration caused a significant shift in the relative abundance of dominant bacteria, such as Bacteroides and Paludibacter. We employed widely-targeted metabolomics analysis to analyze alterations in the hepatopancreatic metabolic profile as a consequence of GBH exposure. The shifts in metabolites primarily affected lipid, amino acid, and glucose metabolism, resulting in compromised immune and adaptive capacities in P. canaliculata. These results suggested that exposure to varying GBH concentrations perpetuates adverse effects on intestinal and hepatopancreatic health of P. canaliculata. This study provides an understanding of the negative effects of GBH on P. canaliculata and may sheds light on its potential implications for other molluscs.


Assuntos
Microbioma Gastrointestinal , Glicina , Glifosato , Hepatopâncreas , Herbicidas , Poluentes Químicos da Água , Animais , Glicina/análogos & derivados , Glicina/toxicidade , Herbicidas/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/metabolismo , Caramujos/efeitos dos fármacos , RNA Ribossômico 16S/genética , Metabolômica
5.
Ecotoxicology ; 33(8): 849-858, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39001972

RESUMO

The heavy metal cadmium (Cd) is a toxic and bioaccumulative metal that can be enriched in the tissues and organs of living organisms through the digestive tract. However, more research is needed to determine whether food-sourced Cd affects the homeostasis of host gut microflora. In this study, the snail Bradybaena ravida (Benson) was used as a model organism fed with mulberry leaves spiked with different concentrations of Cd (0, 0.052, 0.71, and 1.94 mg kg-1). By combining 16S rRNA high-throughput sequencing with biochemical characterization, it was found that there were increases in the overall microbial diversity and abundances of pathogenic bacteria such as Corynebacterium, Enterococcus, Aeromonas, and Rickettsia in the gut of B. ravida after exposure to Cd. However, the abundances of potential Cd-resistant microbes in the host's gut, including Sphingobacterium, Lactococcus, and Chryseobacterium, decreased with increasing Cd concentrations in the mulberry leaves. In addition, there was a significant reduction in activities of energy, nutrient metabolism, and antioxidant enzymes for gut microbiota of snails treated with high concentrations of Cd compared to those with low ones. These findings highlight the interaction of snail gut microbiota with Cd exposure, indicating the potential role of terrestrial animal gut microbiota in environmental monitoring through rapid recognition and response to environmental pollution.


Assuntos
Cádmio , Microbioma Gastrointestinal , Caramujos , Animais , Cádmio/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Caramujos/efeitos dos fármacos , Caramujos/fisiologia , RNA Ribossômico 16S , Morus , Folhas de Planta
6.
Pestic Biochem Physiol ; 204: 106105, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277409

RESUMO

The invasive golden apple snail Pomacea canaliculata is one of the devastating threats to aquatic ecosystems and wetland agriculture worldwide. Macrolides from microbes display various advantages over other compounds in controlling snails. However, emergence of antibiotic-resistant phenotypes against certain macrolides in the field appeals for exploring more effectively molluscicidal macrolides. Here, two borrelidins, borrelidin BN1 and BN2, from the extract of a Streptomyces strain fermentation were evaluated for molluscicidal potential against P. canaliculata using both immersion and contact bioassay methods. Borrelidin BN1 (borrelidin A) presented a significant molluscicidal activity comparable to the chemical pesticide metaldehyde, and had a much lower median lethal concentration value (LC50, 522.984 µg·ml-1) than avermectin B1 at 72 h of contact-killing treatment. Snail growth was inhibited by borrelidin BN1 more than by metaldehyde at sublethal concentrations, consistent with responses of key biochemical parameters. Exposure to borrelidin BN1 decreased the activity of acetylcholinesterase (AChE), glutathione S-transferase (GST), aspartate aminotransferase (AST), alanine aminotransferase (ALT) as well as the levels of energy reserves and sex steroids in snail tissues, while increased the activity of superoxide dismutase (SOD), catalase (CAT), lactate dehydrogenase (LDH) and the level of lipid peroxidation (LPO). Further application assay confirmed that borrelidin BN1 protected crop plant Zizania latifolia from P. canaliculata damage via suppressing snail population density. These findings suggest great potential of borrelidin BN1 as a molluscicide. Additionally, its higher activity than the stereoisomeric borrelidin BN2 (borrelidin F) implied better molluscicidal borrelidins could be acquired through structural optimization.


Assuntos
Moluscocidas , Caramujos , Animais , Moluscocidas/farmacologia , Caramujos/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Compostos de Espiro/farmacologia , Compostos de Espiro/toxicidade , Streptomyces/metabolismo , Glutationa Transferase/metabolismo , Espécies Introduzidas , Acetaldeído/análogos & derivados , Álcoois Graxos
7.
Pestic Biochem Physiol ; 201: 105889, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685220

RESUMO

Amprolium (AMP) is an organic compound used as a poultry anticoccidiostat. The aim of this work is to repurpose AMP to control the land snail, Eobania vermiculata in the laboratory and in the field. When snails treated with ½ LC50 of AMP, the levels of alkaline phosphatase (ALP), total lipids (TL), urea, creatinine, malondialdehyde (MDA), catalase (CAT), and nitric oxide (NO) were significantly increased, whereas the levels of acetylcholinesterase (AChE), total protein (TP), and glutathione (GSH) decreased. It also induced histopathological and ultrastructural changes in the digestive gland, hermaphrodite gland, kidney, mucus gland, and cerebral ganglion. Furthermore, scanning electron micrographs revealed various damages in the tegumental structures of the mantle-foot region of E. vermiculata snails. The field application demonstrated that the AMP spray caused reduced percentages in snail population of 75 and 84% after 7 and 14 days of treatment. In conclusion, because AMP disrupts the biology and physiology of the land snail, E. vermiculata, it can be used as an effective molluscicide.


Assuntos
Moluscocidas , Caramujos , Animais , Moluscocidas/farmacologia , Caramujos/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Malondialdeído/metabolismo , Reposicionamento de Medicamentos , Óxido Nítrico/metabolismo , Catalase/metabolismo , Fosfatase Alcalina/metabolismo , Glutationa/metabolismo
8.
Molecules ; 29(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893362

RESUMO

Pomacea canaliculata, the invasive snail, is a host of the parasitic nematode Angiostrongylus cantonensis, which has adverse effects on the agriculture system and human health. This work evaluated the molluscicidal activity of petroleum ether extracts (PEEs) from three species of Chimonanthus against the snail P. canaliculate. Pcp (PEE of C. praecox) showed the most effective molluscicide activity. Sixty-one compounds were identified by GC-MS and the main components were terpenoids and fatty acids. The half-lethal concentration (LC50) of Pcp at 24 h (0.27 mg/mL) and 48 h (0.19 mg/mL) was used to evaluate the biochemical alterations in snail tissue. These sublethal concentrations caused the levels of alkaline phosphatase (ALP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activity to increase, while acetylcholinesterase (AChE) activity decreased. Also, under LC50 treatment, several histological changes were observed in the hepatopancreas and foot of the snail compared with the control group. Moreover, the toxic test in rice demonstrated that Pcp has low toxicity. These results suggest that Pcp could be developed as an effective molluscicide for P. canaliculata control.


Assuntos
Moluscocidas , Extratos Vegetais , Folhas de Planta , Caramujos , Animais , Moluscocidas/farmacologia , Moluscocidas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Caramujos/efeitos dos fármacos , Folhas de Planta/química
9.
Biomarkers ; 26(3): 221-239, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33411589

RESUMO

Background: Bio-indicator systems are vital in terms of monitoring of pollutants around the world. The impact of environmental change can be monitored by employing the responsive behaviour of snails. Heavy metal and organic pollutants affects snail reproduction, mortality, and normal metabolic activities. Various changes like a discontinuity in food intake, growth rate, twitching, and quenching of tentacles, are the biomarkers of the snails for biomonitoring. Different snails can bio-monitor eco-toxicological urban pollution, oil pollutant, terrestrial pollution, pesticide pollutants, mercury contamination, ammonia, chlorinated paraffin in soil, ethanol in water, ocean acidification pollutions. These animals can also make bio-sense about diverse environment spheres, which include the biosphere, lithosphere, anthroposphere, cryosphere, and hydrosphere.Methods: We examined the scientific literature and related articles listed in Pub-med, Google Scholar reporting on biomonitoring potential and biomarkers expression of various snail species and consequently explore the value of snails in the respective field by discussing various outcomes of a number of studies on the pollution biomonitoring and biosensing capabilities.Results: Several terrestrial, freshwater and sea snail species are characterized by the high sense of biomonitoring and biosensing potential. Various biomarkers such as expression of heat shock proteins and metallothioneins in the body are found to be the essential in-vivo biomarkers for pollution biomonitoring.Conclusion: It is observed that snails offer an environment friendly approach for the environmental bio monitoring by expressing their numerous physiological, biochemical, genetical and histological biomarkers in their body. Thus, it proved to be a critical bio monitoring tool and early warning indicators.


Assuntos
Mudança Climática , Biomarcadores Ambientais , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental , Poluentes Ambientais/efeitos adversos , Caramujos/efeitos dos fármacos , Animais , Técnicas Biossensoriais , Proteínas de Choque Térmico/metabolismo , Metalotioneína/metabolismo , Caramujos/metabolismo , Fatores de Tempo
10.
An Acad Bras Cienc ; 93(suppl 4): e20210078, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34706007

RESUMO

The objective of this study was to evaluate the possible relaxing effect of essential oils (EOs) (Aloysia triphylla and Lippia alba) and phytochemicals (citral and linalool) in the gastropod Pomacea canaliculata. Animals were exposed to compounds at the concentrations range of 25-750 µL L-1. Magnesium chloride (MgCl2, 10-50 g L-1) and control group (ethanol 6.75 mL L-1, highest concentration used for treatment dilution) were also tested. The EOs, citral and MgCl2 had no relaxing effect at the concentrations range tested, and citral caused aversive behavior (closure of the operculum) from 90 µL L-1. Exposure to linalool at 25, 50, 100, 200 and 400 µL L-1 relaxed 28, 76, 88, 96 and 100% of the animals, respectively. The concentrations of 25, 50 and 400 µL L-1 differed statistically from each other, while 100 and 200 µL L-1 were equal to 50 and 400 µL L-1. All animals recovered up to 40 min, except at of 400 µL L-1. Linalool is effective for relaxing P. canaliculata and can be useful in management techniques that require relaxation. However, further studies are needed to certify whether linalool is appropriate for maintaining animal welfare in invasive procedures that require total insensitivity.


Assuntos
Monoterpenos Acíclicos/farmacologia , Lippia , Caramujos/efeitos dos fármacos , Verbenaceae , Animais
11.
Chem Biodivers ; 18(5): e2100145, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33780581

RESUMO

Lantana camara is a troublesome invasive plant introduced to many tropical regions, including Southeast Asia. However, the plant does hold promise as a source of essential oils that may be explored for potential use. Fresh water snails such as Pomacea canaliculata, Gyraulus convexiusculus, and Tarebia granifera can be problematic agricultural pests as well as hosts for parasitic worms. Aedes and Culex mosquitoes are notorious vectors of numerous viral pathogens. Control of these vectors is of utmost importance. In this work, the essential oil compositions, molluscicidal, and mosquito larvicidal activities of four collections of L. camara from north-central Vietnam have been investigated. The sesquiterpene-rich L. camara essential oils showed wide variation in their compositions, not only compared to essential oils from other geographical locations (at least six possible chemotypes), but also between the four samples from Vietnam. L. camara essential oils showed molluscicidal activities comparable to the positive control, tea saponin, as well as other botanical agents. The median lethal concentrations (LC50 ) against the snails were 23.6-40.2 µg/mL (P. canaliculata), 7.9-29.6 µg/mL (G. convexiusculus), and 15.0-29.6 µg/mL (T. granifera). The essential oils showed good mosquito larvicidal activities with 24-h LC50 values of 15.1-29.0 µg/mL, 26.4-53.8 µg/mL, and 20.8-59.3 µg/mL against Ae. aegypti, Ae. albopictus, and Cx. quinquefasciatus, respectively. The essential oils were more toxic to snails and mosquito larvae than they were to the non-target water bug, Diplonychus rusticus (24-h LC50 =103.7-162.5 µg/mL). Sesquiterpene components of the essential oils may be acting as acetylcholinesterase (AChE) inhibitors. These results suggest that the invasive plant, L. camara, may be a renewable botanical pesticidal agent.


Assuntos
Inseticidas/farmacologia , Lantana/química , Moluscocidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Caramujos/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Inseticidas/química , Inseticidas/isolamento & purificação , Modelos Moleculares , Moluscocidas/química , Moluscocidas/isolamento & purificação , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Vietnã
12.
Arch Environ Contam Toxicol ; 80(2): 461-473, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33528594

RESUMO

When oil is spilled into the environment its toxicity is affected by abiotic conditions. The cumulative and interactive stressors of chemical contaminants and environmental factors are especially relevant in estuaries where tidal fluctuations cause wide variability in salinity, temperature, and ultraviolet (UV) light penetration, which is an important modifying factor for polycyclic aromatic hydrocarbon (PAH) toxicity. Characterizing the interactions of multiple stressors on oil toxicity will improve prediction of environmental impacts under various spill scenarios. This study examined changes in crude oil toxicity with temperature, salinity, and UV light. Oil exposures included high-energy, water-accommodated fractions (HEWAFs) and thin oil sheens. Larval (24-48 h post hatch) estuarine species representing different trophic levels and habitats were evaluated. Mean 96 h LC50 values for oil prepared as a HEWAF and tested under standard conditions (20 ppt, 25 °C, No-UV) were 62.5 µg/L tPAH50 (mud snails), 198.5 µg/L (grass shrimp), and 774.5 µg/L (sheepshead minnows). Thin oil sheen 96 h LC50 values were 5.3 µg/L tPAH50 (mud snails), 14.7 µg/L (grass shrimp), and 22.0 µg/L (sheepshead minnows) under standard conditions. UV light significantly increased the toxicity of oil in all species tested. Oil toxicity also was greater under elevated temperature and lower salinity. Multi-stressor (oil combined with either increased temperature, decreased salinity, or both) LC50 values were reduced to 3 µg/L tPAH50 for HEWAFs and < 1.0 µg/L tPAH50 for thin oil sheens. Environmental conditions at the time of an oil spill will significantly influence oil toxicity and organismal response and should be taken into consideration in toxicity testing and oil spill damage assessments.


Assuntos
Larva/efeitos dos fármacos , Poluição por Petróleo , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Crustáceos , Peixes Listrados/fisiologia , Dose Letal Mediana , Louisiana , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Salinidade , Caramujos/efeitos dos fármacos , Temperatura , Testes de Toxicidade , Raios Ultravioleta
13.
Epidemiol Infect ; 148: e152, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32605678

RESUMO

A new developed spatially targeted mollusciciding technology for snail control was utilised in a research site. This study aims to analyse whether this technology can achieve rational effectiveness compared with the routine method. Snail density was monitored every spring and autumn from 2010 to 2017 at the research site and routine mollusciciding for snail control was then performed. After snail density monitoring in spring 2018, spatially targeted mollusciciding technology was adopted. Log-linear regression and nonlinear regression models were used for snail density prediction in autumn 2018 and the predicted value was compared with the actual snail density in autumn 2018 to verify the effectiveness of the spatially targeted mollusciciding. Monitoring results showed that overall snail density in the research site decreased from 2010 to 2018. The monitored snail density in autumn 2018 was 0.014/0.1 m2. Predicted by the log-linear regression model, the snail density in autumn 2018 would be 0.028 (95% CI 0.11-0.072)/0.1 m2. Predicted by the nonlinear regression model, the snail density growth in autumn 2018 in contrast to spring 2018 would be 79.79% (95% CI 54.81%-104.77%) and the actual value was 55.56%. Therefore, the effectiveness of the first application of spatially targeted mollusciciding was acceptable. However, the validation of its sustainable effectiveness still needs a replicated study comparing areas where targeted and untargeted methods are applied simultaneously and both snail abundance and human infection are monitored.


Assuntos
Moluscocidas/farmacologia , Caramujos/efeitos dos fármacos , Animais , China , Interações Hospedeiro-Parasita , Modelos Lineares , Controle de Pragas , Densidade Demográfica , Rios , Schistosoma/fisiologia , Caramujos/parasitologia
14.
Ecotoxicol Environ Saf ; 201: 110766, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32531572

RESUMO

Telomeres (TLs) are non-coding DNA sequences that are usually shortened with ageing and/or chemical exposure. Bioindicators such as the land snail can be used to assess the environmental risk of contaminated soils. As for most invertebrates, the evolution of TLs with ageing or exposure to contaminants is unknown in this mollusc. The aims of this study were to explore the relationships between ageing, contaminant exposure, sublethal effects and TL length in the terrestrial gastropod Cantareus aspersus. TL length was investigated in haemocytes from five age classes of C. aspersus. The impact of contaminants on sub-adult snails exposed to Cd, Hg or a mixture of polycyclic aromatic hydrocarbons (PAHs) in soils for one or two months was studied. Bioaccumulation, growth, sexual maturity and TLs were measured. TL attrition was significant for the juvenile and sub-adult stages, but not later. Exposure to Cd increased the mortality (around 30%). Exposure to polluted soils inhibited growth (19-40%) and sexual maturity (6-100%). Although the health of the snails exposed to Cd, Hg and PAHs was altered, TL length in haemocytes was not disturbed, suggesting a high capacity of this snail species to maintain its TLs in haemocytes under chemical stress. These results first address TL length in snails and reveal that the relationship commonly proposed for vertebrates between TL shortening and ageing or exposure to contaminants cannot be generalized.


Assuntos
Caramujos/fisiologia , Poluentes do Solo/toxicidade , Telômero/efeitos dos fármacos , Animais , Poluição Ambiental , Caracois Helix , Mercúrio , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Caramujos/efeitos dos fármacos , Solo , Poluentes do Solo/análise
15.
Ecotoxicol Environ Saf ; 189: 110045, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31816499

RESUMO

Phytotoxicity of cadmium (Cd) and its trophic transfer along a terrestrial food chain have been extensively investigated. However, few studies focused on the role of amendments on the trophic transfer of Cd and related mineral nutrients. In a 60-day pot experiment, soil Cd availability, accumulation of Cd, mineral nutrients (Ca and Si) in lettuce, and subsequent trophic transfer along the lettuce-snail system were investigated with or without 3% (w/w) soil amendment (biochar or micro-hydroxyapatite, µHAP). Soil CaCl2 extractable Cd (CdCaCl2) contents decreased by both amendments. µHAP amended soil increased the Freundlich sorption capacity of Cd2+ to a greater extent (15.9 mmol/kg) than biochar (12.6 mmol/kg). Cd, Ca and Si accumulation in lettuce tissues (roots and shoots) varied with amendment species and soil Cd levels. Linear regression analysis showed that root Cd contents are negatively correlated with root Ca and Si contents (r2 = 0.96, p < 0.05). But no significant correlation between shoot Cd and lettuce Ca and Si contents was found (p > 0.05). After 15 days snail feeding, nearly 90% content of Cd was found in snail viscera, while nearly 95% content of Ca was found in snail shells. Contents of Si distributed equally in snail tissues. Biomagnification of Cd, Ca and Si (TF > 1) was found in lettuce shoot - snail viscera system. Opposite tendency of TF variation between Cd and nutrient elements (Ca and Si) from shoots to snail tissues indicated that µHAP, rather than biochar, amendment is applicable to remediate soil Cd contamination in our study.


Assuntos
Cádmio/análise , Carvão Vegetal/química , Lactuca/efeitos dos fármacos , Minerais/metabolismo , Poluentes do Solo/análise , Solo/química , Animais , Bioacumulação , Cádmio/metabolismo , Cálcio/metabolismo , Cadeia Alimentar , Lactuca/metabolismo , Silício/metabolismo , Caramujos/efeitos dos fármacos , Caramujos/metabolismo , Poluentes do Solo/metabolismo
16.
Ecotoxicol Environ Saf ; 191: 110172, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31978762

RESUMO

The majority of pharmaceuticals and personal health-care products are ionisable molecules at environmentally relevant pHs. The ionization state of these molecules in freshwater ecosystems may influence their toxicity potential to aquatic organisms. In this study we evaluated to what extent varying pH conditions may influence the toxicity of the antibiotic enrofloxacin (ENR) and the personal care product ingredient triclosan (TCS) to three freshwater invertebrates: the ephemeropteran Cloeon dipterum, the amphipod Gammarus pulex and the snail Physella acuta. Acute toxicity tests were performed by adjusting the water pH to four nominal levels: 6.5, 7.0, 7.5 and 8.0. Furthermore, we tested the efficiency of three toxicity models with different assumptions regarding the uptake and toxicity potential of ionisable chemicals with the experimental data produced in this study. The results of the toxicity tests indicate that pH fluctuations of only 1.5 units can influence EC50-48 h and EC50-96 h values by a factor of 1.4-2.7. Overall, the model that only focuses on the fraction of neutral chemical and the model that takes into account ion-trapping of the test molecules showed the best performance, although present limitations to perform risk assessments across a wide pH range (i.e., well above or below the substance pKa). Under such conditions, the model that takes into account the toxicity of the neutral and the ionized chemical form is preferred. The results of this study show that pH fluctuations can have a considerable influence on toxicity thresholds, and should therefore be taken into account for the risk assessment of ionisable pharmaceuticals and personal health-care products. Based on our results, an assessment factor of at least three should be used to account for toxicity differences between standard laboratory and field pH conditions. The models evaluated here can be used to perform refined risk assessments by taking into account the influence of temporal and spatial pH fluctuations on aquatic toxicity.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Cosméticos/toxicidade , Água Doce/química , Preparações Farmacêuticas/química , Poluentes Químicos da Água/toxicidade , Anfípodes/efeitos dos fármacos , Animais , Cosméticos/química , Ecossistema , Enrofloxacina/química , Enrofloxacina/toxicidade , Concentração de Íons de Hidrogênio , Modelos Teóricos , Medição de Risco , Caramujos/efeitos dos fármacos , Testes de Toxicidade , Triclosan/química , Triclosan/toxicidade , Poluentes Químicos da Água/química
17.
Ecotoxicol Environ Saf ; 196: 110565, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32272347

RESUMO

The aim of the present work was to study the effect of the pyrethroid cypermethrin (CYP) on the non-target freshwater snail Chilina parchappi. Initially, the sensitivity of adult snails to CYP was evaluated via the 96-h LC50 test. Then, snails were exposed to subtethal CYP concentrations (0.1 and 10 mg/l) for 1, 4 and 10 days and the digestive glands were dissected for biomarkers analyses. Enzymatic activity of catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST), as well as total glutathione reduced (GSH) levels, were determined. Histological analyses of morphology, intracellular accumulation of lipofucsins and neutral lipids accumulation in the digestive gland were also evaluated. As compared to other molluscs, C. parchappi showed high resistance to CYP exposure evidenced by the 96-h LC50 value (44.59 mg/l). Snails exposed to sublethal CYP concentrations showed a statistically significant increase (p < 0.01) in GST (79-116%) and GPx (45-190%) activities with respect to controls. However, CAT activity showed a tendency to decrease with CYP treatment but was not statistically significantly different compared to control. Only high CYP concentration caused a statistically significant increase (p < 0.01) in GSH content (95-196%). There was evidence of structural changes in the digestive gland of snails exposed to CYP, showing a dose-dependent response. In exposed snails, some of the main symptoms included a reduction in the thickness of the epithelium, vacuolisation of the digestive cells and an increase in the number of excretory cells. Accumulation of lipofuscins (933-1006%) and neutral lipids (403%) were statistically significantly higher (p < 0.05) in snails exposed to CYP compared to control. This study showed that C. parchappii is quite tolerant to CYP exposure and that at sublethal concentrations, GSH metabolism could play a protective role against the pesticide harm in snails. Therefore, it would be interesting to study the response of this organism to other environmental stressors to assess its potential use in monitoring programs.


Assuntos
Água Doce/química , Estresse Oxidativo/efeitos dos fármacos , Praguicidas/toxicidade , Piretrinas/toxicidade , Caramujos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Catalase/metabolismo , Sistema Digestório/efeitos dos fármacos , Sistema Digestório/metabolismo , Sistema Digestório/patologia , Relação Dose-Resposta a Droga , Ecotoxicologia , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Dose Letal Mediana , Caramujos/metabolismo
18.
Bull Environ Contam Toxicol ; 105(1): 62-66, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32556375

RESUMO

The various uses of copper or copper compounds in industrial, biocidal or pesticidal products lead to inputs of the metal into aquatic environments. To assess effects of copper ions on non-target organisms, the freshwater snail Theodoxus fluviatilis was used as test organism for a three-week laboratory experiment. Snails were exposed to four copper concentrations ranging from 4 to 39 µg Cu2+/L, and besides mortality, several sublethal parameters were evaluated. Concerning survival, an aqueous copper concentration of 6 µg/L was determined as NOEC, and 16 (± 0.1) µg/L as LC50. Negative sublethal effects on reproduction, activity and pathological modifications in the snails were detected in the treatment with an aqueous copper concentration of 15 µg/L. Our results using T. fluviatilis as a mere grazer exclusively feeding on biofilms contribute to findings that field relevant copper concentrations have a significant effect on non-target organisms in aquatic environments.


Assuntos
Cobre/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Água Doce , Íons , Reprodução/efeitos dos fármacos , Caramujos/efeitos dos fármacos
19.
Bull Environ Contam Toxicol ; 104(6): 738-747, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32313983

RESUMO

In this study, freshwater snail (Physa acuta) was investigated to determine histopathological effects of CuSO4 on digestive gland, foot, mantle and ovotestis under laboratory conditions. The snails were exposed to different sublethal concentrations of CuSO4 (0.05 mg/L, 0.1 mg/L and 0.2 mg/L) periods of 10, 20 and 30 days. The relationship between CuSO4 concentration and mortality rate in snails was calculated as Y = 8.8 + 125.14X, R2 = 0.9444. The histopathological examinations revealed that CuSO4 caused significant histopathological changes in all the tissues of the snail. The severity of these lesions in tissues increased with increasing CuSO4 concentration and duration of exposure. The results showed that freshwater snail, Physa acuta can be considered to be a suitable bioindicator to demonstrate the toxic effect of copper in aquatic environments.


Assuntos
Sulfato de Cobre/toxicidade , Água Doce/química , Caramujos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Sistema Digestório/efeitos dos fármacos , Sistema Digestório/patologia , Relação Dose-Resposta a Droga , Gônadas/efeitos dos fármacos , Gônadas/patologia , Músculos/efeitos dos fármacos , Músculos/patologia , Caramujos/ultraestrutura , Turquia
20.
Physiol Plant ; 165(2): 209-218, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30144087

RESUMO

Metal defence against insect herbivory in hyperaccumulator plants is well documented. However, there are contradictory results regarding protection against snails. According to the joint effects hypothesis, inorganic and organic defences cooperate in plant protection. To test this hypothesis, we explored the relationships between snail (Cantareus aspersus) feeding and multiple inorganic and organic leaf components in the Cd hyperaccumulator plant Noccaea praecox. Plants grouped by rosette size growing in nutrient solution supplemented or not with 50 µM Cd were offered to the snails. After 3 days of snail feeding, the plants and snails were analysed. In addition to Cd concentrations, we analysed leaves for nutritional factors (sugar and protein), defence-related compounds (glucosinolates, phenolics, tannins, salicylic acid and jasmonate) and essential mineral nutrients. Cadmium concentrations in the snails and in snail excrements were also analysed. Snails preferentially fed on plants grown without Cd. Medium-sized plants exposed to Cd were the least consumed. Snail excrements from this trial weighed less and had higher Cd concentrations than those from other treatments. Cadmium increased salicylate and jasmonate production. A positive relationship between jasmonate levels and the number of attacked leaves was found. Principal component analysis revealed that leaf sugar concentration was the main factor positively affecting snails' leaf consumption, while leaf Cd had a negative but weaker influence. In conclusion, leaf sugar concentration mainly governs snails' feeding preferences. High leaf Cd concentrations do not deter herbivores from attacking leaves, but they do reduce leaf consumption. Our results clearly support the joint effects hypothesis.


Assuntos
Metais/toxicidade , Caramujos/fisiologia , Açúcares/metabolismo , Animais , Biomassa , Brassicaceae/metabolismo , Herbivoria/efeitos dos fármacos , Folhas de Planta/metabolismo , Análise de Componente Principal , Caramujos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA