Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 364
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 14(2): 98-112, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23340574

RESUMO

Caveolae are submicroscopic, plasma membrane pits that are abundant in many mammalian cell types. The past few years have seen a quantum leap in our understanding of the formation, dynamics and functions of these enigmatic structures. Caveolae have now emerged as vital plasma membrane sensors that can respond to plasma membrane stresses and remodel the extracellular environment. Caveolae at the plasma membrane can be removed by endocytosis to regulate their surface density or can be disassembled and their structural components degraded. Coat proteins, called cavins, work together with caveolins to regulate the formation of caveolae but also have the potential to dynamically transmit signals that originate in caveolae to various cellular destinations. The importance of caveolae as protective elements in the plasma membrane, and as membrane organizers and sensors, is highlighted by links between caveolae dysfunction and human diseases, including muscular dystrophies and cancer.


Assuntos
Cavéolas/fisiologia , Membrana Celular/química , Membrana Celular/metabolismo , Animais , Cavéolas/química , Cavéolas/metabolismo , Caveolinas/química , Caveolinas/genética , Caveolinas/metabolismo , Caveolinas/fisiologia , Citoproteção/genética , Citoproteção/fisiologia , Endocitose/genética , Endocitose/fisiologia , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Modelos Biológicos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
2.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33785600

RESUMO

The contraction of heart cells is controlled by the intermolecular signaling between L-type Ca2+ channels (LCCs) and ryanodine receptors (RyRs), and the nanodistance between them depends on the interaction between junctophilin-2 (JPH2) in the sarcoplasmic reticulum (SR) and caveolin-3 (CAV3) in the transversal tubule (TT). In heart failure, decreased expression of JPH2 compromises LCC-RyR communication leading to deficient blood-pumping power. In the present study, we found that JPH2 and CAV3 transcription was concurrently regulated by serum response factor (SRF) and myocardin. In cardiomyocytes from torpid ground squirrels, compared with those from euthermic counterparts, myocardin expression was up-regulated, which boosted both JPH2 and CAV3 expression. Transmission electron microscopic imaging showed that the physical coupling between TTs and SRs was tightened during hibernation and after myocardin overexpression. Confocal Ca2+ imaging under the whole-cell patch clamp condition revealed that these changes enhanced the efficiency of LCC-RyR intermolecular signaling and fully compensated the adaptive down-regulation of LCCs, maintaining the power of heart contraction while avoiding the risk of calcium overload during hibernation. Our finding not only revealed an essential molecular mechanism underlying the survival of hibernating mammals, but also demonstrated a "reverse model of heart failure" at the molecular level, suggesting a strategy for treating heart diseases.


Assuntos
Sinalização do Cálcio , Hibernação , Miócitos Cardíacos/metabolismo , Animais , Caveolinas/genética , Caveolinas/metabolismo , Células Cultivadas , Acoplamento Excitação-Contração , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Nucleares/sangue , Proteínas Nucleares/metabolismo , Sciuridae , Transativadores/sangue , Transativadores/metabolismo
3.
FASEB J ; 34(1): 1345-1361, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914618

RESUMO

Cell morphology and tissue integrity are essential for embryogenesis. Caveolins are membrane proteins that induce the formation of surface pits called caveolae that serve as membrane reservoirs for cell and tissue protection during development. In vertebrates, caveolin 1 (Cav1) and caveolin 3 (Cav3) are required for caveola formation. However, the formation of caveola and the function of caveolins in invertebrates are largely unknown. In this study, three caveolins, Cav-a, Cav-b, and CavY, are identified in the genome of the invertebrate chordate Ciona spp. Based on phylogenetic analysis, Cav-a is found to be closely related to the vertebrate Cav1 and Cav3. In situ hybridization shows that Cav-a is expressed in Ciona embryonic notochord and muscle. Cell-free experiments, model cell culture systems, and in vivo experiments demonstrate that Ciona Cav-a has the ability to induce membrane curvature at the plasma membrane. Knockdown of Cav-a in Ciona embryos causes loss of invaginations in the plasma membrane and results in the failure of notochord elongation and lumenogenesis. Expression of a dominant-negative Cav-a point mutation causes cells to change shape and become displaced from the muscle and notochord to disrupt tissue integrity. Furthermore, we demonstrate that Cav-a vesicles show polarized trafficking and localize at the luminal membrane during notochord lumenogenesis. Taken together, these results show that the invertebrate chordate caveolin from Ciona plays crucial roles in tissue integrity and morphology by inducing membrane curvature and intracellular vesicle trafficking during embryogenesis.


Assuntos
Caveolinas/metabolismo , Membrana Celular/metabolismo , Ciona/embriologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Modelos Biológicos , Animais , Transporte Biológico Ativo , Caveolinas/genética , Membrana Celular/genética , Ciona/citologia , Embrião não Mamífero/citologia
4.
Mol Pharm ; 18(3): 1431-1443, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522823

RESUMO

MicroRNAs can regulate a variety of physiological and pathological processes and are increasingly recognized as being involved in regulating the malignant progression of cancer, which is an important direction for the study and treatment of cancer. In addition, the tumor microenvironment has gradually become an important direction of study for combating cancer. Researchers can inhibit tumor growth by remodeling and suppressing an immunosuppressive phenotype in the tumor microenvironment. Therefore, the combination of microRNA delivery and tumor microenvironment remodeling may be a potential research direction. In a previous study, we developed a novel cationic and hydrophilic antimicrobial peptide, DP7, by computer simulation. It was found that cholesterol-modified DP7 (DP7-C) has dual functions as a carrier and an immune adjuvant. In this experiment, we used DP7-C to deliver microRNAs or inhibitors intratumorally, where it played a dual role as a carrier and an immune adjuvant. As a delivery vector, DP7-C has more advantages in terms of transfection efficiency and cytotoxicity than Lipo2000 and PEI25K. Components of the DP7-C/RNA complex can effectively escape endosomes after uptake via caveolin- and clathrin-dependent pathways. As an immune adjuvant, DP7-C can activate dendritic cells and promote macrophage polarization. Moreover, it can transform the immunosuppressive tumor microenvironment into an immune-activated tumor microenvironment, indicating its potential as an anticancer therapy. In conclusion, this study identifies a novel microRNA and inhibitor delivery system that can remodel the tumor microenvironment and introduces an alternative scheme for antitumor treatment.


Assuntos
Neoplasias/terapia , Peptídeos/administração & dosagem , RNA/administração & dosagem , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/administração & dosagem , Caveolinas/genética , Linhagem Celular , Clatrina/genética , Simulação por Computador , Endossomos/efeitos dos fármacos , Feminino , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Neoplasias/genética
5.
Biochem Soc Trans ; 48(1): 137-146, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32104881

RESUMO

The formation of caveolae, bulb-shaped plasma membrane invaginations, requires the coordinated action of distinct lipid-interacting and -shaping proteins. The interdependence of caveolar structure and function has evoked substantial scientific interest given the association of human diseases with caveolar dysfunction. Model systems deficient of core components of caveolae, caveolins or cavins, did not allow for an explicit attribution of observed functional defects to the requirement of caveolar invagination as they lack both invaginated caveolae and caveolin proteins. Knockdown studies in cultured cells and recent knockout studies in mice identified an additional family of membrane-shaping proteins crucial for caveolar formation, syndapins (PACSINs) - BAR domain superfamily proteins characterized by crescent-shaped membrane binding interfaces recognizing and inducing distinct curved membrane topologies. Importantly, syndapin loss-of-function resulted exclusively in impairment of caveolar invagination without a reduction in caveolin or cavin at the plasma membrane, thereby allowing the specific role of the caveolar invagination to be unveiled. Muscle cells of syndapin III KO mice showed severe reductions of caveolae reminiscent of human caveolinopathies and were more vulnerable to membrane damage upon changes in membrane tensions. Consistent with the lack of syndapin III-dependent invaginated caveolae providing mechanoprotection by releasing membrane reservoirs through caveolar flattening, physical exercise of syndapin III KO mice resulted in pathological defects reminiscent of the clinical symptoms of human myopathies associated with caveolin 3 mutation suggesting that the ability of muscular caveolae to respond to mechanical forces is a key physiological process.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cardiomiopatias/fisiopatologia , Cavéolas/metabolismo , Doenças Musculares/fisiopatologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Caveolinas/genética , Caveolinas/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Mutação , Células NIH 3T3
6.
Biochem Soc Trans ; 48(1): 165-177, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32010944

RESUMO

The plasma membrane is an important cellular organelle that is often overlooked in terms of a primary factor in regulating physiology and pathophysiology. There is emerging evidence to suggest that the plasma membrane serves a greater purpose than a simple barrier or transporter of ions. New paradigms suggest that the membrane serves as a critical bridge to connect extracellular to intracellular communication particularly to regulate energy and metabolism by forming physical and biochemical associations with intracellular organelles. This review will focus on the relationship of a particular membrane microdomain - caveolae - with mitochondria and the particular implication of this to physiology and pathophysiology.


Assuntos
Cavéolas/metabolismo , Caveolinas/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Animais , Caveolinas/genética , Diabetes Mellitus/fisiopatologia , Cardiopatias/fisiopatologia , Humanos , Camundongos , Camundongos Knockout , Membranas Mitocondriais/metabolismo , Oxirredução
7.
Am J Pathol ; 189(4): 847-867, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30707892

RESUMO

Caveolins (CAVs) are structural proteins of caveolae that function as signaling platforms to regulate smooth muscle contraction. Loss of CAV protein expression is associated with impaired contraction in obstruction-induced bladder smooth muscle (BSM) hypertrophy. In this study, microarray analysis of bladder RNA revealed down-regulation of CAV1, CAV2, and CAV3 gene transcription in BSM from models of obstructive bladder disease in mice and humans. We identified and characterized regulatory regions responsible for CAV1, CAV2, and CAV3 gene expression in mice with obstruction-induced BSM hypertrophy, and in men with benign prostatic hyperplasia. DNA affinity chromatography and chromatin immunoprecipitation assays revealed a greater increase in binding of GATA-binding factor 6 (GATA-6) and NF-κB to their cognate binding motifs on CAV1, CAV2, and CAV3 promoters in obstructed BSM relative to that observed in control BSM. Knockout of NF-κB subunits, shRNA-mediated knockdown of GATA-6, or pharmacologic inhibition of GATA-6 and NF-κB in BSM increased CAV1, CAV2, and CAV3 transcription and promoter activity. Conversely, overexpression of GATA-6 decreased CAV2 and CAV3 transcription and promoter activity. Collectively, these data provide new insight into the mechanisms by which CAV gene expression is repressed in hypertrophied BSM in obstructive bladder disease.


Assuntos
Caveolinas/antagonistas & inibidores , Fator de Transcrição GATA6/metabolismo , Hipertrofia/patologia , Músculo Liso/patologia , NF-kappa B/metabolismo , Transcrição Gênica , Obstrução do Colo da Bexiga Urinária/complicações , Idoso , Animais , Biomarcadores/análise , Caveolinas/genética , Caveolinas/metabolismo , Fator de Transcrição GATA6/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Hipertrofia/etiologia , Hipertrofia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Contração Muscular , Músculo Liso/metabolismo , NF-kappa B/genética , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patologia , Obstrução do Colo da Bexiga Urinária/cirurgia
8.
Semin Cell Dev Biol ; 67: 48-55, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28104520

RESUMO

Extracellular vesicles (EVs), lipid bilayer-enclosed structures that contain a variety of biological molecules shed by cells, are increasingly becoming appreciated as a major form of cell-to-cell communication. Indeed, EVs have been shown to play important roles in several physiological processes, as well as diseases such as cancer. EVs dock on to the surfaces of recipient cells where they transmit signals from the cell surface and/or transfer their contents into cells to elicit functional responses. EV docking and uptake by cells represent critical, but poorly understood processes. Here, we focus on the mechanisms by which EVs dock and transfer their contents to cells. Moreover, we highlight how these findings may provide new avenues for therapeutic intervention.


Assuntos
Vesículas Extracelulares/metabolismo , Regulação Neoplásica da Expressão Gênica , Microdomínios da Membrana/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral/genética , Antineoplásicos/uso terapêutico , Transporte Biológico , Caveolinas/genética , Caveolinas/metabolismo , Comunicação Celular , Progressão da Doença , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Vesículas Extracelulares/patologia , Humanos , Integrinas/genética , Integrinas/metabolismo , Microdomínios da Membrana/patologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Tetraspaninas/genética , Tetraspaninas/metabolismo
9.
Int J Mol Sci ; 20(11)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146391

RESUMO

The noble gas helium (He) induces cardioprotection in vivo through unknown molecular mechanisms. He can interact with and modify cellular membranes. Caveolae are cholesterol and sphingolipid-enriched invaginations of the plasma-membrane-containing caveolin (Cav) proteins that are critical in protection of the heart. Mice (C57BL/6J) inhaled either He gas or adjusted room air. Functional measurements were performed in the isolated Langendorff perfused heart at 24 h post He inhalation. Electron paramagnetic resonance spectrometry (EPR) of samples was carried out at 24 h post He inhalation. Immunoblotting was used to detect Cav-1/3 expression in whole-heart tissue, exosomes isolated from platelet free plasma (PFP) and membrane fractions. Additionally, transmission electron microscopy analysis of cardiac tissue and serum function and metabolomic analysis were performed. In contrast to cardioprotection observed in in vivo models, the isolated Langendorff perfused heart revealed no protection after He inhalation. However, levels of Cav-1/3 were reduced 24 h after He inhalation in whole-heart tissue, and Cav-3 was increased in exosomes from PFP. Addition of serum to muscle cells in culture or naïve ventricular tissue increased mitochondrial metabolism without increasing reactive oxygen species generation. Primary and lipid metabolites determined potential changes in ceramide by He exposure. In addition to direct effects on myocardium, He likely induces the release of secreted membrane factors enriched in caveolae. Our results suggest a critical role for such circulating factors in He-induced organ protection.


Assuntos
Cardiotônicos/farmacologia , Caveolinas/metabolismo , Coração/efeitos dos fármacos , Hélio/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Animais , Cardiotônicos/uso terapêutico , Cavéolas/efeitos dos fármacos , Cavéolas/metabolismo , Caveolinas/sangue , Caveolinas/genética , Células Cultivadas , Exossomos/efeitos dos fármacos , Exossomos/metabolismo , Hélio/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle
10.
Development ; 141(6): 1324-31, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24595290

RESUMO

In Caenorhabditis elegans, fertilization triggers endocytosis and rapid turnover of maternal surface membrane proteins in lysosomes, although the precise mechanism of this inducible endocytosis is unknown. We found that high levels of K63-linked ubiquitin chains transiently accumulated on endosomes upon fertilization. Endocytosis and the endosomal accumulation of ubiquitin were both regulated downstream of the anaphase-promoting complex, which drives the oocyte's meiotic cell cycle after fertilization. The clearance of maternal membrane proteins and the accumulation of K63-linked ubiquitin on endosomes depended on UBC-13 and UEV-1, which function as an E2 complex that specifically mediates chain elongation of K63-linked polyubiquitin. CAV-1-GFP, an endocytic cargo protein, was modified with K63-linked polyubiquitin in a UBC-13/UEV-1-dependent manner. In ubc-13 or uev-1 mutants, CAV-1-GFP and other membrane proteins were internalized from the plasma membrane normally after fertilization. However, they were not efficiently targeted to the multivesicular body (MVB) pathway but recycled to the cell surface. Our results suggest that UBC-13-dependent K63-linked ubiquitylation is required for proper MVB sorting rather than for internalization. These results also demonstrate a developmentally controlled function of K63-linked ubiquitylation.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Membrana/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Caveolinas/genética , Caveolinas/metabolismo , Endocitose , Feminino , Fertilização , Genes de Helmintos , Masculino , Proteínas de Membrana/genética , Mutação , Oócitos/metabolismo , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação , Zigoto/metabolismo
11.
Fa Yi Xue Za Zhi ; 33(2): 114-119, 2017 Apr.
Artigo em Zh | MEDLINE | ID: mdl-29231014

RESUMO

OBJECTIVES: To explore the genetic variation sites of caveolin (CAV) and their correlation with sudden unexplained death (SUD). METHODS: The blood samples were collected from SUD group (71 cases), coronary artery disease (CAD) group (62 cases) and control group (60 cases), respectively. The genome DNA were extracted and sequencing was performed directly by amplifying gene coding region and exon-intron splicing region of CAV1 and CAV3 using PCR. The type of heritable variation of CVA was confirmed and statistical analysis was performed. RESULTS: A total of 4 variation sites that maybe significative were identified in SUD group, and two were newfound which were CAV1: c.45C>T (T15T) and CAV1:c.512G>A (R171H), and two were SNP loci which were CAV1:c.246C>T (rs35242077) and CAV3:c.99C>T (rs1008642) and had significant difference (P<0.05) in allele and genotype frequencies between SUD and control groups. Forementioned variation sites were not found in CAD group. CONCLUSIONS: The variants of CAV1 and CAV3 may be correlated with a part of SUD group.


Assuntos
Caveolinas/genética , Morte Súbita/etiologia , Polimorfismo de Nucleotídeo Único , Doença da Artéria Coronariana , Éxons , Genótipo , Humanos , Masculino , Reação em Cadeia da Polimerase
12.
J Biol Chem ; 290(25): 15437-15449, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25925950

RESUMO

Sustained directional fibroblast migration requires both polarized activation of the protrusive signal, Rac1, and redistribution of inactive Rac1 from the rear of the cell so that it can be redistributed or degraded. In this work, we determine how alternative endocytic mechanisms dictate the fate of Rac1 in response to the extracellular matrix environment. We discover that both coronin-1C and caveolin retrieve Rac1 from similar locations at the rear and sides of the cell. We find that coronin-1C-mediated extraction, which is responsible for Rac1 recycling, is a constitutive process that maintains Rac1 protein levels within the cell. In the absence of coronin-1C, the effect of caveolin-mediated endocytosis, which targets Rac1 for proteasomal degradation, becomes apparent. Unlike constitutive coronin-1C-mediated trafficking, caveolin-mediated Rac1 endocytosis is induced by engagement of the fibronectin receptor syndecan-4. Such an inducible endocytic/degradation mechanism would predict that, in the presence of fibronectin, caveolin defines regions of the cell that are resistant to Rac1 activation but, in the absence of fibronectin leaves more of the membrane susceptible to Rac1 activation and protrusion. Indeed, we demonstrate that fibronectin-stimulated activation of Rac1 is accelerated in the absence of caveolin and that, when caveolin is knocked down, polarization of active Rac1 is lost in FRET experiments and culminates in shunting migration in a fibrous fibronectin matrix. Although the concept of polarized Rac1 activity in response to chemoattractants has always been apparent, our understanding of the balance between recycling and degradation explains how polarity can be maintained when the chemotactic gradient has faded.


Assuntos
Caveolinas/metabolismo , Endocitose/fisiologia , Proteínas dos Microfilamentos/metabolismo , Neuropeptídeos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Caveolinas/genética , Linhagem Celular Transformada , Quimiotaxia/fisiologia , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Neuropeptídeos/genética , Transporte Proteico/fisiologia , Proteólise , Proteínas rac1 de Ligação ao GTP/genética
13.
J Biol Chem ; 289(18): 12791-804, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24644284

RESUMO

The urokinase-type plasminogen activator receptor (uPAR) is a glycosylphosphatidylinositol-linked membrane protein with no cytosolic domain that localizes to lipid raft microdomains. Our laboratory and others have documented that lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) exhibit a hypermotile phenotype. This study was undertaken to elucidate the molecular mechanism whereby uPAR ligation with its cognate ligand, urokinase, induces a motile phenotype in human lung fibroblasts. We found that uPAR ligation with the urokinase receptor binding domain (amino-terminal fragment) leads to enhanced migration of fibroblasts on fibronectin in a protease-independent, lipid raft-dependent manner. Ligation of uPAR with the amino-terminal fragment recruited α5ß1 integrin and the acylated form of the Src family kinase, Fyn, to lipid rafts. The biological consequences of this translocation were an increase in fibroblast motility and a switch of the integrin-initiated signal pathway for migration away from the lipid raft-independent focal adhesion kinase pathway and toward a lipid raft-dependent caveolin-Fyn-Shc pathway. Furthermore, an integrin homologous peptide as well as an antibody that competes with ß1 for uPAR binding have the ability to block this effect. In addition, its relative insensitivity to cholesterol depletion suggests that the interactions of α5ß1 integrin and uPAR drive the translocation of α5ß1 integrin-acylated Fyn signaling complexes into lipid rafts upon uPAR ligation through protein-protein interactions. This signal switch is a novel pathway leading to the hypermotile phenotype of IPF patient-derived fibroblasts, seen with uPAR ligation. This uPAR dependent, fibrotic matrix-selective, and profibrotic fibroblast phenotype may be amenable to targeted therapeutics designed to ameliorate IPF.


Assuntos
Movimento Celular , Fibroblastos/metabolismo , Integrina alfa5beta1/metabolismo , Microdomínios da Membrana/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Western Blotting , Caveolinas/genética , Caveolinas/metabolismo , Células Cultivadas , Fibroblastos/citologia , Fibronectinas/metabolismo , Humanos , Fibrose Pulmonar Idiopática/sangue , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Integrina alfa5beta1/genética , Camundongos , Microscopia de Fluorescência , Ligação Proteica , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Interferência de RNA , Receptores de Ativador de Plasminogênio Tipo Uroquinase/sangue , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Índice de Gravidade de Doença , Proteínas Adaptadoras da Sinalização Shc/genética , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Transdução de Sinais , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
14.
Cell Microbiol ; 16(10): 1582-601, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24844382

RESUMO

The novel cytotoxic factor subtilase cytotoxin (SubAB) is produced mainly by non-O157 Shiga-toxigenic Escherichia coli (STEC). SubAB cleaves the molecular chaperone BiP/GRP78 in the endoplasmic reticulum (ER), leading to activation of RNA-dependent protein kinase (PKR)-like ER kinase (PERK), followed by caspase-dependent cell death. However, the SubAB uptake mechanism in HeLa cells is unknown. In this study, a variety of inhibitors and siRNAs were employed to characterize the SubAB uptake process. SubAB-induced BiP cleavage was inhibited by high concentrations of Dynasore, and methyl-ß-cyclodextrin (mßCD) and Filipin III, but not suppressed in clathrin-, dynamin I/II-, caveolin1- and caveolin2-knockdown cells. We observed that SubAB treatment led to dramatic actin rearrangements, e.g. formation of plasma membrane blebs, with a significant increase in fluid uptake. Confocal microscopy analysis showed that SubAB uptake required actin cytoskeleton remodelling and lipid raft cholesterol. Furthermore, internalized SubAB in cells was found in the detergent-resistant domain (DRM) structure. Interestingly, IPA-3, an inhibitor of serine/threonine kinase p21-activated kinase (PAK1), an important protein of macropinocytosis, directly inhibited SubAB-mediated BiP cleavage and SubAB internalization. Thus, our findings suggest that SubAB uses lipid raft- and actin-dependent, but not clathrin-, caveolin- and dynamin-dependent pathways as its major endocytic translocation route.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Microdomínios da Membrana/metabolismo , Escherichia coli Shiga Toxigênica/patogenicidade , Subtilisinas/metabolismo , Antivirais/farmacologia , Transporte Biológico , Caveolinas/genética , Linhagem Celular , Colesterol/metabolismo , Clatrina/genética , Dissulfetos/farmacologia , Dinaminas/genética , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Ativação Enzimática , Filipina/farmacologia , Células HeLa , Humanos , Hidrazonas/farmacologia , Naftóis/farmacologia , Interferência de RNA , RNA Interferente Pequeno , beta-Ciclodextrinas/farmacologia , eIF-2 Quinase/metabolismo , Quinases Ativadas por p21/antagonistas & inibidores
15.
Mol Ther ; 22(2): 359-370, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24002693

RESUMO

As a powerful research tool, siRNA's therapeutic and target validation utility with leukemia cells and long-term gene knockdown is severely restricted by the lack of omnipotent, safe, stable, and convenient delivery. Here, we detail our discovery of siRNA-containing lipid nanoparticles (LNPs) able to effectively transfect several leukemia and difficult-to-transfect adherent cell lines also providing in vivo delivery to mouse spleen and bone marrow tissues through tail-vein administration. We disclose a series of novel structurally related lipids accounting for the superior transfection ability, and reveal a correlation between expression of Caveolins and successful transfection. These LNPs, bearing low toxicity and long stability of >6 months, are ideal for continuous long-term dosing. Our discovery represents the first effective siRNA-containing LNPs for leukemia cells, which not only enables high-throughput siRNA screening with leukemia cells and difficult-to-transfect adherent cells but also paves the way for the development of therapeutic siRNA for leukemia treatment.


Assuntos
Técnicas de Transferência de Genes , Lipídeos , Nanopartículas , RNA Interferente Pequeno/administração & dosagem , Transfecção , Animais , Ânions/química , Cátions/química , Caveolinas/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Expressão Gênica , Humanos , Leucemia/genética , Lipídeos/química , Camundongos , Nanopartículas/química , Polímeros/química , RNA Interferente Pequeno/química , Transfecção/métodos
16.
Biochim Biophys Acta ; 1831(12): 1665-78, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23973266

RESUMO

Neuronal sphingolipids (SL) play important roles during axonal extension, neurotrophic receptor signaling and neurotransmitter release. Many of these signaling pathways depend on the presence of specialized membrane microdomains termed lipid rafts. Sphingomyelin (SM), one of the main raft constituents, can be formed de novo or supplied from exogenous sources. The present study aimed to characterize fluorescently-labeled SL turnover in a murine neuronal cell line (CATH.a). Our results demonstrate that at 4°C exogenously added BODIPY-SM accumulates exclusively at the plasma membrane. Treatment of cells with bacterial sphingomyelinase (SMase) and back-exchange experiments revealed that 55-67% of BODIPY-SM resides in the outer leaflet of the plasma membrane. Endocytosis of BODIPY-SM occurs via caveolae with part of internalized BODIPY-fluorescence ending up in the Golgi and the ER. Following endocytosis BODIPY-SM undergoes hydrolysis, a reaction substantially faster than BODIPY-SM synthesis from BODIPY-ceramide. RNAi demonstrated that both, acid (a)SMase and neutral (n)SMases contribute to BODIPY-SM hydrolysis. Finally, high-density lipoprotein (HDL)-associated BODIPY-SM was efficiently taken up by CATH.a cells. Our findings indicate that endocytosis of exogenous SM occurs almost exclusively via caveolin-dependent pathways, that both, a- and nSMases equally contribute to neuronal SM turnover and that HDL-like particles might represent physiological SM carriers/donors in the brain.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Microdomínios da Membrana/metabolismo , Neurônios/enzimologia , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo , Animais , Compostos de Boro , Caveolinas/genética , Caveolinas/metabolismo , Linhagem Celular , Endocitose , Retículo Endoplasmático/efeitos dos fármacos , Corantes Fluorescentes , Regulação da Expressão Gênica , Complexo de Golgi/efeitos dos fármacos , Hidrólise , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Lipoproteínas HDL/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Camundongos , Neurônios/citologia , Neurônios/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/genética , Esfingomielinas/farmacologia , Temperatura
17.
Carcinogenesis ; 34(12): 2683-93, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23843039

RESUMO

Melanoma is a highly metastatic and malignant skin cancer having poor rates of patient survival. Since the incidence of melanoma is steadily increasing in the population, finding prognostic and therapeutic targets are crucial tasks in cancer. The dioxin receptor (AhR) is required for xenobiotic-induced toxicity and carcinogenesis and for cell physiology and organ homeostasis. Yet, the mechanisms by which AhR affects tumor growth and dissemination are largely uncharacterized. We report here that AhR contributes to the tumor-stroma interaction, blocking melanoma growth and metastasis when expressed in the tumor cell but supporting melanoma when expressed in the stroma. B16F10 cells engineered to lack AhR (small hairpin RNA for AhR) exacerbated melanoma primary tumorigenesis and lung metastasis when injected in AhR+/+ recipient mice but not when injected in AhR- /- mice or when co-injected with AhR-/- fibroblasts in an AhR+/+ stroma. Contrary, B16F10 cells expressing a constitutively active AhR had reduced tumorigenicity and invasiveness in either AhR genetic background. The tumor suppressor role of AhR in melanoma cells correlated with reduced migration and invasion, with lower numbers of cancer stem-like cells and with altered levels of ß1-integrin and caveolin1. Human melanoma cell lines with highest AHR expression also had lowest migration and invasion. Moreover, AHR expression was reduced in human melanomas with respect to nevi lesions. We conclude that AhR knockdown in melanoma cells requires stromal AhR for maximal tumor progression and metastasis. Thus, AhR can be a molecular marker in melanoma and its activity in both tumor and stromal compartments should be considered.


Assuntos
Melanoma/genética , Melanoma/patologia , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Receptores de Hidrocarboneto Arílico/genética , Proteínas Supressoras de Tumor/genética , Animais , Carcinogênese/genética , Carcinogênese/patologia , Caveolinas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Fibroblastos/patologia , Humanos , Integrina beta1/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
18.
J Cell Physiol ; 228(11): 2097-102, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23559144

RESUMO

Transforming growth factor (TGF)-ß is a multifunctional cytokine acting during development, tissue homeostasis, regeneration processes, and disease progression. Due to its pleiotropic effects, tight regulation of the induced signaling cascades is mandatory. Caveolin proteins regulate a specific endocytic pathway and modulate diverse signaling pathways and thus have been related to severe disorders, for example, cancer and fibrosis. Caveolin affects TGF-ß/-Smad and non-Smad signaling in many ways and thus can determine the cellular outcome upon TGF-ß challenge. Reciprocal regulation of caveolin and TGF-ß is also evident, ranging from gene expression to miRNA regulation. Finally, there is in vivo evidence that this crosstalk influences disease development and progression. This review gives an overview about the multifaceted relations of caveolin and TGF-ß.


Assuntos
Caveolinas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Caveolinas/genética , Humanos , Integrinas/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo
19.
EMBO J ; 28(8): 1001-15, 2009 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-19262564

RESUMO

Caveolae are a major membrane domain common to most cells. One of the defining features of this domain is the protein caveolin. The exact function of caveolin, however, is not clear. One possible function is to attract adapter molecules to caveolae in a manner similar to how clathrin attracts molecules to coated pits. Here, we characterize a candidate adapter molecule called SRBC. SRBC binds PKCdelta and is a member of the STICK (substrates that interact with C-kinase) superfamily of PKC-binding proteins. We also show it co-immunoprecipitates with caveolin-1. A leucine zipper in SRBC is essential for both co-precipitation with caveolin and localization to caveolae. SRBC remains associated with caveolin when caveolae bud to form vesicles (cavicles) that travel on microtubules to different regions of the cell. In the absence of SRBC, intracellular cavicle traffic is markedly impaired. We conclude that SRBC (sdr-related gene product that binds to c-kinase) and two other family members [PTRF (Pol I and transcription release factor) and SDPR] function as caveolin adapter molecules that regulate caveolae function.


Assuntos
Cavéolas/metabolismo , Caveolinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caveolinas/genética , Linhagem Celular , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestrutura , Fibroblastos/citologia , Fibroblastos/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Mutagênese Sítio-Dirigida , Proteínas de Ligação a Fosfato , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Quinase C/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Distribuição Tecidual
20.
J Virol ; 86(23): 12954-70, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22993156

RESUMO

Rift Valley fever virus (RVFV) is a zoonotic pathogen capable of causing serious morbidity and mortality in both humans and livestock. The lack of efficient countermeasure strategies, the potential for dispersion into new regions, and the pathogenesis in humans and livestock make RVFV a serious public health concern. The receptors, cellular factors, and entry pathways used by RVFV and other members of the family Bunyaviridae remain largely uncharacterized. Here we provide evidence that RVFV strain MP-12 uses dynamin-dependent caveola-mediated endocytosis for cell entry. Caveolae are lipid raft domains composed of caveolin (the main structural component), cholesterol, and sphingolipids. Caveola-mediated endocytosis is responsible for the uptake of a wide variety of host ligands, as well as bacteria, bacterial toxins, and a number of viruses. To determine the cellular entry mechanism of RVFV, we used small-molecule inhibitors, RNA interference (RNAi), and dominant negative (DN) protein expression to inhibit the major mammalian cell endocytic pathways. Inhibitors and RNAi specific for macropinocytosis and clathrin-mediated endocytosis had no effect on RVFV infection. In contrast, inhibitors of caveola-mediated endocytosis, and RNAi targeted to caveolin-1 and dynamin, drastically reduced RVFV infection in multiple cell lines. Expression of DN caveolin-1 also reduced RVFV infection significantly, while expression of DN EPS15, a protein required for the assembly of clathrin-coated pits, and DN PAK-1, an obligate mediator of macropinocytosis, had no significant impact on RVFV infection. These results together suggest that the primary mechanism of RVFV MP-12 uptake is dynamin-dependent, caveolin-1-mediated endocytosis.


Assuntos
Cavéolas/metabolismo , Endocitose/fisiologia , Vírus da Febre do Vale do Rift/fisiologia , Internalização do Vírus , Animais , Western Blotting , Cavéolas/fisiologia , Caveolinas/genética , Chlorocebus aethiops , Citometria de Fluxo , Proteínas de Fluorescência Verde , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Interferência de RNA , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA