Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 759
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 211(8): 1173-1179, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37782851

RESUMO

Bovine tuberculosis (bTB) is a zoonotic bacterial disease presenting public health, veterinary, and economic threats around the globe. Although cattle producers rely on regular testing and management practices to minimize domestic herd exposure, wildlife species around the world continue to be the main reservoirs for disease. Wildlife reservoirs for bTB include the Eurasian badger (Meles meles) in Great Britain and Ireland, the brushtail possum (Trichosurus vulpecula) in New Zealand, wild boar (Sus scrofa) in Spain, as well as white-tailed deer (Odocoileus virginianus) in the United States and red deer (Cervus elaphus) in Spain. Although all reservoir species share the ability to infect cattle, they differ in transmission capability, disease pathogenesis, diagnostic detection, and vaccination strategies. In this review, bTB interactions with these wildlife reservoirs are discussed, illustrating the need to address bTB disease in wildlife hosts to achieve eradication in domestic livestock.


Assuntos
Cervos , Mycobacterium bovis , Tuberculose Bovina , Bovinos , Animais , Animais Selvagens , Cervos/microbiologia , Reservatórios de Doenças/microbiologia , Reservatórios de Doenças/veterinária
2.
Clin Infect Dis ; 78(3): 637-645, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38207126

RESUMO

BACKGROUND: A unique enzootic focus of Mycobacterium bovis in free-ranging deer was identified in northern lower Michigan in 1994, with subsequent evidence of transmission to local cattle herds. Between 2002 and 2017, 3 Michigan deer hunters with M. bovis disease were previously reported. We present 4 additional human cases linked to the zoonotic focus in deer, utilizing genomic epidemiology to confirm close molecular associations among human, deer and cattle M. bovis isolates. METHODS: Identification of human tuberculosis (TB) cases with cultures of M. bovis was provided from the Michigan Department of Health and Human Services (MDHHS) tuberculosis database. Clinical review and interviews focused on risk factors for contact with wildlife and cattle. Whole genome sequences of human isolates were compared with a veterinary library of M. bovis strains to identify those linked to the enzootic focus. RESULTS: Three confirmed and 1 probable human case with M. bovis disease were identified between 2019 and 2022, including cutaneous disease, 2 severe pulmonary disease cases, and human-to-human transmission. The 3 human isolates had 0-3 single-nucleotide polymorphisms (SNPs) with M. bovis strains circulating in wild deer and domestic cattle in Michigan. CONCLUSIONS: Spillover of enzootic M. bovis from deer to humans and cattle continues to occur in Michigan. Future studies should examine the routes of transmission and degree of risk to humans through expanded epidemiological surveys. A One Health approach linking human, veterinary and environmental health should address screening for TB infection, public education, and mitigation of transmission.


Assuntos
Cervos , Mycobacterium bovis , Tuberculose , Animais , Humanos , Bovinos , Mycobacterium bovis/genética , Michigan/epidemiologia , Cervos/microbiologia , Tuberculose/epidemiologia , Tuberculose/veterinária , Tuberculose/prevenção & controle , Animais Selvagens
3.
Appl Environ Microbiol ; 90(6): e0010524, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38742897

RESUMO

Pododermatitis, also known as treponeme-associated hoof disease (TAHD), presents a significant challenge to elk (Cervus canadensis) populations in the northwestern USA, with Treponema spp. consistently implicated in the lesion development. However, identifying species-specific Treponema strains from these lesions is hindered by its culture recalcitrance and limited genomic information. This study utilized shotgun sequencing, in silico genome reconstruction, and comparative genomics as a culture-independent approach to identify metagenome-assembled Treponema genomes (MATGs) from skin scraping samples collected from captive elk experimentally challenged with TAHD. The genomic analysis revealed 10 new MATGs, with 6 representing novel genomospecies associated with pododermatitis in elk and 4 corresponding to previously identified species-Treponema pedis and Treponema phagedenis. Importantly, genomic signatures of novel genomospecies identified in this study were consistently detected in biopsy samples of free-ranging elk diagnosed with TAHD, indicating a potential etiologic association. Comparative metabolic profiling of the MATGs against other Treponema genomes showed a distinct metabolic profile, suggesting potential host adaptation or geographic uniqueness of these newly identified genomospecies. The discovery of novel Treponema genomospecies enhances our understanding of the pathogenesis of pododermatitis and lays the foundation for the development of improved molecular surveillance tools to monitor and manage the disease in free-ranging elk.IMPORTANCETreponema spp. play an important role in the development of pododermatitis in free-ranging elk; however, the species-specific detection of Treponema from pododermatitis lesions is challenging due to culture recalcitrance and limited genomic information. The study utilized shotgun sequencing and in silico genome reconstruction to identify novel Treponema genomospecies from elk with pododermatitis. The discovery of the novel Treponema species opens new avenues to develop molecular diagnostic and epidemiologic tools for the surveillance of pododermatitis in elk. These findings significantly enhance our understanding of the genomic landscape of the Treponemataceae consortium while offering valuable insights into the etiology and pathogenesis of emerging pododermatitis in elk populations.


Assuntos
Cervos , Genoma Bacteriano , Treponema , Infecções por Treponema , Treponema/genética , Treponema/classificação , Treponema/isolamento & purificação , Animais , Cervos/microbiologia , Infecções por Treponema/microbiologia , Infecções por Treponema/veterinária , Doenças do Pé/microbiologia , Doenças do Pé/veterinária , Filogenia , Dermatite/microbiologia , Dermatite/veterinária
4.
Osteoarthritis Cartilage ; 32(3): 281-286, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38043856

RESUMO

OBJECTIVE: Osteoarthritis, periodontitis and osteoporosis are chronic, age-related diseases which adversely impact millions of people worldwide. Because these diseases pose a major global public health challenge, there is an urgent need to better understand how these diseases are interrelated. Our objective was to document the age and sex-specific prevalence of each disease and assess interrelationships among the three diseases in a wild mammal (moose, Alces alces) population. METHODS: We examined the bones of moose dying from natural causes and recorded the severity of osteoarthritis (typically observed on the hip and lowest vertebrae), osteoporosis (osteoporotic lesions observed on the skull) and periodontitis (observed on maxilla and mandibles). RESULTS: Periodontitis was associated with a greater prevalence of both severe osteoarthritis and osteoporotic lesions in moose. We found no evidence to suggest that moose with osteoporotic lesions were more or less likely to exhibit signs of osteoarthritis or severe osteoarthritis. The prevalence of osteoarthritis, periodontitis and osteoporotic lesions was greater among males than for females. CONCLUSIONS: Our results were consistent with the hypothesis that bacterial pathogens causing periodontitis are a risk factor for osteoarthritis and osteoporosis. They are also consistent with the hypothesis that the inverse association between osteoarthritis and osteoporosis sometimes observed in humans may be influenced by shared risk factors, such as obesity, smoking or alcohol consumption, which are absent in moose. Together these results provide insights about three diseases which are expected to become more prevalent in the future and that cause substantial socio-economic burdens.


Assuntos
Cervos , Osteoartrite , Osteoporose , Periodontite , Animais , Masculino , Feminino , Humanos , Cervos/microbiologia , Osteoporose/epidemiologia , Periodontite/epidemiologia , Osteoartrite/epidemiologia , Envelhecimento
5.
Emerg Infect Dis ; 29(3): 661-663, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36823735

RESUMO

Tuberculosis caused by Mycobacterium orygis was detected in 2 spotted deer from a wildlife sanctuary in western India and an Indian bison from a national park in central India. Nationwide surveillance is urgently required to clarify the epidemiology of the Mycobacterium tuberculosis complex at the human-livestock-wildlife interface.


Assuntos
Bison , Cervos , Mycobacterium bovis , Tuberculose , Humanos , Animais , Cervos/microbiologia , Tuberculose/epidemiologia , Ruminantes , Animais Selvagens , Índia
6.
Appl Microbiol Biotechnol ; 107(17): 5517-5529, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37421471

RESUMO

Maintaining a healthy status is crucial for the successful captive breeding of endangered alpine musk deer (Moschus chrysogaster, AMD), and captive breeding programs are beneficial to the ex-situ conservation and wild population recovery of this species. Meanwhile, the gut microbiota is essential for host health, survival, and environmental adaptation. However, changes in feeding environment and food can affect the composition and function of gut microbiota in musk deer, ultimately impacting their health and adaptation. Therefore, regulating the health status of wild and captive AMD through a non-invasive method that targets gut microbiota is a promising approach. Here, 16S rRNA gene sequencing was employed to reveal the composition and functional variations between wild (N = 23) and captive (N = 25) AMD populations. The results indicated that the gut microbiota of wild AMD exhibited significantly higher alpha diversity (P < 0.001) and greater abundance of the phylum Firmicutes, as well as several dominant genera, including UCG-005, Christensenellaceae R7 group, Monoglobus, Ruminococcus, and Roseburia (P < 0.05), compared to captive AMD. These findings suggest that the wild AMD may possess more effective nutrient absorption and utilization, a more stable intestinal microecology, and better adaption to the complex natural environment. The captive individuals displayed higher metabolic functions with an increased abundance of the phylum Bacteroidetes and certain dominant genera, including Bacteroides, Rikenellaceae RC9 gut group, NK4A214 group, and Alistipes (P < 0.05), which contributed to the metabolic activities of various nutrients. Furthermore, captive AMD showed a higher level of 11 potential opportunistic pathogens and a greater enrichment of disease-related functions compared to wild AMD, indicating that wild musk deer have a lower risk of intestinal diseases and more stable intestinal structure in comparison to captive populations. These findings can serve as a valuable theoretical foundation for promoting the healthy breeding of musk deer and as a guide for evaluating the health of wild-released and reintroduced musk deer in the future. KEY POINTS: • Wild and captive AMD exhibit contrasting gut microbial diversity and certain functions. • With higher diversity, certain bacteria aid wild AMD's adaptation to complex habitats. • Higher potential pathogens and functions increase disease risk in captive AMD.


Assuntos
Cervos , Microbioma Gastrointestinal , Humanos , Animais , Microbioma Gastrointestinal/genética , Cervos/microbiologia , RNA Ribossômico 16S/genética , Animais Selvagens/microbiologia , Bactérias/genética , Bacteroidetes/genética , Clostridiales/genética
7.
Appl Environ Microbiol ; 88(17): e0049922, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35950850

RESUMO

The gut microbiota of sika deer has been widely investigated, but the spatial distribution of symbiotic microbes among physical niches in the gastrointestinal tract remains to be established. While feces are the most commonly used biological samples in these studies, the accuracy of fecal matter as a proxy of the microbiome at other gastrointestinal sites is as yet unknown. In the present study, luminal contents obtained along the longitudinal axis of deer gastrointestinal tract (rumen, reticulum, omasum, abomasum, small intestine, cecum, colon, and rectum) were subjected to 16S rRNA gene sequencing for profiling of the microbial composition, and samples from the rumen, small intestine, and cecum were subjected to metabolomic analysis to evaluate short-chain fatty acid (SCFA) profiles. Prevotella bacteria were the dominant gastric core microbes, while Christensenellaceae_R-7_group was predominantly observed in the intestine. While the eight gastrointestinal sites displayed variations in microbial diversity, abundance, and function, they could be clustered into stomach, small intestine, and large intestine segments, and the results further highlighted a specific microbial niche of the small intestine. SCFA levels in the rumen, small intestine, and cecum were significantly different, with Bacteroidetes and Spirochaetes were shown to play a critical role in SCFA production. Finally, the rectal microbial composition was significantly correlated with colonic and cecum communities but not those of the small intestine and four gastric sites. Quantification of the compositions and biogeographic relationships between gut microbes and SCFAs in sika deer should provide valuable insights into the interactions contributing to microbial functions and metabolites. IMPORTANCE Feces or specific segments of the gastrointestinal tract (in particular, the rumen) were sampled to explore the gut microbiome. The gastrointestinal biogeography of the luminal microbiota in ruminants, which is critical to guide accurate sampling for different purposes, is poorly understood at present. The microbial community of the rectal sample (as a proxy of fecal sample) showed higher correlation with those of other large intestinal sites relative to the small intestine or stomach, suggesting that the microbial composition is specifically shaped by the unique physiological characteristics of different gastrointestinal niches. In addition, significant differences in microbiomes and SCFAs were observed among the different gastrointestinal sites.


Assuntos
Cervos , Microbiota , Animais , Bactérias , Cervos/microbiologia , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Trato Gastrointestinal/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ruminantes
8.
Appl Environ Microbiol ; 88(14): e0061722, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35867580

RESUMO

In Europe, genetically distinct ecotypes of the tick-vectored bacterium Anaplasma phagocytophilum circulate among mammals in three discrete enzootic cycles. To date, potential ecological factors that contributed to the emergence of these divergent ecotypes have been poorly studied. Here, we show that the ecotype that predominantly infects roe deer (Capreolus capreolus) is evolutionarily derived. Its divergence from a host generalist ancestor occurred after the last glacial maximum as mammal populations, including roe deer, recolonized the European mainland from southern refugia. We also provide evidence that this host specialist ecotype's effective population size (Ne) has tracked changes in the population of its roe deer host. Specifically, both host and bacterium have undergone substantial increases in Ne over the past 1,500 years. In contrast, we show that while it appears to have undergone a major population expansion starting ~3,500 years ago, in the past 500 years, the contemporary host generalist ecotype has experienced a substantial reduction in genetic diversity levels, possibly as a result of reduced opportunities for transmission between competent hosts. IMPORTANCE The findings of this study reveal specific events important for the evolution of host specialization in a naturally occurring, obligately intracellular bacterial pathogen. Specifically, they show that host range shifts and the emergence of host specialization may occur during periods of population growth in a generalist ancestor. Our results also demonstrate the close correlation between demographic patterns in host and pathogen for a specialist system. These findings have important relevance for understanding the evolution of host range diversity. They may inform future work on host range dynamics, and they provide insights for understanding the emergence of pathogens that have human and veterinary health implications.


Assuntos
Anaplasma phagocytophilum , Cervos , Ixodes , Carrapatos , Anaplasma phagocytophilum/genética , Animais , Cervos/microbiologia , Demografia , Ecótipo , Humanos , Ixodes/microbiologia
9.
Appl Environ Microbiol ; 88(13): e0046522, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35736227

RESUMO

Wildlife play a role in the acquisition, maintenance, and dissemination of antimicrobial resistance (AMR). This is especially true at the human-domestic animal-wildlife interface, like urbanized areas, where interactions occur that can promote the cross-over of AMR bacteria and genes. We conducted a 2-year fecal surveillance (n = 783) of a white-tailed deer (WTD) herd from an urban park system in Ohio to identify and characterize cephalosporin-resistant and carbapenemase-producing bacteria using selective enrichment. Using generalized linear mixed models we found that older (OR = 2.3, P < 0.001), male (OR = 1.8, P = 0.001) deer from urbanized habitats (OR = 1.4, P = 0.001) were more likely to harbor extended-spectrum cephalosporin-resistant Enterobacterales. In addition, we isolated two carbapenemase-producing Enterobacterales (CPE), a Klebsiella quasipneumoniae harboring blaKPC-2 and an Escherichia coli harboring blaNDM-5, from two deer from urban habitats. The genetic landscape of the plasmid carrying blaKPC-2 was unique, not clustering with other reported plasmids encoding KPC-2, and only sharing 78% of its sequence with its nearest match. While the plasmid carrying blaNDM-5 shared sequence similarity with other reported plasmids encoding NDM-5, the intact IS26 mobile genetic elements surrounding multiple drug resistant regions, including the blaNDM-5, has been reported infrequently. Both carbapenemase genes were successfully conjugated to a J53 recipient conferring a carbapenem-resistant phenotype. Our findings highlight that urban environments play a significant role on the transmission of AMR bacteria and genes to wildlife and suggest WTD may play a role in the dissemination of clinically and epidemiologically relevant antimicrobial resistant bacteria. IMPORTANCE The role of wildlife in the spread of antimicrobial resistance is not fully characterized. Some wildlife, including white-tailed deer (WTD), can thrive in suburban and urban environments. This may result in the exchange of antimicrobial resistant bacteria and resistance genes between humans and wildlife, and lead to their spread in the environment. We found that WTD living in an urban park system carried antimicrobial resistant bacteria that were important to human health and resistant to antibiotics used to treat serious bacterial infections. This included two deer that carried bacteria resistant to carbapenem antibiotics which are critically important for treatment of life-threatening infections. These two bacteria had the ability to transfer their AMR resistance genes to other bacteria, making them a threat to public health. Our results suggest that WTD may contribute to the spread of antimicrobial resistant bacteria in the environment.


Assuntos
Cefalosporinase , Cervos , Farmacorresistência Bacteriana , Gammaproteobacteria/isolamento & purificação , Animais , Animais Selvagens/microbiologia , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Cefalosporinase/genética , Cefalosporinas/farmacologia , Cervos/microbiologia , Gammaproteobacteria/efeitos dos fármacos , Humanos , Masculino , Testes de Sensibilidade Microbiana , Plasmídeos
10.
Appl Microbiol Biotechnol ; 106(3): 1325-1339, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35037997

RESUMO

Gut microbiota forms a unique microecosystem and performs various irreplaceable metabolic functions for ruminants. The gut microbiota is important for host health and provides new insight into endangered species conservation. Forest musk deer (FMD) and alpine musk deer (AMD) are typical small ruminants, globally endangered due to excessive hunting and habitat loss. Although nearly 60 years of captive musk deer breeding has reduced the hunting pressure in the wild, fatal gastrointestinal diseases restrict the growth of captive populations. In this study, 16S rRNA high-throughput sequencing revealed the differences in gut microbiota between FMD and AMD based on 166 fecal samples. The alpha diversity was higher in FMD than in AMD, probably helping FMD adapt to different and wider habitats. The ß-diversity was higher between adult FMD and AMD than juveniles and in winter than late spring. The phylum Firmicutes and the genera Christensenellaceae R7 group, Ruminococcus, Prevotellaceae UCG-004, and Monoglobus were significantly higher in abundance in FMD than in AMD. However, the phylum Bacteroidetes and genera Bacteroides, UCG-005, Rikenellaceae RC9 gut group, and Alistipes were significantly higher in AMD than FMD. The expression of metabolic functions was higher in AMD than in FMD, a beneficial pattern for AMD to maintain higher energy and substance metabolism. Captive AMD may be at higher risk of intestinal diseases than FMD, with higher relative abundances of most opportunistic pathogens and the expression of disease-related functions. These results provide valuable data for breeding healthy captive musk deer and assessing their adaptability in the wild. KEY POINTS: • Alpha diversity of gut microbiota was higher in FMD than that in AMD • Expression of metabolic and disease-related functions was higher in AMD than in FMD.


Assuntos
Cervos , Microbioma Gastrointestinal , Animais , Cervos/microbiologia , Florestas , RNA Ribossômico 16S/genética
11.
BMC Vet Res ; 18(1): 114, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35331229

RESUMO

BACKGROUND: Trueperella pyogenes and Pseudomonas aeruginosa are two important bacterial pathogens closely relating to the occurrence and development of forest musk deer respiratory purulent disease. Although T. pyogenes is the causative agent of the disease, the subsequently invaded P. aeruginosa will predominate the infection by producing a substantial amount of quorum-sensing (QS)-controlled virulence factors, and co-infection of them usually creates serious difficulties for veterinary treatment. In order to find a potential compound that targets both T. pyogenes and P. aeruginosa, the antibacterial and anti-virulence capacities of 55 compounds, which have similar core structure to the signal molecules of P. aeruginosa QS system, were tested in this study by performing a series of in vitro screening experiments. RESULTS: We identified that furazolidone could significantly reduce the cell densities of T. pyogenes in mono-culture or in the co-culture with P. aeruginosa. Although the growth of P. aeruginosa could also be moderately inhibited by furazolidone, the results of phenotypic identification and transcriptomic analysis further revealed that sub-inhibitory furazolidone had remarkable inhibitory effect on the biofilm production, motility, and QS system of P. aeruginosa. Moreover, furazolidone could efficiently protect Caenorhabditis elegans models from P. aeruginosa infection under both fast-killing and slow-killing conditions. CONCLUSIONS: This study reports the antibacterial and anti-virulence abilities of furazolidone on T. pyogenes and P. aeruginosa, and provides a promising strategy and molecular basis for the development of novel anti-infectious drugs to dealing with forest musk deer purulent disease, or other diseases caused by T. pyogenes and P. aeruginosa co-infection.


Assuntos
Cervos , Pseudomonas aeruginosa , Animais , Antibacterianos/farmacologia , Biofilmes , Cervos/microbiologia , Furazolidona/farmacologia , Percepção de Quorum , Virulência , Fatores de Virulência
12.
Appl Environ Microbiol ; 87(6)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33397708

RESUMO

Listeria monocytogenes is a major human and animal foodborne pathogen. However, data from environmental reservoirs remain scarce. Here, we used whole-genome sequencing to characterize Listeria species isolates recovered over 1 year from wild animals in their natural habitats in Spain. Three different Listeria spp. (L. monocytogenes [n = 19], Listeria ivanovii subsp. londoniensis [n = 4], and Listeria innocua [n = 3]) were detected in 23 animal tonsils (9 deer, 14 wild boars) and 2 feeding troughs. No Listeria species was detected in feces. L. monocytogenes was detected in tonsils of 44.4% (8 out of 18) of deer and 40.7% (11 out of 27) of wild boars. L. monocytogenes isolates belonged to 3 different core genome multilocus sequence typing (cgMLST) types (CTs) of 3 distinct sublineages (SL1, SL387, and SL155) from lineages I and II. While cgMLST type L1-SL1-ST1-CT5279 (IVb; clonal complex 1 [CC1]) occurred only in one animal, types L1-SL387-ST388-CT5239 (IVb; CC388) and L2-SL155-ST155-CT1170 (IIa; CC155) were retrieved from multiple animals. In addition, L1-SL387-ST388-CT5239 (IVb; CC388) isolates were collected 1 year apart, revealing their long-term occurrence within the animal population and/or environmental reservoir. The presence of identical L. monocytogenes strains in deer and wild boars suggests contamination from a common food or environmental source, although interhost transmission cannot be excluded. Pathogenicity islands LIPI-1, LIPI-3, and LIPI-4 were present in 100%, 5%, and 79% of the L. monocytogenes isolates, respectively, and all L. monocytogenes lineage II isolates (n = 3) carried SSI-1 stress islands. This study highlights the need for monitoring L. monocytogenes environmental contamination and the importance of tonsils as a possible L. monocytogenes intrahost reservoir.IMPORTANCEListeria monocytogenes is a foodborne bacterial pathogen responsible for listeriosis. Whole-genome sequencing has been extensively used in public health and food industries to characterize circulating Listeria isolates, but genomic data on isolates occurring in natural environments and wild animals are still scarce. Here, we show that wild animals carry pathogenic Listeria and that the same genotypes can be found at different time points in different host species. This work highlights the need of Listeria species monitoring of environmental contamination and the importance of tonsils as a possible L. monocytogenes intrahost reservoir.


Assuntos
Cervos/microbiologia , Listeria/genética , Listeriose/microbiologia , Tonsila Palatina/microbiologia , Sus scrofa/microbiologia , Animais , Fezes/microbiologia , Genoma Bacteriano , Listeria/isolamento & purificação , Listeriose/veterinária , Tipagem de Sequências Multilocus , Filogenia , Sequenciamento Completo do Genoma
13.
Appl Environ Microbiol ; 87(2)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158895

RESUMO

Deer tick-transmitted Borrelia burgdorferisensu stricto (Lyme disease) and Babesia microti (babesiosis) increasingly burden public health across eastern North America. The white-footed mouse is considered the primary host for subadult deer ticks and the most important reservoir host for these and other disease agents. Local transmission is thought to be modulated by less reservoir-competent hosts, such as deer, diverting ticks from feeding on mice. We measured the proportion of mouse-fed or deer-fed host-seeking nymphs from 4 sites during 2 transmission seasons by blood meal remnant analysis using a new retrotransposon-based quantitative PCR (qPCR) assay. We then determined the host that was associated with the infection status of the tick. During the first year, the proportion of mouse-fed ticks ranged from 17% on mainland sites to 100% on an island, while deer-fed ticks ranged from 4% to 24%. The proportion of ticks feeding on mice and deer was greater from island sites than mainland sites (on average, 92% versus 43%). Mouse-fed ticks decreased significantly during year 2 in 3 of 4 sites (most were <20%), while deer-fed ticks increased for all sites (75% at one site). Overall, ticks were more likely to be infected when they had fed on mice (odds ratio [OR] of 2.4 and 1.6 for Borrelia and Babesia, respectively) and were less likely to be infected if they had fed on deer (OR, 0.8 and 0.4). We conclude that host utilization by deer ticks is characterized by significant spatiotemporal diversity, which may confound efficacy tests of interventions targeting reservoir hosts.IMPORTANCE White-footed mice are thought to be the most important reservoir host for the deer tick-transmitted pathogens that cause Lyme disease and human babesiosis because they are the primary host for immature ticks. Transmission would be reduced, however, if ticks feed on deer, which are not capable of infecting ticks with either pathogen. By directly measuring whether ticks had fed on either mice or deer using a new quantitative PCR (qPCR) assay to detect remnants of host DNA leftover from the larval blood meal, we demonstrate that host utilization by ticks varies significantly over time and space and that mice often feed fewer ticks than expected. This finding has implications for our understanding of the ecology of these diseases and for the efficacy of control measures.


Assuntos
Babesia microti/isolamento & purificação , Borrelia burgdorferi/isolamento & purificação , Cervos , Ixodes/microbiologia , Peromyscus , Animais , DNA/análise , Cervos/sangue , Cervos/genética , Cervos/microbiologia , Feminino , New England , Ninfa/microbiologia , Peromyscus/sangue , Peromyscus/genética , Peromyscus/microbiologia , Retroelementos
14.
Arch Microbiol ; 203(6): 3305-3315, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33860850

RESUMO

The forest musk deer, Moschus berezovskii, is a nationally protected species of economic importance in China. However, in captive breeding programmes, they usually die as a result of diarrhoea. In this study, six M. berezovskii were randomly selected and divided into two groups: probiotics group (n = 3) and placebo (control) group (n = 3). The two groups were fed a basal diet that included 2 g probiotics (probiotic group) or 2 g whey powder (placebo group) for 30 days. Faecal samples were collected at day 0, 15 and 30 and evaluated for microbial diversity, species richness and metabolic function. Probiotic intervention significantly improved gut health in M. berezovskii by changing the overall community structure of the gut microbiota. Intake of probiotics reduced the relative abundance of pathogenic bacteria such as Escherichia coli and Citrobacter freundii in the intestinal flora and increased the relative abundance of beneficial Bifidobacterium species and other lactic acid bacteria. At the same time, gut microbiota in the probiotics group were involved in regulating degradation of phenylacetic acid and in dTDP-L-rhamnose synthesis; these processes have the potential to enhance immunity in M. berezovskii. This preliminary study revealed the beneficial effects of probiotics on the gut microbiota of M. berezovskii, which the potential to significantly improve the health, wellbeing and economic value of M. berezovskii.


Assuntos
Cervos/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Probióticos/farmacologia , Animais , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/metabolismo , Bifidobacterium/isolamento & purificação , Biodiversidade , China , Fezes/microbiologia , Lactobacillales/isolamento & purificação
15.
BMC Vet Res ; 17(1): 258, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34325697

RESUMO

BACKGROUND: Mule deer rely on fat and protein stored prior to the winter season as an energy source during the winter months when other food sources are sparse. Since associated microorganisms ('microbiota') play a significant role in nutrient metabolism of their hosts, we predicted that variation in the microbiota might be associated with nutrient storage and overwintering in mule deer populations. To test this hypothesis we performed a 16S rRNA marker gene survey of fecal samples from two deer populations in the western United States before and after onset of winter. RESULTS: PERMANOVA analysis revealed the deer microbiota varied interactively with geography and season. Further, using metadata collected at the time of sampling, we were able to identify different fecal bacterial taxa that could potentially act as bioindicators of mule deer health outcomes. First, we identified the abundance of Collinsella (family: Coriobacteriaceae) reads as a possible predictor of poor overwintering outcomes for deer herds in multiple locations. Second, we showed that reads assigned to the Bacteroides and Mollicutes Order RF39 were both positively correlated with deer protein levels, leading to the idea that these sequences might be useful in predicting mule deer protein storage. CONCLUSIONS: These analyses confirm that variation in the microbiota is associated with season-dependent health outcomes in mule deer, which may have useful implications for herd management strategies.


Assuntos
Bactérias/classificação , Cervos/microbiologia , Fezes/microbiologia , Animais , Microbioma Gastrointestinal , Vigilância da População , Estações do Ano
16.
Microb Pathog ; 143: 104133, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32169486

RESUMO

Bacillus cereus (B. cereus) is widely distributed in the environment. It is one of the most common opportunistic food-borne pathogens associated with food poisoning, not only being majorly reported to cause fatal infections of the gastrointestinal tract, but also responsible for abdominal distress and vomiting. The current study was undertaken to evaluate the biological characteristics and the genetic evolution of B. cereus isolated from infected organs of dead Elaphurus davidianus (E. davidianus). B. cereus was characterized through antibiotic sensitivity tests, mouse lethality assay, whole genome sequencing analysis, and genome annotation. The results revealed that the isolated B. cereus strain was highly resistant to rifampicin, lincomycin, sulfamethoxazole, erythromycin, and ampicillin, with a high pathogenicity phenotype. KEGG annotation revealed that "metabolic pathways" had the largest number of unigenes, followed by "biosynthesis of secondary metabolites" and "biosynthesis of antibiotics". GO analysis resulted in 8039 unigenes categorized. Meanwhile, 54,779 unigenes were annotated and grouped into 23 categories based on COG functional classifications. Moreover, one gene (codY) was found to be related to the host in conformity with the analysis done on PHI-base. Other tests led to the identification of 16 B. cereus virulence factor genes and five resistance types, with potential resistance against bacitracin, penicillin, and fosfomycin. We isolated a highly drug-resistant and pathogenic B. cereus strain from E. davidianus, showing that a variety of antimicrobial drugs should be avoided in clinical treatments. Furthermore, to the best of our knowledge, this is the first study to report whole genome sequencing of a emergence of food-borne B. cereus strain isolated from E. davidianus deer; it will be helpful to extensively investigate the genetic and molecular mechanisms of drug resistance and pathogenesis about B. cereus in both humans and animals.


Assuntos
Bacillus cereus/genética , Cervos/microbiologia , Evolução Molecular , Animais , Antibacterianos/farmacologia , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/patogenicidade , Farmacorresistência Bacteriana/genética , Feminino , Genoma Bacteriano/genética , Camundongos , Testes de Sensibilidade Microbiana , Virulência/genética , Sequenciamento Completo do Genoma
17.
Int J Syst Evol Microbiol ; 70(3): 1578-1584, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32228749

RESUMO

A Gram-stain-positive strain, 8 H-2T, was isolated from faeces of Reeves' muntjac (Muntiacus reevesi) barking deer in Taiwan. Cells of the strain were short rod-shaped, non-motile, non-haemolytic, asporogenous, facultatively anaerobic, heterofermentative and did not exhibit catalase and oxidase activities. Comparative analyses of 16S rRNA, pheS and dnaA gene sequences demonstrated that the novel strain was a member of the genus Weissella. On the basis of 16S rRNA gene sequence similarities, the type strains of Weissella oryzae (99.2 %), Weissella confusa (97.8 %), Weissella cibaria (97.6 %) and Weissella soli (97.3 %) were the closest neighbours to strain 8 H-2T. The concatenated housekeeping gene sequence (pheS and dnaA) similarities of 8 H-2T to closely related type strains were 72.5-84.9 %, respectively. The genomic DNA G+C content was 40.5 mol%. The average nucleotide identity and digital DNA-DNA hybridization values with these type strains were 70.2-75.4% and 25.1-30.1 %, respectively. Phenotypic and genotypic test results demonstrated that strain 8 H-2T represents a novel species belonging to the genus Weissella, for which the name Weissella muntiaci sp. nov. is proposed. The type strain is 8 H-2T (=BCRC 81133T=NBRC 113537T).


Assuntos
Cervos/microbiologia , Fezes/microbiologia , Filogenia , Weissella/classificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fermentação , Genes Bacterianos , Cervo Muntjac , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Taiwan , Weissella/isolamento & purificação
18.
Int J Syst Evol Microbiol ; 70(6): 3614-3624, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32368999

RESUMO

A total of 34 Corynebacterium sp. strains were isolated from caseous lymph node abscesses of wild boar and roe deer in different regions of Germany. They showed slow growth on Columbia sheep blood agar and sparse growth on Hoyle's tellurite agar. Cellular fatty acid analysis allocated them in the C. diphtheriae group of genus Corynebacterium. MALDI-TOF MS using specific database extensions and rpoB sequencing resulted in classification as C. ulcerans. Their quinone system is similar to C. ulcerans, with major menaquinone MK-8(H2). Their complex polar lipid profile includes major lipids phosphatidylinositol, phosphatidylinositol-mannoside, diphosphatidylglycerol, but also unidentified glycolipids, distinguishing them clearly from C. ulcerans. They ferment glucose, ribose and maltose (like C. ulcerans), but do not utilise d-xylose, mannitol, lactose, sucrose and glycogen (like C. pseudotuberculosis). They showed activity of catalase, urease and phospholipase D, but variable results for alkaline phosphatase and alpha-glucosidase. All were non-toxigenic, tox gene bearing and susceptible to clindamycin, penicillin and erythromycin. In 16SrRNA gene and RpoB protein phylogenies the strains formed distinct brancheswith C. ulcerans as nearest relative.Whole genome sequencing revealed the unique sequence type 578, a distinctbranch in pangenomic core genome MLST, average nucleotide identities <91%, enhancedgenome sizes (2.55 Mbp) and G/C content (54.4 mol%) compared to related species.These results suggest that the strains represent a novel species, for which wepropose the name Corynebactriumsilvaticum sp. nov., based on their first isolation from forest-dwellinggame animals. The type strain isKL0182T (= CVUAS 4292T = DSM 109166T = LMG 31313T= CIP 111 672T).


Assuntos
Abscesso/microbiologia , Corynebacterium/classificação , Cervos/microbiologia , Linfonodos/microbiologia , Filogenia , Sus scrofa/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Corynebacterium/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Alemanha , Glicolipídeos/química , Linfonodos/patologia , Tipagem de Sequências Multilocus , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Suínos , Vitamina K 2/análogos & derivados , Vitamina K 2/química , Sequenciamento Completo do Genoma
19.
Epidemiol Infect ; 148: e6, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31933451

RESUMO

Cervids represent a mammal group which plays an important role in the maintenance of ecological balance. Recent studies have highlighted the role of these species as reservoirs for several arthropods-borne pathogens. Globally, hemotropic mycoplasmas (haemoplasmas) are emerging or remerging bacteria that attach to red blood cells of several mammals species causing hemolytic anaemia. Therefore, the aim of this study was to investigate the occurrence and assess the phylogenetic positioning of Mycoplasma ovis in free-ranging deer from Brazil. Using a polymerase chain reaction targeting the 16S rRNA region, 18 (40%) out of 45 sampled deer were positive to M. ovis. Among the nine sequences analysed, four distinct genotypes were identified. The sequences detected in the present study were closely related to sequences previously identified in deer from Brazil and the USA. On the other hand, the Neighbour-Net network analysis showed that the human-associated M. ovis genotypes were related to genotypes detected in sheep and goats. The present study shows, for the first time, the occurrence of M. ovis in Mazama gouazoubira and Mazama bororo deer species, expanding the knowledge on the hosts harbouring this haemoplasma species. Once several deer species have your population in decline, additional studies are needed to evaluate the pathogenicity of M. ovis among deer populations around the world and assess its potential as reservoir hosts to human infections.


Assuntos
Doenças dos Animais/epidemiologia , Doenças dos Animais/microbiologia , Cervos/microbiologia , Variação Genética , Infecções por Mycoplasma/veterinária , Mycoplasma/classificação , Mycoplasma/isolamento & purificação , Animais , Brasil , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genótipo , Mycoplasma/genética , Infecções por Mycoplasma/epidemiologia , Infecções por Mycoplasma/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
20.
J Appl Microbiol ; 128(3): 794-802, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31715073

RESUMO

AIMS: To prevent the spread of brucellosis, a simple and rapid vertical flow technology (RVFT) for the detection of antibodies targeting brucellosis was developed. METHODS AND RESULTS: In this study, Brucella sp. lipopolysaccharide was purified and used to detect brucellosis antibodies. Sheep IgG was used as a negative control. Colloidal gold-labeled recombinant staphylococcus aureus protein A was sprayed on a fibreglass membrane to prepare immunogold pads. Rapid vertical flow technology was used to detect Brucella in 1668 Sheep, 2743 bovine, 674 red deer and 420 human samples. The results indicated that the accuracy of this assay can reach 98%. CONCLUSIONS: The established RVFT uses a single multifunctional buffer that can be used to detect antibodies in serum, plasma, whole blood and other biological samples while preserving the advantages of lateral-flow immunoassays. SIGNIFICANCE AND IMPACT OF THE STUDY: This technology would be of great use in primary medical units and veterinary stations, and it is of great significance for the control of epidemic diseases.


Assuntos
Brucella/isolamento & purificação , Brucelose/diagnóstico , Imunoensaio/métodos , Animais , Anticorpos Antibacterianos/sangue , Brucella/imunologia , Brucelose/sangue , Bovinos , Cervos/microbiologia , Humanos , Lipopolissacarídeos/imunologia , Sensibilidade e Especificidade , Ovinos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA