Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 962
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(20): 4325-4344.e26, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37652010

RESUMO

KCR channelrhodopsins (K+-selective light-gated ion channels) have received attention as potential inhibitory optogenetic tools but more broadly pose a fundamental mystery regarding how their K+ selectivity is achieved. Here, we present 2.5-2.7 Å cryo-electron microscopy structures of HcKCR1 and HcKCR2 and of a structure-guided mutant with enhanced K+ selectivity. Structural, electrophysiological, computational, spectroscopic, and biochemical analyses reveal a distinctive mechanism for K+ selectivity; rather than forming the symmetrical filter of canonical K+ channels achieving both selectivity and dehydration, instead, three extracellular-vestibule residues within each monomer form a flexible asymmetric selectivity gate, while a distinct dehydration pathway extends intracellularly. Structural comparisons reveal a retinal-binding pocket that induces retinal rotation (accounting for HcKCR1/HcKCR2 spectral differences), and design of corresponding KCR variants with increased K+ selectivity (KALI-1/KALI-2) provides key advantages for optogenetic inhibition in vitro and in vivo. Thus, discovery of a mechanism for ion-channel K+ selectivity also provides a framework for next-generation optogenetics.


Assuntos
Channelrhodopsins , Rhinosporidium , Humanos , Channelrhodopsins/química , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Channelrhodopsins/ultraestrutura , Microscopia Crioeletrônica , Canais Iônicos , Potássio/metabolismo , Rhinosporidium/química
2.
Cell ; 185(4): 672-689.e23, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35114111

RESUMO

ChRmine, a recently discovered pump-like cation-conducting channelrhodopsin, exhibits puzzling properties (large photocurrents, red-shifted spectrum, and extreme light sensitivity) that have created new opportunities in optogenetics. ChRmine and its homologs function as ion channels but, by primary sequence, more closely resemble ion pump rhodopsins; mechanisms for passive channel conduction in this family have remained mysterious. Here, we present the 2.0 Å resolution cryo-EM structure of ChRmine, revealing architectural features atypical for channelrhodopsins: trimeric assembly, a short transmembrane-helix 3, a twisting extracellular-loop 1, large vestibules within the monomer, and an opening at the trimer interface. We applied this structure to design three proteins (rsChRmine and hsChRmine, conferring further red-shifted and high-speed properties, respectively, and frChRmine, combining faster and more red-shifted performance) suitable for fundamental neuroscience opportunities. These results illuminate the conduction and gating of pump-like channelrhodopsins and point the way toward further structure-guided creation of channelrhodopsins for applications across biology.


Assuntos
Channelrhodopsins/química , Channelrhodopsins/metabolismo , Ativação do Canal Iônico , Animais , Channelrhodopsins/ultraestrutura , Microscopia Crioeletrônica , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Moleculares , Optogenética , Filogenia , Ratos Sprague-Dawley , Bases de Schiff/química , Células Sf9 , Relação Estrutura-Atividade
3.
Cell ; 184(21): 5289-5292, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34562361

RESUMO

Being able to precisely turn on or off particular neurons in the brain at will was a major challenge for the neuroscience field, and few could have anticipated that the solution would come from algae. The 2021 Albert Lasker Basic Medical Research Award recognizes the contributions of Peter Hegemann, Dieter Oesterhelt, and Karl Deisseroth for their discovery of light-sensitive microbial proteins that can activate or silence brain cells. Cell editor Nicole Neuman had a conversation with Peter Hegemann about his role in bridging the two fields of microbial phototaxis and neuroscience and his perspective on the nature and future of interdisciplinary science. Excerpts from this conversation are presented below, and the full conversation is available with the article online.


Assuntos
Distinções e Prêmios , Proteínas de Bactérias , Bacteriorodopsinas/metabolismo , Channelrhodopsins/metabolismo , Humanos , Luz , Optogenética
4.
Cell ; 184(21): 5266-5270, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34562360

RESUMO

This year's Lasker Award recognizes Dieter Oesterhelt, Peter Hegemann, and Karl Deisseroth for their discovery of microbial opsins as light-activated ion conductors and the development of optogenetics using these proteins to regulate neural activity in awake, behaving animals. Optogenetics has revolutionized neuroscience and transformed our understanding of brain function.


Assuntos
Bactérias/metabolismo , Opsinas/metabolismo , Optogenética , Animais , Bacteriorodopsinas/metabolismo , Encéfalo/metabolismo , Channelrhodopsins/metabolismo , Cianobactérias/metabolismo , Humanos , Membrana Purpúrea
5.
Cell ; 184(21): 5279-5285, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34562367

RESUMO

On the occasion of the 2021 Lasker Basic Medical Research Award to Karl Deisseroth, Peter Hegemann, and Dieter Oesterhelt (for "the discovery of light-sensitive microbial proteins that can activate or deactivate individual brain cells-leading to the development of optogenetics and revolutionizing neuroscience"), Deisseroth reflects on this international collaboration, his basic mechanistic and structural discoveries regarding microbial channels that transduce photons into ion current, the causal exploration of brain cell function, and the pressing mysteries of psychiatry.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Emoções , Proteínas de Membrana/metabolismo , Bacteriorodopsinas/metabolismo , Channelrhodopsins/metabolismo , Humanos , Optogenética , Membrana Purpúrea/metabolismo
6.
Cell ; 175(4): 1131-1140.e11, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30343901

RESUMO

Targeted manipulation of activity in specific populations of neurons is important for investigating the neural circuit basis of behavior. Optogenetic approaches using light-sensitive microbial rhodopsins have permitted manipulations to reach a level of temporal precision that is enabling functional circuit dissection. As demand for more precise perturbations to serve specific experimental goals increases, a palette of opsins with diverse selectivity, kinetics, and spectral properties will be needed. Here, we introduce a novel approach of "topological engineering"-inversion of opsins in the plasma membrane-and demonstrate that it can produce variants with unique functional properties of interest for circuit neuroscience. In one striking example, inversion of a Channelrhodopsin variant converted it from a potent activator into a fast-acting inhibitor that operates as a cation pump. Our findings argue that membrane topology provides a useful orthogonal dimension of protein engineering that immediately permits as much as a doubling of the available toolkit.


Assuntos
Channelrhodopsins/química , Optogenética/métodos , Animais , Caenorhabditis elegans , Membrana Celular/química , Membrana Celular/metabolismo , Células Cultivadas , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Masculino , Camundongos , Engenharia de Proteínas/métodos , Ratos , Ratos Long-Evans
7.
Mol Cell ; 84(18): 3530-3544.e6, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39232582

RESUMO

Channelrhodopsins are microbial light-gated ion channels that can control the firing of neurons in response to light. Among several cation channelrhodopsins identified in Guillardia theta (GtCCRs), GtCCR4 has higher light sensitivity than typical channelrhodopsins. Furthermore, GtCCR4 shows superior properties as an optogenetic tool, such as minimal desensitization. Our structural analyses of GtCCR2 and GtCCR4 revealed that GtCCR4 has an outwardly bent transmembrane helix, resembling the conformation of activated G-protein-coupled receptors. Spectroscopic and electrophysiological comparisons suggested that this helix bend in GtCCR4 omits channel recovery time and contributes to high light sensitivity. An electrophysiological comparison of GtCCR4 and the well-characterized optogenetic tool ChRmine demonstrated that GtCCR4 has superior current continuity and action-potential spike generation with less invasiveness in neurons. We also identified highly active mutants of GtCCR4. These results shed light on the diverse structures and dynamics of microbial rhodopsins and demonstrate the strong optogenetic potential of GtCCR4.


Assuntos
Bacteriorodopsinas , Neurônios , Optogenética , Animais , Humanos , Potenciais de Ação , Bacteriorodopsinas/metabolismo , Bacteriorodopsinas/genética , Bacteriorodopsinas/química , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Channelrhodopsins/química , Criptófitas/genética , Criptófitas/metabolismo , Células HEK293 , Ativação do Canal Iônico/efeitos da radiação , Luz , Mutação , Neurônios/metabolismo , Neurônios/efeitos da radiação , Optogenética/métodos , Relação Estrutura-Atividade
8.
Nature ; 633(8031): 872-877, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39198644

RESUMO

Early plant responses to different stress situations often encompass cytosolic Ca2+ increases, plasma membrane depolarization and the generation of reactive oxygen species1-3. However, the mechanisms by which these signalling elements are translated into defined physiological outcomes are poorly understood. Here, to study the basis for encoding of specificity in plant signal processing, we used light-gated ion channels (channelrhodopsins). We developed a genetically engineered channelrhodopsin variant called XXM 2.0 with high Ca2+ conductance that enabled triggering cytosolic Ca2+ elevations in planta. Plant responses to light-induced Ca2+ influx through XXM 2.0 were studied side by side with effects caused by an anion efflux through the light-gated anion channelrhodopsin ACR1 2.04. Although both tools triggered membrane depolarizations, their activation led to distinct plant stress responses: XXM 2.0-induced Ca2+ signals stimulated production of reactive oxygen species and defence mechanisms; ACR1 2.0-mediated anion efflux triggered drought stress responses. Our findings imply that discrete Ca2+ signals and anion efflux serve as triggers for specific metabolic and transcriptional reprogramming enabling plants to adapt to particular stress situations. Our optogenetics approach unveiled that within plant leaves, distinct physiological responses are triggered by specific ion fluxes, which are accompanied by similar electrical signals.


Assuntos
Arabidopsis , Sinalização do Cálcio , Cálcio , Channelrhodopsins , Luz , Optogenética , Ânions/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Cálcio/metabolismo , Sinalização do Cálcio/efeitos da radiação , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Channelrhodopsins/metabolismo , Channelrhodopsins/genética , Citosol/metabolismo , Secas , Condutividade Elétrica , Transporte de Íons/efeitos da radiação , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação
9.
Nature ; 615(7951): 292-299, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859543

RESUMO

Emotional states influence bodily physiology, as exemplified in the top-down process by which anxiety causes faster beating of the heart1-3. However, whether an increased heart rate might itself induce anxiety or fear responses is unclear3-8. Physiological theories of emotion, proposed over a century ago, have considered that in general, there could be an important and even dominant flow of information from the body to the brain9. Here, to formally test this idea, we developed a noninvasive optogenetic pacemaker for precise, cell-type-specific control of cardiac rhythms of up to 900 beats per minute in freely moving mice, enabled by a wearable micro-LED harness and the systemic viral delivery of a potent pump-like channelrhodopsin. We found that optically evoked tachycardia potently enhanced anxiety-like behaviour, but crucially only in risky contexts, indicating that both central (brain) and peripheral (body) processes may be involved in the development of emotional states. To identify potential mechanisms, we used whole-brain activity screening and electrophysiology to find brain regions that were activated by imposed cardiac rhythms. We identified the posterior insular cortex as a potential mediator of bottom-up cardiac interoceptive processing, and found that optogenetic inhibition of this brain region attenuated the anxiety-like behaviour that was induced by optical cardiac pacing. Together, these findings reveal that cells of both the body and the brain must be considered together to understand the origins of emotional or affective states. More broadly, our results define a generalizable approach for noninvasive, temporally precise functional investigations of joint organism-wide interactions among targeted cells during behaviour.


Assuntos
Comportamento Animal , Encéfalo , Emoções , Coração , Animais , Camundongos , Ansiedade/fisiopatologia , Encéfalo/fisiologia , Mapeamento Encefálico , Emoções/fisiologia , Coração/fisiologia , Comportamento Animal/fisiologia , Eletrofisiologia , Optogenética , Córtex Insular/fisiologia , Frequência Cardíaca , Channelrhodopsins , Taquicardia/fisiopatologia , Marca-Passo Artificial
10.
Cell ; 146(6): 1004-15, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21925321

RESUMO

Anatomic and physiologic studies have suggested a model in which neurons of the piriform cortex receive convergent input from random collections of glomeruli. In this model, odor representations can only be afforded behavioral significance upon experience. We have devised an experimental strategy that permits us to ask whether the activation of an arbitrarily chosen subpopulation of neurons in piriform cortex can elicit different behavioral responses dependent upon learning. Activation of a small subpopulation of piriform neurons expressing channelrhodopsin at multiple loci in the piriform cortex, when paired with reward or shock, elicits either appetitive or aversive behavior. Moreover, we demonstrate that different subpopulations of piriform neurons expressing ChR2 can be discriminated and independently entrained to elicit distinct behaviors. These observations demonstrate that the piriform cortex is sufficient to elicit learned behavioral outputs in the absence of sensory input. These data imply that the piriform does not use spatial order to map odorant identity or behavioral output.


Assuntos
Comportamento Animal , Neurônios/fisiologia , Condutos Olfatórios/citologia , Olfato , Animais , Comportamento Apetitivo , Channelrhodopsins , Condicionamento Psicológico , Camundongos , Neurônios/citologia , Odorantes , Condutos Olfatórios/fisiologia
11.
Proc Natl Acad Sci U S A ; 120(21): e2301521120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186849

RESUMO

Channelrhodopsins with red-shifted absorption, rare in nature, are highly desired for optogenetics because light of longer wavelengths more deeply penetrates biological tissue. RubyACRs (Anion ChannelRhodopsins), a group of four closely related anion-conducting channelrhodopsins from thraustochytrid protists, are the most red-shifted channelrhodopsins known with absorption maxima up to 610 nm. Their photocurrents are large, as is typical of blue- and green-absorbing ACRs, but they rapidly decrease during continuous illumination (desensitization) and extremely slowly recover in the dark. Here, we show that long-lasting desensitization of RubyACRs results from photochemistry not observed in any previously studied channelrhodopsins. Absorption of a second photon by a photocycle intermediate with maximal absorption at 640 nm (P640) renders RubyACR bistable (i.e., very slowly interconvertible between two spectrally distinct forms). The photocycle of this bistable form involves long-lived nonconducting states (Llong and Mlong), formation of which is the reason for long-lasting desensitization of RubyACR photocurrents. Both Llong and Mlong are photoactive and convert to the initial unphotolyzed state upon blue or ultraviolet (UV) illumination, respectively. We show that desensitization of RubyACRs can be reduced or even eliminated by using ns laser flashes, trains of short light pulses instead of continuous illumination to avoid formation of Llong and Mlong, or by application of pulses of blue light between pulses of red light to photoconvert Llong to the initial unphotolyzed state.


Assuntos
Luz , Fótons , Channelrhodopsins , Ânions/metabolismo , Fotoquímica
12.
Biophys J ; 123(12): 1735-1750, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762755

RESUMO

The light-gated anion channelrhodopsin GtACR1 is an important optogenetic tool for neuronal silencing. Its photochemistry, including its photointermediates, is poorly understood. The current mechanistic view presumes BR-like kinetics and assigns the open channel to a blue-absorbing L intermediate. Based on time-resolved absorption and electrophysiological data, we recently proposed a red-absorbing spectral form for the open channel state. Here, we report the results of a comprehensive kinetic analysis of the spectroscopic data combined with channel current information. The time evolutions of the spectral forms derived from the spectroscopic data are inconsistent with the single chain mechanism and are analyzed within the concept of parallel photocycles. The spectral forms partitioned into conductive and nonconductive parallel cycles are assigned to intermediate states. Rejecting reversible connections between conductive and nonconductive channel states leads to kinetic schemes with two independent conductive states corresponding to the fast- and slow-decaying current components. The conductive cycle is discussed in terms of a single cycle and two parallel cycles. The reaction mechanisms and reaction rates for the wild-type protein, the A75E, and the low-conductance D234N and S97E protein variants are derived. The parallel cycles of channelrhodopsin kinetics, its relation to BR photocycle, and the role of the M intermediate in channel closure are discussed.


Assuntos
Ativação do Canal Iônico , Cinética , Rodopsina/metabolismo , Rodopsina/química , Rodopsina/genética , Animais , Ânions/metabolismo , Luz , Modelos Biológicos , Channelrhodopsins/metabolismo , Channelrhodopsins/genética , Channelrhodopsins/química
13.
Biophys J ; 123(8): 940-946, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38462839

RESUMO

Anion channelrhodopsin GtACR1 is a powerful optogenetic tool to inhibit nerve activity. Its kinetic mechanism was interpreted in terms of the bacteriorhodopsin photocycle, and the L intermediate was assigned to the open channel state. Here, we report the results of the comparison between the time dependence of the channel currents and the time evolutions of the K-like and L-like spectral forms. Based on the results, we question the current view on GtACR1 kinetics and the assignment of the L intermediate to the open channel state. We report evidence for a red-absorbing intermediate being responsible for channel opening.


Assuntos
Optogenética , Channelrhodopsins/metabolismo , Ânions , Cinética , Optogenética/métodos
14.
J Neurosci ; 43(5): 749-763, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36604168

RESUMO

A key question in auditory neuroscience is to what extent are brain regions functionally specialized for processing specific sound features, such as location and identity. In auditory cortex, correlations between neural activity and sounds support both the specialization of distinct cortical subfields, and encoding of multiple sound features within individual cortical areas. However, few studies have tested the contribution of auditory cortex to hearing in multiple contexts. Here we determined the role of ferret primary auditory cortex in both spatial and nonspatial hearing by reversibly inactivating the middle ectosylvian gyrus during behavior using cooling (n = 2 females) or optogenetics (n = 1 female). Optogenetic experiments used the mDLx promoter to express Channelrhodopsin-2 in GABAergic interneurons, and we confirmed both viral expression (n = 2 females) and light-driven suppression of spiking activity in auditory cortex, recorded using Neuropixels under anesthesia (n = 465 units from 2 additional untrained female ferrets). Cortical inactivation via cooling or optogenetics impaired vowel discrimination in colocated noise. Ferrets implanted with cooling loops were tested in additional conditions that revealed no deficit when identifying vowels in clean conditions, or when the temporally coincident vowel and noise were spatially separated by 180 degrees. These animals did, however, show impaired sound localization when inactivating the same auditory cortical region implicated in vowel discrimination in noise. Our results demonstrate that, as a brain region showing mixed selectivity for spatial and nonspatial features of sound, primary auditory cortex contributes to multiple forms of hearing.SIGNIFICANCE STATEMENT Neurons in primary auditory cortex are often sensitive to the location and identity of sounds. Here we inactivated auditory cortex during spatial and nonspatial listening tasks using cooling, or optogenetics. Auditory cortical inactivation impaired multiple behaviors, demonstrating a role in both the analysis of sound location and identity and confirming a functional contribution of mixed selectivity observed in neural activity. Parallel optogenetic experiments in two additional untrained ferrets linked behavior to physiology by demonstrating that expression of Channelrhodopsin-2 permitted rapid light-driven suppression of auditory cortical activity recorded under anesthesia.


Assuntos
Córtex Auditivo , Localização de Som , Animais , Feminino , Córtex Auditivo/fisiologia , Furões/fisiologia , Channelrhodopsins/genética , Estimulação Acústica , Localização de Som/fisiologia , Percepção Auditiva/fisiologia , Audição
15.
Am J Physiol Cell Physiol ; 327(3): C716-C727, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39010839

RESUMO

Gap junctions are channels that allow for direct transmission of electrical signals between cells. However, the ability of one cell to be impacted or controlled by other cells through gap junctions remains unclear. In this study, heterocellular coupling between ON α retinal ganglion cells (α-RGCs) and displaced amacrine cells (ACs) in the mouse retina was used as a model. The impact of the extent of coupling of interconnected ACs on the synchronized firing between coupled ON α-RGC-AC pair was investigated using the dopamine 1 receptor (D1R) antagonist-SCH23390 and agonist-SKF38393. It was observed that the synchronized firing between the ON α-RGC-ACs pairs was increased by the D1R antagonist SCH23390, whereas it was eradicated by the agonist SKF38393. Subsequently, the signaling drive was investigated by infecting coupled ON α-RGC-AC pairs with the channelrhodopsin-2(ChR2) mutation L132C engineered to enhance light sensitivities. The results demonstrated that the spikes of ON α-RGCs (without ChR2) could be triggered by ACs (with ChR2) through the gap junction, and vice versa. Furthermore, it was observed that ON α-RGCs stimulated with 3-10 Hz currents by whole cell patch could elicit synchronous spikes in the coupled ACs, and vice versa. This provided direct evidence that the firing of one cell could be influenced by another cell through gap junctions. However, this phenomenon was not observed between OFF α-RGC pairs. The study implied that the synchronized firing between ON α-RGC-AC pairs could potentially be affected by the coupling of interconnected ACs. Additionally, one cell type could selectively control the firing of another cell type, thereby forcefully transmitting information. The key role of gap junctions in synchronizing firing and driving cells between α-RGCs and coupled ACs in the mouse retina was highlighted.NEW & NOTEWORTHY This study investigates the role of gap junctions in transmitting electrical signals between cells and their potential for cell control. Using ON α retinal ganglion cells (α-RGCs) and amacrine cells (ACs) in the mouse retina, the researchers find that the extent of coupling between ACs affects synchronized firing. Bidirectional signaling occurs between ACs and ON α-RGCs through gap junctions.


Assuntos
Potenciais de Ação , Células Amácrinas , Junções Comunicantes , Células Ganglionares da Retina , Animais , Células Amácrinas/metabolismo , Células Amácrinas/fisiologia , Células Amácrinas/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/fisiologia , Camundongos , Junções Comunicantes/metabolismo , Junções Comunicantes/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Retina/metabolismo , Retina/fisiologia , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/agonistas , Comunicação Celular/fisiologia , Masculino , Channelrhodopsins/metabolismo , Channelrhodopsins/genética
16.
J Biol Chem ; 299(11): 105305, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778732

RESUMO

Previous research of anion channelrhodopsins (ACRs) has been performed using cytoplasmic domain (CPD)-deleted constructs and therefore have overlooked the native functions of full-length ACRs and the potential functional role(s) of the CPD. In this study, we used the recombinant expression of full-length Guillardia theta ACR1 (GtACR1_full) for pH measurements in Pichia pastoris cell suspensions as an indirect method to assess its anion transport activity and for absorption spectroscopy and flash photolysis characterization of the purified protein. The results show that the CPD, which was predicted to be intrinsically disordered and possibly phosphorylated, enhanced NO3- transport compared to Cl- transport, which resulted in the preferential transport of NO3-. This correlated with the extended lifetime and large accumulation of the photocycle intermediate that is involved in the gate-open state. Considering that the depletion of a nitrogen source enhances the expression of GtACR1 in native algal cells, we suggest that NO3- transport could be the natural function of GtACR1_full in algal cells.


Assuntos
Criptófitas , Ânions/metabolismo , Channelrhodopsins/metabolismo , Criptófitas/metabolismo , Transporte de Íons , Nitratos/metabolismo
17.
Stroke ; 55(10): 2502-2509, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39234742

RESUMO

BACKGROUND: Functional activation of the focal ischemic brain has been reported to improve outcomes by augmenting collateral blood flow. However, functional activation also increases metabolic demand and might thereby worsen outcomes. Indeed, preclinical and clinical reports have been conflicting. Here, we tested the effect of functional activation during acute ischemic stroke using distal middle cerebral artery occlusion in anesthetized mice. METHODS: Using transgenic mice expressing channelrhodopsin-2 in neurons, we delivered functional activation using physiological levels of transcranial optogenetic stimulation of the moderately ischemic cortex (ie, penumbra), identified using real-time full-field laser speckle perfusion imaging during a 1-hour distal microvascular clip of the middle cerebral artery. Neuronal activation was confirmed using evoked field potentials, and infarct volumes were measured in tissue slices 48 hours later. RESULTS: Optogenetic stimulation of the penumbra was associated with more than 2-fold larger infarcts than stimulation of the contralateral homotopic region and the sham stimulation group (n=10, 7, and 9; 11.0±5.6 versus 5.1±4.3 versus 4.1±3.7 mm3; P=0.008, 1-way ANOVA). Identical stimulation in wild-type mice that do not express channelrhodopsin-2 did not have an effect. Optogenetic stimulation was associated with a small increase in penumbral perfusion that did not explain enlarged infarcts. CONCLUSIONS: Our data suggest that increased neuronal activity during acute focal arterial occlusions can be detrimental, presumably due to increased metabolic demand, and may have implications for the clinical management of hyperacute stroke patients.


Assuntos
AVC Isquêmico , Camundongos Transgênicos , Optogenética , Animais , Camundongos , AVC Isquêmico/fisiopatologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Isquemia Encefálica/fisiopatologia , Neurônios/metabolismo , Circulação Cerebrovascular/fisiologia , Camundongos Endogâmicos C57BL
18.
J Neurophysiol ; 131(6): 1226-1239, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691531

RESUMO

Mitral/tufted cells (M/TCs) form complex local circuits with interneurons in the olfactory bulb and are powerfully inhibited by these interneurons. The horizontal limb of the diagonal band of Broca (HDB), the only GABAergic/inhibitory source of centrifugal circuit with the olfactory bulb, is known to target olfactory bulb interneurons, and we have shown targeting also to olfactory bulb glutamatergic neurons in vitro. However, the net efficacy of these circuits under different patterns of activation in vivo and the relative balance between the various targeted intact local and centrifugal circuits was the focus of this study. Here channelrhodopsin-2 (ChR2) was expressed in HDB GABAergic neurons to investigate the short-term plasticity of HDB-activated disinhibitory rebound excitation of M/TCs. Optical activation of HDB interneurons increased spontaneous M/TC firing without odor presentation and increased odor-evoked M/TC firing. HDB activation induced disinhibitory rebound excitation (burst or cluster of spiking) in all classes of M/TCs. This excitation was frequency dependent, with short-term facilitation only at higher HDB stimulation frequency (5 Hz and above). However, frequency-dependent HDB regulation was more potent in the deeper layer M/TCs compared with more superficial layer M/TCs. In all neural circuits the balance between inhibition and excitation in local and centrifugal circuits plays a critical functional role, and this patterned input-dependent regulation of inhibitory centrifugal inputs to the olfactory bulb may help maintain the precise balance across the populations of output neurons in different environmental odors, putatively to sharpen the enhancement of tuning specificity of individual or classes of M/TCs to odors.NEW & NOTEWORTHY Neuronal local circuits in the olfactory bulb are modulated by centrifugal long circuits. In vivo study here shows that inhibitory horizontal limb of the diagonal band of Broca (HDB) modulates all five types of mitral/tufted cells (M/TCs), by direct inhibitory circuits HDB → M/TCs and indirect disinhibitory long circuits HDB → interneurons → M/TCs. The HDB net effect exerts excitation in all types of M/TCs but more powerful in deeper layer output neurons as HDB activation frequency increases, which may sharpen the tuning specificity of classes of M/TCs to odors during sensory processing.


Assuntos
Interneurônios , Bulbo Olfatório , Bulbo Olfatório/fisiologia , Bulbo Olfatório/citologia , Animais , Interneurônios/fisiologia , Camundongos , Neurônios GABAérgicos/fisiologia , Channelrhodopsins/metabolismo , Channelrhodopsins/genética , Masculino , Camundongos Endogâmicos C57BL , Potenciais de Ação/fisiologia , Inibição Neural/fisiologia , Feminino , Optogenética
19.
J Neurosci Res ; 102(10): e25386, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39364619

RESUMO

Voltage-gated sodium channels, including NaV1.7, NaV1.8, and NaV1.9, play important roles in pain transmission and chronic pain development. However, the specific mechanisms of their action remain unclear, highlighting the need for in vivo stimulation studies of these channels. Optogenetics, a novel technique for targeting the activation or inhibition of specific neural circuits using light, offers a promising solution. In our previous study, we used optogenetics to selectively excite NaV1.7-expressing neurons in the dorsal root ganglion of mice to induce nocifensive behavior. Here, we further characterize the impact of nocifensive behavior by activation of NaV1.7, NaV1.8, or NaV1.9-expressing neurons. Using CRISPR/Cas9-mediated homologous recombination, NaV1.7-iCre, NaV1.8-iCre, or NaV1.9-iCre mice expressing iCre recombinase under the control of the endogenous NaV1.7, NaV1.8, or NaV1.9 gene promoter were produced. These mice were then bred with channelrhodopsin-2 (ChR2) Cre-reporter Ai32 mice to obtain NaV1.7-ChR2, NaV1.8-ChR2, or NaV1.9-ChR2 mice. Blue light exposure triggered paw withdrawal in all mice, with the strongest response in NaV1.8-ChR2 mice. These light sensitivity differences observed across NaV1.x-ChR2 mice may be dependent on ChR2 expression or reflect the inherent disparities in their pain transmission roles. In conclusion, we have generated noninvasive pain models, with optically activated peripheral nociceptors. We believe that studies using optogenetics will further elucidate the role of sodium channel subtypes in pain transmission.


Assuntos
Gânglios Espinais , Canal de Sódio Disparado por Voltagem NAV1.7 , Canal de Sódio Disparado por Voltagem NAV1.8 , Canal de Sódio Disparado por Voltagem NAV1.9 , Optogenética , Animais , Optogenética/métodos , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.9/genética , Gânglios Espinais/metabolismo , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Camundongos Transgênicos , Masculino , Nociceptividade/fisiologia
20.
Plant Cell Environ ; 47(11): 4188-4211, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38935876

RESUMO

In Chlamydomonas, the directly light-gated, plasma membrane-localized cation channels channelrhodopsins ChR1 and ChR2 are the primary photoreceptors for phototaxis. Their targeting and abundance is essential for optimal movement responses. However, our knowledge how Chlamydomonas achieves this is still at its infancy. Here we show that ChR1 internalization occurs via light-stimulated endocytosis. Prior or during endocytosis ChR1 is modified and forms high molecular mass complexes. These are the solely detectable ChR1 forms in extracellular vesicles and their abundance therein dynamically changes upon illumination. The ChR1-containing extracellular vesicles are secreted via the plasma membrane and/or the ciliary base. In line with this, ciliogenesis mutants exhibit increased ChR1 degradation rates. Further, we establish involvement of the cysteine protease CEP1, a member of the papain-type C1A subfamily. ΔCEP1-knockout strains lack light-induced ChR1 degradation, whereas ChR2 degradation was unaffected. Low light stimulates CEP1 expression, which is regulated via phototropin, a SPA1 E3 ubiquitin ligase and cyclic AMP. Further, mutant and inhibitor analyses revealed involvement of the small GTPase ARL11 and SUMOylation in ChR1 targeting to the eyespot and cilia. Our study thus defines the degradation pathway of this central photoreceptor of Chlamydomonas and identifies novel elements involved in its homoeostasis and targeting.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Endocitose , Proteólise , Luz , Channelrhodopsins/metabolismo , Channelrhodopsins/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA