Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 60(42): 3200-3212, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34633183

RESUMO

Fatty acid photodecarboxylase (FAP), one of the few natural photoenzymes characterized so far, is a promising biocatalyst for lipid-to-hydrocarbon conversion using light. However, the optimum supramolecular organization under which the fatty acid (FA) substrate should be presented to FAP has not been addressed. Using palmitic acid embedded in phospholipid liposomes, phospholipid-stabilized microemulsions, and mixed micelles, we show that FAP displays a preference for FAs present in liposomes and at the surface of microemulsions. The kinetics of adsorption onto phospholipid and galactolipid monomolecular films further suggests the ability of FAP to bind to and penetrate into membranes, with a higher affinity in the presence of FAs. The FAP structure reveals a potential interfacial recognition site with clusters of hydrophobic and basic residues surrounding the active site entrance. The resulting dipolar moment suggests the orientation of FAP at negatively charged interfaces. These findings provide important clues about the mode of action of FAP and the development of FAP-based bioconversion processes.


Assuntos
Proteínas de Algas/química , Carboxiliases/química , Adsorção , Animais , Biocatálise , Bovinos , Chlorella/enzimologia , Emulsões/química , Cinética , Micelas , Ácido Palmítico/química , Soroalbumina Bovina/química , Lipossomas Unilamelares/química , Água/química , beta-Ciclodextrinas/química
2.
Chembiochem ; 22(10): 1833-1840, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33539041

RESUMO

Light-dependent enzymes are a rare type of biocatalyst with high potential for research and biotechnology. A recently discovered fatty acid photo-decarboxylase from Chlorella variabilis NC64A (CvFAP) converts fatty acids to the corresponding hydrocarbons only when irradiated with blue light (400 to 520 nm). To expand the available catalytic diversity for fatty acid decarboxylation, we reconstructed possible ancestral decarboxylases from a set of 12 extant sequences that were classified under the fatty acid decarboxylases clade within the glucose-methanol choline (GMC) oxidoreductase family. One of the resurrected enzymes (ANC1) showed activity in the decarboxylation of fatty acids, showing that the clade indeed contains several photo-decarboxylases. ANC1 has a 15 °C higher melting temperature (Tm ) than the extant CvFAP. Its production yielded 12-fold more protein than this wild type decarboxylase, which offers practical advantages for the biochemical investigation of this photoenzyme. Homology modelling revealed amino acid substitutions to more hydrophilic residues at the surface and shorter flexible loops compared to the wild type. Using ancestral sequence reconstruction, we have expanded the existing pool of confirmed fatty acid photo-decarboxylases, providing access to a more robust catalyst for further development via directed evolution.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Graxos/metabolismo , Oxirredutases/metabolismo , Proteínas de Bactérias/classificação , Chlorella/enzimologia , Descarboxilação , Ácidos Graxos/química , Simulação de Dinâmica Molecular , Oxirredutases/classificação , Filogenia , Estabilidade Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato , Temperatura de Transição
3.
Angew Chem Int Ed Engl ; 60(38): 20695-20699, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34288332

RESUMO

Due to the high risk of heart disease caused by the intake of trans fatty acids, a method to eliminate trans fatty acids from foods has become a critical issue. Herein, we engineered fatty acid photo-decarboxylase from Chlorella variabilis (CvFAP) to selectively catalyze the decarboxylation of trans fatty acids to yield readily-removed hydrocarbons and carbon dioxide, while cis fatty acids remained unchanged. An efficient protein engineering based on FRISM strategy was implemented to intensify the electronic interaction between the residues and the double bond of the substrate that stabilized the binding of elaidic acid in the channel. For the model compounds, oleic acid and elaidic acid, the best mutant, V453E, showed a one-thousand-fold improvement in the trans-over-cis (ToC) selectivity compared with wild type (WT). As the first report of the direct biocatalytic decarboxylation resolution of trans/cis fatty acids, this work offers a safe, facile, and eco-friendly process to eliminate trans fatty acids from edible oils.


Assuntos
Carboxiliases/metabolismo , Ácidos Graxos/metabolismo , Engenharia de Proteínas , Carboxiliases/química , Chlorella/enzimologia , Descarboxilação , Ácidos Graxos/química , Modelos Moleculares , Estrutura Molecular
4.
Ecotoxicol Environ Saf ; 195: 110484, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32200150

RESUMO

Microplastics and nonylphenol (NP) are considered as emerging pollutant and have attracted wide attention, while their combined toxicity on aquatic organisms is barely researched. Therefore, the combined toxicity influence of NP with three types of microplastics containing polyethylene (PE1000, 13 µm and PE, 150 µm), polyamide (PA1000, 13 µm and PA, 150 µm) polystyrene (PS, 150 µm) on microalgae Chlorella pyrenoidosa was analyzed. Both growth inhibition, chlorophyll fluorescence, superoxide dismutase (SOD), malondialdehyde (MDA), and catalase (CAT) were determined. We found that single microplastics and NP both inhibited algal growth, thereby causing oxidative stress. The order of inhibition effect in single microplastics experiment was PE1000 > PA1000 > PE ≈ PS > PA. The combined toxicity experiment results indicated that the presence of microplastics had positive effect in terms of alleviating NP toxicity to C. pyrenoidosa, and the microplastics adsorption capacity to NP was the dominant contributing factor for this effect. According to the independent action model, the combined toxicity was antagonistic. Because the negative effect of smaller size microplastics on algal growth was aggravated with prolonged exposure time, the optimum effect of microplastics alleviated NP toxicity was PA1000 at 48 h, while this effect was substituted by PA at 96 h during combined toxicity. Thus, the toxicity of smaller size microplastics has a nonnegligible influence on combined toxicity. This study confirms that microplastics significantly affected the toxicity of organic pollutants on microalgae. Further research on the combined toxicity of smaller size microplastics with pollutants in chronic toxicity is needed.


Assuntos
Chlorella/efeitos dos fármacos , Microplásticos/toxicidade , Fenóis/toxicidade , Poluentes Químicos da Água/toxicidade , Adsorção , Catalase/metabolismo , Chlorella/enzimologia , Chlorella/metabolismo , Interações Medicamentosas , Malondialdeído/metabolismo , Microalgas/efeitos dos fármacos , Microalgas/enzimologia , Microalgas/metabolismo , Microplásticos/química , Estresse Oxidativo , Poliestirenos/toxicidade , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/química
5.
Angew Chem Int Ed Engl ; 59(18): 7024-7028, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31957098

RESUMO

Long-chain aliphatic amines such as (S,Z)-heptadec-9-en-7-amine and 9-aminoheptadecane were synthesized from ricinoleic acid and oleic acid, respectively, by whole-cell cascade reactions using the combination of an alcohol dehydrogenase (ADH) from Micrococcus luteus, an engineered amine transaminase from Vibrio fluvialis (Vf-ATA), and a photoactivated decarboxylase from Chlorella variabilis NC64A (Cv-FAP) in a one-pot process. In addition, long chain aliphatic esters such as 10-(heptanoyloxy)dec-8-ene and octylnonanoate were prepared from ricinoleic acid and oleic acid, respectively, by using the combination of the ADH, a Baeyer-Villiger monooxygenase variant from Pseudomonas putida KT2440, and the Cv-FAP. The target compounds were produced at rates of up to 37 U g-1 dry cells with conversions up to 90 %. Therefore, this study contributes to the preparation of industrially relevant long-chain aliphatic chiral amines and esters from renewable fatty acid resources.


Assuntos
Álcool Desidrogenase/metabolismo , Aminas/metabolismo , Carboxiliases/metabolismo , Ésteres/metabolismo , Ácido Oleico/metabolismo , Ácidos Ricinoleicos/metabolismo , Aminas/química , Chlorella/enzimologia , Ésteres/química , Micrococcus luteus/enzimologia , Estrutura Molecular , Ácido Oleico/química , Processos Fotoquímicos , Ácidos Ricinoleicos/química
6.
Anal Bioanal Chem ; 411(5): 1009-1017, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30552495

RESUMO

A novel fluorescent sensor based on bovine serum albumin stabilized gold/silver nanoclusters (BSA-Au/Ag NCs) was developed for sensitive and facile detection of alkaline phosphatase (ALP) activity. For this fluorescent sensor, ascorbic acid 2-phosphate (AAP) was decomposed into ascorbic acid (AA) and phosphate by catalysis with ALP. The initial red fluorescence of the BSA-Au/Ag NCs was effectively quenched by KMnO4 and then the fluorescence was recovered by addition of AA. The mechanism of interaction between BSA-Au/Ag NCs and KMnO4 and AA was studied with use of the fluorescence lifetime and UV-vis absorption spectra. The results indicated that the oxidation/reduction modulated by KMnO4/AA led to surface structure destruction/restoration of the BSA-Au/Ag NCs, resulting in fluorescence quenching/recovery. The proposed fluorescence-based method based on a dark background was used to detect ALP and had excellent sensitivity, with a detection limit of 0.00076 U/L. Moreover, the method was applied to the determination of added analytes, with satisfactory recoveries (97.0-105.0 %). In a simulated eutrophic water body, this method successfully detected ALP in actual water samples and could monitor the dynamic changes of ALP activity through visual observation. More importantly, the proposed fluorescent sensor not only has the advantages of simple operation and high sensitivity but has also been successfully used on filter paper to establish a rapid and visual test paper for ALP.


Assuntos
Fosfatase Alcalina/análise , Chlorella/enzimologia , Corantes Fluorescentes/química , Ouro/química , Nanopartículas Metálicas/química , Prata/química , Espectrometria de Fluorescência/métodos , Animais , Bovinos , Limite de Detecção , Soroalbumina Bovina/química , Água/análise
7.
Angew Chem Int Ed Engl ; 58(25): 8474-8478, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31033108

RESUMO

Chiral α-functionalized carboxylic acids are valuable precursors for a variety of medicines and natural products. Herein, we described an engineered fatty acid photodecarboxylase (CvFAP)-catalyzed kinetic resolution of α-amino acids and α-hydroxy acids, which provides the unreacted R-configured substrates with high yields and excellent stereoselectivity (ee up to 99 %). This efficient light-driven process requires neither NADPH recycling nor prior preparation of esters, which were required in previous biocatalytic approaches. The structure-guided engineering strategy is based on the scanning of large amino acids at hotspots to narrow the substrate binding tunnel. To the best of our knowledge, this is the first example of asymmetric catalysis by an engineered CvFAP.


Assuntos
Carboxiliases/metabolismo , Ácidos Carboxílicos/metabolismo , Ácidos Graxos/metabolismo , Luz , Biocatálise , Carboxiliases/química , Ácidos Carboxílicos/química , Chlorella/enzimologia , Ácidos Graxos/química , Cinética , Modelos Moleculares , Estrutura Molecular , Processos Fotoquímicos
8.
Angew Chem Int Ed Engl ; 58(12): 3992-3995, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30653806

RESUMO

Single-cell encapsulation has become an effective strategy in cell surface engineering; however, the construction of cell wall-like layers that allow the switching of the inherent functionality of the engineered cell is still rare. In this study, we show a universal way to create an enzyme-modulated oxygen-consuming sandwich-like layer by using polydopamine, laccase, and tannic acid as building blocks, which then could generate an anaerobic microenvironment around the cell. This layer protected the encapsulated C. pyrenoidosa cell against external stresses and enabled it to switch from normal photosynthetic O2 production to photobiological H2 production. The layer showed an smaller effect on the PSII activity, which contributed a significant enhancement on the rate (0.32 µmol H2 h-1 (mg chlorophyll)-1 ) and the duration (7 d) of H2 production. This strategy is expected to provide a pathway for modulating the functionality of cells and for breakthroughs in the development of green energy alternatives.


Assuntos
Encapsulamento de Células/métodos , Chlorella/enzimologia , Hidrogênio/metabolismo , Oxigênio/metabolismo , Proteínas de Plantas/metabolismo , Trifosfato de Adenosina/metabolismo , Anaerobiose , Dopamina/química , Lacase/metabolismo , Fotossíntese , Taninos/química
9.
Anal Biochem ; 560: 1-6, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30149026

RESUMO

A colorimetric determination method measuring the reducing ends of sugars is usually used for quantitative evaluation of polysaccharide-degrading activity of endo-type enzymes. However, no appropriate colorimetric method has been established for enzymatic assay of ß-1,2-glucanases, which produce ß-1,2-glucooligosaccharides from ß-1,2-glucans. The Anthon-MBTH method has been potentially the most adaptable for color development of ß-1,2-glucooligosaccharides among various known colorimetric methods for detecting the reducing power of oligosaccharides, since the difference between sophorose and other ß-1,2-glucooligosaccharides in absorbance is relatively small. Almost the same color development was obtained for ß-1,2-glucooligosaccharides when the heating time with the Anthon-MBTH method was changed. The kind of base and concentration of dithiothreitol did not markedly affect the color development. Most buffer components, salts and a chelating reagent used for usual enzymatic experiments did not inhibit color development. Furthermore, assay was performed successfully for a ß-1,2-glucanase using the modified MBTH method.


Assuntos
Proteínas de Bactérias/química , Ensaios Enzimáticos/métodos , Glicosídeo Hidrolases/química , beta-Glucanas/análise , Bactérias/enzimologia , Bactérias/metabolismo , Benzotiazóis/química , Chlorella/enzimologia , Chlorella/metabolismo , Colorimetria/métodos , Glucanos/química , Hidrazonas/química , Especificidade por Substrato
10.
Appl Microbiol Biotechnol ; 102(4): 1711-1723, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29299622

RESUMO

We have identified an enzyme, galactolipase (ckGL), which hydrolyzes the acyl ester bond of galactolipids such as digalactosyldiacylglycerol (DGDG), in the microalga Chlorella kessleri. Following purification of the enzyme to electrophoretic homogeneity from cell-free extract, the maximum activity toward DGDG was observed at pH 6.5 and 37 °C. ckGL was Ca2+-dependent enzyme and displayed an apparent molecular mass of approx. 53 kDa on SDS-PAGE. The substrate specificity was in the order: DGDG (100%) > monogalactosyldiacylglycerol ≈ phosphatidylglycerol (~ 40%) > sulfoquinovosyldiacylglycerol (~ 20%); the enzyme exhibited almost no activity toward glycerides and other phospholipids. Gas chromatography analysis demonstrated that ckGL preferably hydrolyzed the sn-1 acyl ester bond in the substrates. The genomic DNA sequence (5.6 kb) containing the ckGL gene (designated glp1) was determined and the cDNA was cloned. glp1 was composed of 10 introns and 11 exons, and the 1608-bp full-length cDNA encoded a mature ckGL containing 475 amino acids (aa), with a presequence (60 aa) containing a potential chloroplast transit peptide. Recombinant functional ckGL was produced in Escherichia coli. Although the deduced aa sequence of ckGL contained the typical GXSXG motif of serine hydrolases together with conserved histidine and aspartate residues which would form part of the catalytic triad of α/ß-hydrolases, ckGL showed no significant overall similarity with known lipases including GLs from Chlamydomonas reinhardtii and Aspergillus japonicus, indicating that ckGL is a novel GL. ckGL, with high specificity for DGDG, could be applicable to food processing as an enzyme capable of improving material textures.


Assuntos
Hidrolases de Éster Carboxílico/isolamento & purificação , Hidrolases de Éster Carboxílico/metabolismo , Chlorella/enzimologia , Clonagem Molecular , Expressão Gênica , Aspergillus/enzimologia , Aspergillus/genética , Cálcio/metabolismo , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/genética , Cromatografia Gasosa , Coenzimas/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Éxons , Galactolipídeos/metabolismo , Concentração de Íons de Hidrogênio , Íntrons , Peso Molecular , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura
11.
Int J Mol Sci ; 19(11)2018 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-30400369

RESUMO

Diacylglycerol acyltransferase (DGAT) is a rate-limiting enzyme in the synthesis of triacylglycerol (TAG), the most important form of energy storage in plants. Some residues have previously been proven to be crucial for DGAT1 activity. In this study, we used site-directed mutagenesis of the CeDGAT1 gene from Chlorella ellipsoidea to alter 16 amino acids to investigate effects on DGAT1 function. Of the 16 residues (L482R, E542R, Y553A, G577R, R579D, Y582R, R596D, H603D, H609D, A624R, F629R, S632A, W650R, A651R, Q658H, and P660R), we newly identified 5 (L482, R579, H603, A651, and P660) as being essential for DGAT1 function and 7 (E542, G577, R596, H609, A624, S632, and Q658) that significantly affect DGAT1 function to different degrees, as revealed by heterologous expression of the mutants in yeast strain INVSc1. Importantly, compared with CeDGAT1, expression of the mutant CeDGAT1Y553A significantly increased the total fatty acid and TAG contents of INVSc1. Comparison among CeDGAT1Y553A, GmDGAT1Y341A, AtDGAT1Y364A, BnDGAT1Y347A, and BoDGAT1Y352A, in which tyrosine at the position corresponding to the 553rd residue in CeDGAT1 is changed into alanine, indicated that the impact of changing Y to A at position 553 is specific for CeDGAT1. Overall, the results provide novel insight into the structure and function of DGAT1, as well as a mutant gene with high potential for lipid improvement in microalgae and plants.


Assuntos
Proteínas de Algas/genética , Aminoácidos Essenciais/metabolismo , Chlorella/genética , Diacilglicerol O-Aciltransferase/genética , Triglicerídeos/biossíntese , Proteínas de Algas/química , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Aminoácidos Essenciais/química , Chlorella/enzimologia , Clonagem Molecular , Diacilglicerol O-Aciltransferase/química , Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Graxos/biossíntese , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Metabolismo dos Lipídeos/genética , Mutagênese Sítio-Dirigida , Mutação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Triglicerídeos/genética
12.
Biochim Biophys Acta Bioenerg ; 1858(9): 771-778, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28647463

RESUMO

Hydrogenases from green algae are linked to the photosynthetic electron transfer chain via the plant-type ferredoxin PetF. In this work the [FeFe]-hydrogenase from the Trebouxiophycean alga Chlorella variabilis NC64A (CvHydA1), which in contrast to other green algal hydrogenases contains additional FeS-cluster binding domains, was purified and specific enzyme activities for both hydrogen (H2) production and H2 oxidation were determined. Interestingly, although C. variabilis NC64A, like many Chlorophycean algal strains, exhibited light-dependent H2 production activity upon sulfur deprivation, CvHydA1 did not interact in vitro with several plant-type [2Fe-2S]-ferredoxins, but only with a bacterial2[4Fe4S]-ferredoxin. In an electrochemical characterization, the enzyme exhibited features typical of bacterial [FeFe]-hydrogenases (e.g. minor anaerobic oxidative inactivation), as well as of algal enzymes (very high oxygen sensitivity).


Assuntos
Proteínas de Algas/metabolismo , Chlorella/enzimologia , Ferredoxinas/metabolismo , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Algas/química , Proteínas de Algas/isolamento & purificação , Sequência de Aminoácidos , Monóxido de Carbono/farmacologia , Chlamydomonas reinhardtii/química , Chlorella/efeitos da radiação , Técnicas Eletroquímicas , Transporte de Elétrons , Hidrogênio/metabolismo , Hidrogenase/antagonistas & inibidores , Hidrogenase/química , Hidrogenase/isolamento & purificação , Proteínas Ferro-Enxofre/antagonistas & inibidores , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/isolamento & purificação , Luz , Modelos Moleculares , Oxirredução , Oxigênio/farmacologia , Fotossíntese , Conformação Proteica , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Enxofre/metabolismo
13.
BMC Plant Biol ; 17(1): 48, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28222675

RESUMO

BACKGROUND: Oil in the form of triacylglycerols (TAGs) is quantitatively the most important storage form of energy for eukaryotic cells. Diacylglycerol acyltransferase (DGAT) is considered the rate-limiting enzyme for TAG accumulation. Chlorella, a unicellular eukaryotic green alga, has attracted much attention as a potential feedstock for renewable energy production. However, the function of DGAT1 in Chlorella has not been reported. RESULTS: A full-length cDNA encoding a putative diacylglycerol acyltransferase 1 (DGAT1, EC 2.3.1.20) was obtained from Chlorella ellipsoidea. The 2,142 bp open reading frame of this cDNA, designated CeDGAT1, encodes a protein of 713 amino acids showing no more than 40% identity with DGAT1s of higher plants. Transcript analysis showed that the expression level of CeDGAT1 markedly increased under nitrogen starvation, which led to significant triacylglycerol (TAG) accumulation. CeDGAT1 activity was confirmed in the yeast quadruple mutant strain H1246 by restoring its ability to produce TAG. Upon expression of CeDGAT1, the total fatty acid content in wild-type yeast (INVSc1) increased by 142%, significantly higher than that transformed with DGAT1s from higher plants, including even the oil crop soybean. The over-expression of CeDGAT1 under the NOS promoter in wild-type Arabidopsis thaliana and Brassica napus var. Westar significantly increased the oil content by 8-37% and 12-18% and the average 1,000-seed weight by 9-15% and 6-29%, respectively, but did not alter the fatty acid composition of the seed oil. The net increase in the 1,000-seed total lipid content was up to 25-50% in both transgenic Arabidopsis and B. napus. CONCLUSIONS: We identified a gene encoding DGAT1 in C. ellipsoidea and confirmed that it plays an important role in TAG accumulation. This is the first functional analysis of DGAT1 in Chlorella. This information is important for understanding lipid synthesis and accumulation in Chlorella and for genetic engineering to enhance oil production in microalgae and oil plants.


Assuntos
Chlorella/enzimologia , Chlorella/genética , Diacilglicerol O-Aciltransferase/genética , Acil Coenzima A , Arabidopsis , Brassica napus , Diacilglicerol O-Aciltransferase/metabolismo , Genes de Plantas , Metabolismo dos Lipídeos , Mutação , Filogenia , Óleos de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Sementes , Triglicerídeos/metabolismo
14.
Microb Cell Fact ; 15(1): 120, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27387324

RESUMO

BACKGROUND: The fast growing photosynthetic microalgae have been widely used in aquaculture, food, health, and biofuels. Recent findings in the diatom has proposed a pivotal role of NADP-malic enzyme in generation of NADPH as an important supply of reducing power for fatty acid biosynthesis. To test the lipogenic malic enzyme for fatty acid synthesis in green algae, here the malic enzyme gene PtME from the oleaginous diatom Phaeodactylum tricornutum was expressed in a representative green microalga Chlorella pyrenoidosa. RESULTS: The engineered C. pyrenoidosa strain showed higher enzymatic activity of malic enzyme which subsequently promoted fatty acid synthesis. The neutral lipid content was significantly increased by up to 3.2-fold than wild type determined by Nile red staining, and total lipid content reached 40.9 % (dry cell weight). The engineered strain exhibited further lipid accumulation subjected to nitrogen deprivation condition. Upon nitrogen deprivation, engineered microalgae accumulated total lipid up to 58.7 % (dry cell weight), a 4.6-fold increase over the wild type cells under normal culture condition. At cellular level, increased volume and number of oil bodies were observed in the engineered microalgal cells. CONCLUSIONS: These findings suggested that malic enzyme is a pivotal regulator in lipid accumulation in green microalga C. pyrenoidosa, and presenting a breakthrough of generating ideal algal strains for algal nutrition and biofuels.


Assuntos
Chlorella/enzimologia , Diatomáceas/enzimologia , Ácidos Graxos/biossíntese , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Microalgas/genética , Microalgas/metabolismo , Chlorella/metabolismo , Diatomáceas/genética , Metabolismo dos Lipídeos , Engenharia Metabólica
15.
Plant Cell Physiol ; 56(5): 897-905, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25647328

RESUMO

Sulfur deficiency in plant cells has not been considered as a potential abiotic factor that can induce oxidative stress. We studied the antioxidant defense system of Chlorella sorokiniana cultured under sulfur (S) deficiency, imposed for a maximum period of 24 h, to evaluate the effect of an S shortage on oxidative stress. S deprivation induced an immediate (30 min) but transient increase in the intracellular H2O2 content, which suggests that S limitation can lead to a temporary redox disturbance. After 24 h, S deficiency in Chlorella cells decreased the glutathione content to <10% of the value measured in cells that were not subjected to S deprivation. Consequently, we assumed that the cellular antioxidative mechanisms could be altered by a decrease in the total glutathione content. The total ascorbate pool increased within 2 h after the initiation of S depletion, and remained high until 6 h; however, ascorbate regeneration was inhibited under limited S conditions, indicated by a significant decrease in the ascorbate/dehydroascorbate (AsA/DHA) ratios. Furthermore, ascorbate peroxidase (APX) and superoxide dismutase (SOD) were activated under S deficiency, but we assumed that these enzymes were involved in maintaining the cellular H2O2 balance for at least 4 h after the initiation of S starvation. We concluded that S deprivation triggers redox changes and induces antioxidant enzyme activities in Chlorella cells. The accumulation of total ascorbate, changes in the reduced glutathione/oxidized glutathione (GSH/GSSG) ratios and an increase in the activity of SOD and APX enzymes indicate that oxidative perturbation occurs during S deprivation.


Assuntos
Chlorella/metabolismo , Enxofre/metabolismo , Proteínas de Algas/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Chlorella/citologia , Chlorella/enzimologia , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Espaço Intracelular/metabolismo , Oxirredução , Solubilidade , Superóxido Dismutase/metabolismo , Fatores de Tempo
16.
J Exp Bot ; 66(22): 7287-98, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26357883

RESUMO

In a recent study, it has been shown that biosynthesis of triacylglycerol (TAG) in the oleaginous green alga Chlorella desiccata is preceded by a large increase in acetyl-coenzyme A (Ac-CoA) levels and by upregulation of plastidic pyruvate dehydrogenase (ptPDH). It was proposed that the capacity to accumulate high TAG critically depends on enhanced production of Ac-CoA. In this study, two alternative Ac-CoA producers-plastidic Ac-CoA synthase (ptACS) and ATP citrate lyase (ACL)-are shown to be upregulated prior to TAG accumulation under nitrogen deprivation in the oleaginous species C. desiccata, but not in the moderate TAG accumulators Dunaliella tertiolecta and Chlamydomonas reinhardtii. Measurements of endogenous acetate production and of radiolabelled acetate incorporation into lipids are consistent with the upregulation of ptACS, but suggest that its contribution to the overall TAG biosynthesis is negligible. Induction of ACS and production of endogenous acetate are correlated with activation of alcohol dehydrogenase, suggesting that the upregulation of ptACS is associated with activation of PDH-bypass in C. desiccata. It is proposed that activation of the PDH-bypass in C. desiccata is needed to enable a high rate of lipid biosynthesis under nitrogen deprivation by controlling the level of pyruvate reaching ptPHD and/or mtPDH. This may be an important parameter for massive TAG accumulation in microalgae.


Assuntos
Acetato-CoA Ligase/metabolismo , Chlorella/enzimologia , Complexo Piruvato Desidrogenase/metabolismo , ATP Citrato (pro-S)-Liase/metabolismo , Álcool Desidrogenase/metabolismo , Ativação Enzimática , Nitrogênio/metabolismo , Oxigênio/metabolismo , Plastídeos/enzimologia , Triglicerídeos/metabolismo
17.
Angew Chem Int Ed Engl ; 54(41): 11961-5, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26302695

RESUMO

Photobiological hydrogen production is of great importance because of its promise for generating clean renewable energy. In nature, green algae cannot produce hydrogen as a result of the extreme sensitivity of hydrogenase to oxygen. However, we find that silicification-induced green algae aggregates can achieve sustainable photobiological hydrogen production even under natural aerobic conditions. The core-shell structure of the green algae aggregates creates a balance between photosynthetic electron generation and hydrogenase activity, thus allowing the production of hydrogen. This finding provides a viable pathway for the solar-driven splitting of water into hydrogen and oxygen to develop green energy alternatives by using rationally designed cell-material complexes.


Assuntos
Chlorella/citologia , Chlorella/metabolismo , Clorófitas/citologia , Clorófitas/metabolismo , Hidrogênio/metabolismo , Dióxido de Silício/metabolismo , Biomimética , Agregação Celular , Chlorella/enzimologia , Clorófitas/enzimologia , Hidrogenase/metabolismo , Oxirredução , Oxigênio/metabolismo , Fotossíntese , Água/metabolismo
18.
Arch Biochem Biophys ; 562: 9-21, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25107532

RESUMO

To investigate the functional properties of 10 α-glucan branching enzymes (BEs) from various sources, we determined the chain-length distribution of BE enzymatic products and their phosphorylase-limit dextrins (Φ-LD). All BEs could be classified into either of the three rice BE isozymes: OsBEI, OsBEIIa, or OsBEIIb. Escherichia coli BE (EcoBE) had the same enzymatic properties as OsBEI, while Synechococcus elongatus BE (ScoBE) and Chlorella kessleri BE (ChlBE) had BEIIb-type properties. Human BE (HosBE), yeast BE (SacBE), and two Porphyridium purpureum BEs (PopBE1 and PopBE2) exhibited the OsBEIIa-type properties. Analysis of chain-length profile of Φ-LD of the BE reaction products revealed that EcoBE, ScoBE, PopBE1, and PopBE2 preferred A-chains as acceptors, while OsBEIIb used B-chains more frequently than A-chains. Both EcoBE and ScoBE specifically formed the branch linkages at the third glucose residue from the reducing end of the acceptor chain. The present results provide evidence for the first time that great variation exists as to the preference of BEs for their acceptor chain, either A-chain or B-chain. In addition, EcoBE and ScoBE recognize the location of branching points in their acceptor chain during their branching reaction. Nevertheless, no correlation exists between the primary structure of BE proteins and their enzymatic characteristics.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/química , Glucanos/química , Amilopectina/química , Chlorella/enzimologia , Dextrinas/química , Escherichia coli/enzimologia , Fungos/enzimologia , Glicogênio/química , Humanos , Isoenzimas/química , Oryza/enzimologia , Fosforilases/química , Filogenia , Porphyridium/enzimologia , Proteínas Recombinantes/química , Especificidade da Espécie , Amido/química , Synechococcus/enzimologia
19.
Mol Biol Rep ; 41(11): 7103-13, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25260905

RESUMO

In this study, a full-length complementary DNA (cDNA) sequence of ß-ring carotenoid hydroxylase (CHY), designated Ckecyp97a1, was isolated via reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends (RACE) methods. The cloned Ckecyp97a1 cDNA was 2,264-bp in length, and contained an open reading frame (ORF) of 1,944-bp with 5'-terminal untranslated region (UTR) of 66-bp and 3'-terminal UTR of 254-bp and encoded a ß-ring CHY protein of 647 amino acids. The deduced protein had a calculated molecular mass of 71.43 kDa with an estimated isoelectric point (pI) of 6.72. Multiple sequence alignment and phylogenetic analysis revealed that Ckecyp97a1 was homologs to known chloroplastic cytochrome P450 (P450) CHY. The typical catalytic motifs of the P450 were highly conserved in the protein sequences of CkeCYP97A1. The Ckecyp97a1 transcriptional expression and carotenoids accumulation were observed under high light (HL) of different wavelengths (white: 390-770 nm and blue: 420-500 nm). The results revealed that Ckecyp97a1 transcript increased strongly throughout the course of the HL illumination treatment (22-70 h) under white HL treatment, while decreased during 10-58 h under blue HL treatment. The concentrations of lutein, α-carotene, and ß-carotene were relatively steady and below the control level under both treatments. The zeaxanthin concentration was higher under white HL treatment than those under control and blue HL treatments. Ckecyp97a1 gene showed different expression patterns under different light wavelengths treatments. The data obtained in this study demonstrates that CkeCYP97A1 is the enzyme responsible for carotenoid hydroxylation involved in HL acclimation for photoheterotrophic green alga Chlorella kessleri CGMCC 4917.


Assuntos
Chlorella/enzimologia , Sistema Enzimático do Citocromo P-450/genética , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Oxigenases de Função Mista/genética , Sequência de Bases , Chlorella/genética , Clonagem Molecular , DNA Complementar/genética , Perfilação da Expressão Gênica , Luz , Dados de Sequência Molecular , Técnicas de Amplificação de Ácido Nucleico , Fases de Leitura Aberta/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Zeaxantinas/metabolismo
20.
Mol Biol Rep ; 40(4): 3351-61, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23271125

RESUMO

Phytoene desaturase is the key enzyme involved in the biosynthesis pathway of lutein. The unicellular microalga, Chlorella protothecoides CS-41, had been selected for the heterotrophic production of high concentrations of lutein. In this study, a cDNA copy of the pds gene from C. protothecoides was obtained using the rapid amplification of cDNA ends (RACE) technique. Phylogenetic analysis of the deduced amino acid sequence revealed that the phytoene desaturases derived from the algal family. Expression of the pds gene in Escherichia coli produced a single protein of 61 kDa. The PDS activity of the expressed protein was confirmed by the production of ζ-carotene as the result from the action of the enzyme's desaturation activity, which was identified by high-performance liquid chromatography and heterologous complementation analysis. Using random and site-directed mutagenesis, a single amino acid mutation (N144D) was identified and confirmed. This mutant encodes an inactive enzyme, which implies that amino acid 144 is crutial to the activity of the PDS enzyme. Therefore, by gene cloning and expression in prokaryotic cells, the gene for ζ-carotene production or as part of the biosynthetic pathway of lutein had been characterized from Chlorella protothecoides CS-41.


Assuntos
Chlorella/enzimologia , Luteína/genética , Oxirredutases , Sequência de Aminoácidos , Chlorella/química , Chlorella/genética , Clonagem Molecular , Escherichia coli/genética , Luteína/biossíntese , Mutação , Oxirredutases/química , Oxirredutases/genética , Filogenia , Homologia de Sequência de Aminoácidos , zeta Caroteno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA