Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 147: 107410, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688197

RESUMO

A new series of benzene-sulfonamide derivatives 3a-i was designed and synthesized via the reaction of N-(pyrimidin-2-yl)cyanamides 1a-i with sulfamethazine sodium salt 2 as dual Src/Abl inhibitors. Spectral data IR, 1H-, 13C- NMR and elemental analyses were used to confirm the structures of all the newly synthesized compounds 3a-i and 4a-i. Crucially, we screened all the synthesized compounds 3a-i against NCI 60 cancer cell lines. Among all, compound 3b was the most potent, with IC50 of 0.018 µM for normoxia, and 0.001 µM for hypoxia, compared to staurosporine against HL-60 leukemia cell line. To verify the selectivity of this derivative, it was assessed against a panel of tyrosine kinase EGFR, VEGFR-2, B-raf, ERK, CK1, p38-MAPK, Src and Abl enzymes. Results revealed that compound 3b can effectively and selectively inhibit Src/Abl with IC500.25 µM and Abl inhibitory activity with IC500.08 µM, respectively, and was found to be more potent on these enzymes than other kinases that showed the following results: EGFR IC500.31 µM, VEGFR-2 IC500.68 µM, B-raf IC500.33 µM, ERK IC501.41 µM, CK1 IC500.29 µM and p38-MAPK IC500.38 µM. Moreover, cell cycle analysis and apoptosis performed to compound 3b against HL-60 suggesting its antiproliferative activity through Src/Abl inhibition. Finally, molecular docking studies and physicochemical properties prediction for compounds 3b, 3c, and 3 h were carried out to investigate their biological activities and clarify their bioavailability.


Assuntos
Antineoplásicos , Proliferação de Células , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-abl , Quinases da Família src , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Guanidina/farmacologia , Guanidina/química , Guanidina/síntese química , Guanidina/análogos & derivados , Células HL-60 , Leucemia/tratamento farmacológico , Leucemia/patologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/metabolismo , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo , Relação Estrutura-Atividade , Cianamida/síntese química , Cianamida/química , Cianamida/farmacologia
2.
Pestic Biochem Physiol ; 201: 105908, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685229

RESUMO

The inclination toward natural products has led to the onset of the discovery of new bioactive metabolites that could be targeted for specific therapeutic or agronomic applications. Despite increasing knowledge coming to light of plant-derived materials as leads for new herbicides, relatively little is known about the mode of action on herbicide-resistant weeds. Cyanamide (CA) is a naturally occurring herbicide synthesized by hairy vetch (Vicia villosa Roth.). However, it has not been experimentally verified whether CA suppresses target plants via sustained discharge at low concentrations, as is often the case with most plant-derived materials. This study aimed to detect the toxicity and the mode of action of CA to alfalfa (Medicago sativa L.) and redroot pigweed (Amaranthus retroflexus L.). The toxicity of CA toward the alfalfa and redroot pigweed by three different exposure patterns was compared: low-concentration repeated exposure with 0.3 g/L CA (LRE), high-concentration single exposure with 1.2 g/L CA (HSE), and distilled water spray as control. The results showed that CA had a stronger inhibitory effect on redroot pigweed growth compared to alfalfa under both LRE and HSE exposure modes, with leaves gradually turning yellow and finally wilting. Beyond that, field trials were conducted to corroborate the toxicity of CA to alfalfa and redroot pigweed. The results have also shown that CA could inhibit the growth of redroot pigweed without significant adverse effects on alfalfa. The outcomes concerning electrolyte permeability, root activity, and malondialdehyde (MDA) content indicated that CA suppressed the growth of redroot pigweed by interfering with the structure of the cell membrane and impacting cellular osmotic potential. CA could destroy the cell membrane structure to inhibit the growth of the redroot pigweed by both LRE and HSE exposure modes, which provides a theoretical basis for preventing and controlling redroot pigweed in alfalfa fields.


Assuntos
Amaranthus , Cianamida , Herbicidas , Medicago sativa , Medicago sativa/efeitos dos fármacos , Herbicidas/toxicidade , Herbicidas/farmacologia , Amaranthus/efeitos dos fármacos , Cianamida/farmacologia , Malondialdeído/metabolismo , Plantas Daninhas/efeitos dos fármacos
3.
Plant J ; 104(5): 1251-1268, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32989852

RESUMO

Ethylene signaling appears critical for grape bud dormancy release. We therefore focused on identification and characterization of potential downstream targets and events, assuming that they participate in the regulation of dormancy release. Because ethylene responding factors (ERF) are natural candidates for targets of ethylene signaling, we initially characterized the behavior of two VvERF-VIIs, which we identified within a gene set induced by dormancy release stimuli. As expected, these VvERF-VIIs are localized within the nucleus, and are stabilized upon decreases in oxygen availability within the dormant buds. Less expected, the proteins are also stabilized upon hydrogen cyanamide (HC) application under normoxic conditions, and their levels peak at deepest dormancy under vineyard conditions. We proceeded to catalog the response of all bud-expressed ERFs, and identified additional ERFs that respond similarly to ethylene, HC, azide and hypoxia. We also identified a core set of genes that are similarly affected by treatment with ethylene and with various dormancy release stimuli. Interestingly, the functional annotations of this core set center around response to energy crisis and renewal of energy resources via autophagy-mediated catabolism. Because ERF-VIIs are stabilized under energy shortage and reshape cell metabolism to allow energy regeneration, we propose that: (i) the availability of VvERF-VIIs is a consequence of an energy crisis within the bud; (ii) VvERF-VIIs function as part of an energy-regenerating mechanism, which activates anaerobic metabolism and autophagy-mediated macromolecule catabolism; and (iii) activation of catabolism serves as the mandatory switch and the driving force for activation of the growth-inhibited meristem during bud-break.


Assuntos
Etilenos/metabolismo , Dormência de Plantas/fisiologia , Proteínas de Plantas/genética , Vitis/fisiologia , Cianamida/farmacologia , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas , Hipóxia/metabolismo , Dormência de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estabilidade Proteica , Estações do Ano , Transdução de Sinais , Azida Sódica/farmacologia , Nicotiana/genética , Vitis/efeitos dos fármacos
4.
Alcohol Clin Exp Res ; 44(1): 45-55, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31693194

RESUMO

BACKGROUND: Aldehyde dehydrogenase 2 (ALDH2) protects against alcohol-evoked cardiac dysfunction in male rodents, but its role in the estrogen (E2 )-dependent hypersensitivity of female rats to alcohol-evoked myocardial oxidative stress and dysfunction is not known. METHODS: We addressed this question by studying the effect of cyanamide (ALDH2 inhibitor) on cardiac function, blood pressure, alcohol-metabolizing enzyme (alcohol dehydrogenase, cytochrome P450 2E1, catalase, and ALDH2) activities, and cardiac redox status (reactive oxygen species, ROS; malondialdehyde, MDA) in the absence or presence of ethanol (EtOH) in female sham-operated (SO) and ovariectomized (OVX) rats. RESULTS: Cyanamide attenuated the EtOH-evoked myocardial dysfunction (reduced dP/dtmax and LVDP) in SO rats. EtOH, cyanamide, or their combination did not alter dP/dtmax or LVDP in OVX rats. Cyanamide induced cardiac oxidative stress and abrogated the subsequent alcohol-evoked increases in ROS and MDA levels in SO rats. Neither EtOH nor cyanamide influenced ROS or MDA levels in OVX rats. Importantly, cyanamide exaggerated EtOH-evoked hypotension in SO and uncovered this hypotensive response in OVX rats, which implicates ALDH2 in the vasodilating effect of EtOH. CONCLUSIONS: Contrary to our hypothesis, cyanamide attenuated the E2 -dependent cardiac dysfunction caused by alcohol, likely by preconditioning the heart to oxidative stress, while exacerbating the vasodilating effect of alcohol. The latter might predispose to syncope when cyanamide and alcohol are combined in females.


Assuntos
Aldeído-Desidrogenase Mitocondrial/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico , Etanol/toxicidade , Cardiopatias/induzido quimicamente , Cardiopatias/tratamento farmacológico , Hipotensão/induzido quimicamente , Aldeído-Desidrogenase Mitocondrial/metabolismo , Animais , Cianamida/farmacologia , Cianamida/uso terapêutico , Inibidores Enzimáticos/farmacologia , Etanol/administração & dosagem , Feminino , Cardiopatias/enzimologia , Hipotensão/metabolismo , Ovariectomia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
5.
Bioorg Med Chem ; 28(1): 115195, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31761726

RESUMO

N-acylethanolamine acid amidase (NAAA) inhibition represents an exciting novel approach to treat inflammation and pain. NAAA is a cysteine amidase which preferentially hydrolyzes the endogenous biolipids palmitoylethanolamide (PEA) and oleoylethanolamide (OEA). PEA is an endogenous agonist of the nuclear peroxisome proliferator-activated receptor-α (PPAR-α), which is a key regulator of inflammation and pain. Thus, blocking the degradation of PEA with NAAA inhibitors results in augmentation of the PEA/PPAR-α signaling pathway and regulation of inflammatory and pain processes. We have prepared a new series of NAAA inhibitors exploring the azetidine-nitrile (cyanamide) pharmacophore that led to the discovery of highly potent and selective compounds. Key analogs demonstrated single-digit nanomolar potency for hNAAA and showed >100-fold selectivity against serine hydrolases FAAH, MGL and ABHD6, and cysteine protease cathepsin K. Additionally, we have identified potent and selective dual NAAA-FAAH inhibitors to investigate a potential synergism between two distinct anti-inflammatory molecular pathways, the PEA/PPAR-α anti-inflammatory signaling pathway,1-4 and the cannabinoid receptors CB1 and CB2 pathways which are known for their antiinflammatory and antinociceptive properties.5-8 Our ligand design strategy followed a traditional structure-activity relationship (SAR) approach and was supported by molecular modeling studies of reported X-ray structures of hNAAA. Several inhibitors were evaluated in stability assays and demonstrated very good plasma stability (t1/2 > 2 h; human and rodents). The disclosed cyanamides represent promising new pharmacological tools to investigate the potential role of NAAA inhibitors and dual NAAA-FAAH inhibitors as therapeutic agents for the treatment of inflammation and pain.


Assuntos
Amidoidrolases/antagonistas & inibidores , Cianamida/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Amidoidrolases/metabolismo , Animais , Cianamida/síntese química , Cianamida/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Camundongos , Modelos Moleculares , Estrutura Molecular , Ratos , Relação Estrutura-Atividade
6.
J Enzyme Inhib Med Chem ; 35(1): 1736-1742, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32928007

RESUMO

Gut microbial ß-glucuronidases have the ability to deconjugate glucuronides of some drugs, thus have been considered as an important drug target to alleviate the drug metabolites-induced gastrointestinal toxicity. In this study, thiazolidin-2-cyanamide derivatives containing 5-phenyl-2-furan moiety (1-13) were evaluated for inhibitory activity against Escherichia coli ß-glucuronidase (EcGUS). All of them showed more potent inhibition than a commonly used positive control, d-saccharic acid 1,4-lactone, with the IC50 values ranging from 1.2 µM to 23.1 µM. Inhibition kinetics studies indicated that compound 1-3 were competitive type inhibitors for EcGUS. Molecular docking studies were performed and predicted the potential molecular determinants for their potent inhibitory effects towards EcGUS. Structure-inhibitory activity relationship study revealed that chloro substitution on the phenyl moiety was essential for EcGUS inhibition, which would help researchers to design and develop more effective thiazolidin-2-cyanamide type inhibitors against EcGUS.


Assuntos
Cianamida/farmacologia , Escherichia coli/enzimologia , Glucuronidase/antagonistas & inibidores , Glicoproteínas/farmacologia , Tiazolidinas/farmacologia , Cianamida/química , Relação Dose-Resposta a Droga , Glucuronidase/metabolismo , Glicoproteínas/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tiazolidinas/química
7.
Pestic Biochem Physiol ; 149: 89-97, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30033022

RESUMO

Targeting virulence factors of bacterial without affecting their growth and survival, has been an initiative strategy for the development of novel anti-microbial agents. The type III secretion system (T3SS), one of essential and highly conserved virulence factors in most Gram-negative pathogenic bacteria, has been regarded as an effective target that developed new anti-microbial drugs. Xanthomonas oryzae pv. oryzae (Xoo) is one of the most Important bacterial pathogens on rice, which causes leaf blight disease. To discover potential anti-virulence agents against the pathogens, a new series of thiazolidin-2-cyanamide derivatives containing 5-phenyl-2-furan were designed and synthesized. Their structures were characterized by 1H NMR, 13C NMR, MS, and elemental analysis. All the title compounds inhibited the promoter activity of a harpin gene hpa1, significantly, that were further checked for the impact on bacterial growth and on the hypersensitive response (HR) caused by Xoo on non-host tobacco plants. The results indicated that treatment of Xoo with the title compounds II-2, II-3 and II-4 resulted in significantly attenuated HR without affecting bacterial growth or survival. Moreover, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that the expression of the Xoo T3SS was suppressed by treatment with the three inhibitors. The mRNA levels of representative genes in the hrp (hypersensitive response and pathogenicity) cluster, as well as the regulatory genes hrpG and hrpX, were reduced. Finally, the in vivo test demonstrated that the compounds could reduce the disease symptoms of Xoo on the rice cultivar (Oryza sativa) IR24.


Assuntos
Antibacterianos/farmacologia , Cianamida/farmacologia , Oryza/microbiologia , Tiazolidinas/farmacologia , Sistemas de Secreção Tipo III/efeitos dos fármacos , Xanthomonas/efeitos dos fármacos , Antibacterianos/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Genes Bacterianos , Genes Reguladores , Regiões Promotoras Genéticas , Espectroscopia de Prótons por Ressonância Magnética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização por Electrospray , Virulência/genética , Xanthomonas/genética , Xanthomonas/crescimento & desenvolvimento , Xanthomonas/patogenicidade
8.
J Enzyme Inhib Med Chem ; 32(1): 805-820, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28587532

RESUMO

Nineteen new compounds containing tetrazole and/or cyanamide moiety have been designed and synthesised. Their structures were confirmed using spectroscopic methods and elemental analyses. Anti-inflammatory activity for all the synthesised compounds was evaluated in vivo. The most active compounds 4c, 5a, 5d-f, 8a and b and 9a and b were further investigated for their ulcerogenic liability and analgesic activity. Pyrazoline derivatives 9b and 8b bearing trimethoxyphenyl part and SO2NH2 or SO2Me pharmacophore showed equal or nearly the same ulcerogenic liability (UI: 0.5, 0.75, respectively), to celecoxib (UI: 0.50). Most of tested compounds showed potent central and/or peripheral analgesic activities. Histopathological investigations were done to evaluate test compounds effect on rat's gastric tissue. The obtained results were in consistent with the in vitro data on COX evaluation. Docking study was also done for all the target compounds inside COX-2-active site.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Cianamida/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Úlcera Gástrica/tratamento farmacológico , Tetrazóis/farmacologia , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Cianamida/síntese química , Cianamida/química , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Edema/tratamento farmacológico , Simulação de Acoplamento Molecular , Estrutura Molecular , Ratos , Ovinos , Úlcera Gástrica/induzido quimicamente , Relação Estrutura-Atividade , Tetrazóis/síntese química , Tetrazóis/química
9.
J Biol Chem ; 290(20): 12664-75, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25847245

RESUMO

Two DNA damage-inducible genes in Saccharomyces cerevisiae, DDI2 and DDI3, are identical and encode putative HD domain-containing proteins, whose functions are currently unknown. Because Ddi2/3 also shows limited homology to a fungal cyanamide hydratase that converts cyanamide to urea, we tested the enzymatic activity of recombinant Ddi2. To this end, we developed a novel enzymatic assay and determined that the Km value of the recombinant Ddi2/3 for cyanamide is 17.3 ± 0.05 mm, and its activity requires conserved residues in the HD domain. Unlike most other DNA damage-inducible genes, DDI2/3 is only induced by a specific set of alkylating agents and surprisingly is strongly induced by cyanamide. To characterize the biological function of DDI2/3, we sequentially deleted both DDI genes and found that the double mutant was unable to metabolize cyanamide and became much more sensitive to growth inhibition by cyanamide, suggesting that the DDI2/3 genes protect host cells from cyanamide toxicity. Despite the physiological relevance of the cyanamide induction, DDI2/3 is not involved in its own transcriptional regulation. The significance of cyanamide hydratase activity and its induced expression is discussed.


Assuntos
Duplicação Gênica/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Hidroliases/biossíntese , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/enzimologia , Cianamida/metabolismo , Cianamida/farmacologia , Indução Enzimática/efeitos dos fármacos , Deleção de Genes , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Hidroliases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ureia/metabolismo
10.
Alcohol Clin Exp Res ; 39(5): 798-807, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25827479

RESUMO

BACKGROUND: Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are principal enzymes responsible for metabolism of ethanol in mammals. The steady-state metabolic flux of ethanol has been poorly understood. METHODS: We investigated flux rates of the individual steps of ethanol metabolism in perfused rat livers treated with ALDH inactivator cyanamide as an attempt to mimic human ALDH2 deficiency commonly seen in East Asians. The net rates of ethanol oxidation, acetaldehyde oxidation, and acetate activation were determined with a set of defined equations, based on the set influx rates of ethanol and the measured efflux rates of ethanol, acetaldehyde, and acetate. RESULTS: After intraperitoneal injections of 0.2 and 1.5 mg/kg cyanamide, hepatic activities of mitochondrial ALDH2 and cytoplasmic ALDH1A1 decreased to a similar degree, that is, 51 to 57% and 69 to 74%, compared with the corresponding controls, respectively, whereas cytoplasmic ADH1 activity remained unchanged. At infusing 2 mM ethanol, acetaldehyde oxidation rate well matched (99%) the net ethanol oxidation rate in control liver. Both the ethanol and acetaldehyde oxidation rates were significantly decreased after cyanamide treatments. At 10 mM ethanol, the efflux acetaldehyde was significantly higher than that infusing 2 mM ethanol in both control and cyanamide groups. Seventy-eight percent of the oxidized ethanol released as efflux acetate. At 2 mM ethanol, the apparent flux control coefficients of ADH1 were assessed to be 0.78, 0.54, and 0.39, respectively, in control, low, and high cyanamide-treated livers. Kinetic simulations revealed that inhibition by acetaldehyde may largely account for the observed reduction of ADH1 oxidation rates after cyanamide treatment. CONCLUSIONS: Our results provide the first flux evidence that ADH and ALDH are steps influencing steady-state metabolism of ethanol in rat livers with inactivated ALDHs.


Assuntos
Acetaldeído/metabolismo , Álcool Desidrogenase/metabolismo , Aldeído Desidrogenase/antagonistas & inibidores , Aldeído Desidrogenase/metabolismo , Cianamida/farmacologia , Etanol/metabolismo , Fígado/metabolismo , Acetatos/metabolismo , Animais , Relação Dose-Resposta a Droga , Cinética , Fígado/efeitos dos fármacos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Perfusão , Ratos
11.
Basic Res Cardiol ; 108(3): 343, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23525499

RESUMO

Mitochondrial aldehyde dehydrogenase-2 (ALDH-2) is involved in preconditioning pathways, but its role in remote ischaemic preconditioning (rIPC) is unknown. We investigated its role in animal and human models of rIPC. (i) In a rabbit model of myocardial infarction, rIPC alone reduced infarct size [69 ± 5.8 % (n = 11) to 40 ± 6.5 % (n = 12), P = 0.019]. However, rIPC protection was lost after pre-treatment with the ALDH-2 inhibitor cyanamide (62 ± 7.6 % controls, n = 10, versus 61 ± 6.9 % rIPC after cyanamide, n = 10, P > 0.05). (ii) In a forearm plethysmography model of endothelial ischaemia-reperfusion injury, 24 individuals of Asian ethnic origin underwent combined rIPC and ischaemia-reperfusion (IR). 11 had wild-type (WT) enzyme and 13 carried the Glu504Lys (ALDH2*2) polymorphism (rendering ALDH-2 functionally inactive). In WT individuals, rIPC protected against impairment of response to acetylcholine (P = 0.9), but rIPC failed to protect carriers of Glu504Lys polymorphism (P = 0.004). (iii) In a second model of endothelial IR injury, 12 individuals participated in a double-blind placebo-controlled crossover study, receiving the ALDH-2 inhibitor disulfiram 600 mg od or placebo for 48 h prior to assessment of flow-mediated dilation (FMD) before and after combined rIPC and IR. With placebo, rIPC was effective with no difference in FMD before and after IR (6.18 ± 1.03 % and 4.76 ± 0.93 % P = 0.1), but disulfiram inhibited rIPC with a reduction in FMD after IR (7.87 ± 1.27 % and 3.05 ± 0.53 %, P = 0.001). This study demonstrates that ALDH-2 is involved in the rIPC pathway in three distinct rabbit and human models. This has potential implications for future clinical studies of remote conditioning.


Assuntos
Aldeído Desidrogenase/antagonistas & inibidores , Cianamida/farmacologia , Dissulfiram/farmacologia , Inibidores Enzimáticos/farmacologia , Antebraço/irrigação sanguínea , Membro Posterior/irrigação sanguínea , Precondicionamento Isquêmico/métodos , Infarto do Miocárdio/prevenção & controle , Miocárdio/enzimologia , Traumatismo por Reperfusão/prevenção & controle , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Aldeído-Desidrogenase Mitocondrial , Análise de Variância , Animais , Estudos Cross-Over , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Método Duplo-Cego , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/enzimologia , Endotélio Vascular/fisiopatologia , Genótipo , Humanos , Modelos Lineares , Mutação , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/patologia , Fenótipo , Pletismografia , Coelhos , Fluxo Sanguíneo Regional/efeitos dos fármacos , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Fatores de Tempo , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
12.
Exp Dermatol ; 22(3): 202-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23489423

RESUMO

Aldehyde dehydrogenase 1A1 (ALDH1A1), an enzyme that catalyses the conversion of lipid aldehydes to lipid carboxylic acids, plays pleiotropic roles in UV-radiation resistance, melanogenesis and stem cell maintenance. In this study, a combination of RNAi and pharmacologic approaches were used to determine which ALDH1A1 substrates and products regulate melanogenesis. Initial studies revealed that neither the UV-induced lipid aldehyde 4-hydroxy-2-nonenal nor the ALDH1A1 product all-trans retinoic acid appreciably induced melanogenesis. In contrast, both the ALDH1A1 substrate 9-cis retinal and its corresponding product 9-cis retinoic acid potently induced the accumulation of MITF mRNA, Tyrosinase mRNA and melanin. ALDH1A1 depletion inhibited the ability of 9-cis retinal but not 9-cis retinoic acid to stimulate melanogenesis, indicating that ALDH1A1 regulates melanogenesis by catalysing the conversion of 9-cis retinal to 9-cis retinoic acid. The addition of potent ALDH1A inhibitors (cyanamide or Angeli's salt) suppressed Tyrosinase and MITF mRNA accumulation in vitro and also melanin accumulation in skin equivalents, suggesting that 9-cis retinoids regulate melanogenesis in the intact epidermis. Taken together, these studies not only identify cyanamide as a potential novel treatment for hyperpigmentary disorders, but also identify 9-cis retinoic acid as a pigment stimulatory agent that may have clinical utility in the treatment of hypopigmentary disorders, such as vitiligo.


Assuntos
Aldeído Desidrogenase/metabolismo , Melaninas/metabolismo , Pigmentação da Pele/fisiologia , Pele/metabolismo , Tretinoína/metabolismo , Família Aldeído Desidrogenase 1 , Alitretinoína , Linhagem Celular Tumoral , Células Cultivadas , Cianamida/farmacologia , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Melanócitos/patologia , Melanoma/metabolismo , Melanoma/patologia , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Retinal Desidrogenase , Pele/efeitos dos fármacos , Pele/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Tretinoína/farmacologia
13.
Biol Pharm Bull ; 36(4): 556-63, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23546291

RESUMO

The contribution of aldehyde dehydrogenase type 2 (ALDH2) to bioactivation of glyceryl trinitrate (GTN) and isosorbide dinitrate (ISDN) was systematically examined in excised rabbit aorta and anesthetized whole animal with cyanamide, an ALDH2 inhibitor. In excised aortic preparation, the degree of inhibition by cyanamide in GTN-induced vasorelaxation (concentration ratio, calculated as EC(50) in the presence of cyanamide/EC(50) in the absence of cyanamide; 5.61) was twice that in ISDN-induced relaxation (2.78). However, the degree of inhibition by cyanamide, as assessed by the dose ratio (as described above, but calculated with doses) in anesthetized rabbits was 2.29 in GTN-induced hypotension (assessed by area under the curve (AUC) of 50 mmHg·min) and 7.68 in ISDN-induced hypotension. Thus, the inhibitor was 3 times more potent in ISDN-induced hypotension, a finding in conflict with to that obtained in excised aortic preparation. The rate of increase in plasma nitrite (NO(2)(-)) concentration at certain hypotensive effect (50 mmHg·min of AUC) in the presence and absence of cyanamide (ΔNO(2)(-) ratio) was larger in ISDN-induced hypotension (15.01) than in GTN-induced hypotension (3.28). These results indicate that the bioactivation pathway(s) of GTN is ALDH2-dependent in aortic smooth muscle, while ADLH2-independent mechanism(s) largely take place in the whole body. In contrast, the activation mechanism(s) of ISDN is largely ALDH2-dependent in both aortic smooth muscle and whole body. Plasma NO(2)(-) may be derived from pathways other than the cyanamide-sensitive metabolic route.


Assuntos
Aldeído Desidrogenase/antagonistas & inibidores , Aorta Torácica/efeitos dos fármacos , Cianamida/farmacologia , Inibidores Enzimáticos/farmacologia , Anestesia , Animais , Aorta Torácica/fisiologia , Técnicas In Vitro , Dinitrato de Isossorbida , Nitritos/sangue , Nitroglicerina , Coelhos , Vasodilatação/efeitos dos fármacos , Vasodilatadores
14.
ACS Synth Biol ; 12(9): 2783-2788, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37603344

RESUMO

The commonly used expression systems in Saccharomyces cerevisiae typically rely on either constitutive or galactose-regulated promoters. The lack of inducible systems in S. cerevisiae limits the precise temporal regulation of protein function and yeast metabolism. We herein repurposed the galactose-regulated system to make it respond to cyanamide. By using a cyanamide-inducible DDI2 promoter to control Gal4 expression in CEN.PK2-1C with Δgal80, a tight and graded cyanamide-inducible GAL system with an enhanced signal output was constructed. Subsequently, we demonstrated that the cyanamide-inducible GAL system was capable of tightly regulating the pentafunctional Aro1 protein to achieve conditional shikimate pathway activity. Taken together, the cyanamide-inducible GAL system could be implemented for both fundamental research and applied biotechnology.


Assuntos
Cianamida , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Cianamida/farmacologia , Galactose , Regulon
15.
Plant Mol Biol ; 79(1-2): 171-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22466405

RESUMO

It has been reported that dormancy-breaking compound hydrogen cyanamide (HC) stimulates the fermentative pathway and inhibits respiration in grapevine-buds, suggesting in this way, that a respiratory stress must be involved in the release of buds from dormancy. Here, we tested low-oxygen effect (hypoxia) on the bud-break response of endodormant grapevine buds, and HC and hypoxia effects on the expression of hypoxic responsive genes (HRG) PYRUVATE DECARBOXYLASE (VvPDC), ALCOHOL DEHYDROGENASE (VvADH2), SUCROSE SYNTHASE (VvSUSY), non-symbiotic HEMOGLOBIN (VvnsHb), and on FLOWERING LOCUS T (VvFT), a transcription factor related to dormancy release in Vitis. Hypoxia as HC, induce transiently the expression of HRG and VvFT and hasten the sprouting of endodormant grapevine-buds. During the first 24 h after treatment, HRG and VvFT were strongly induced by hypoxia, subsequently, their expressions fell, and 14 days post-treatment increased again above control levels. These results indicate that in the short-term, a respiratory stress, caused either by oxygen deprivation or by inhibitors of respiration, induces transiently the expression of HRG and VvFT, and in the long-term, along with the advancement of bud-break, the expression of these genes move forward in treated buds, suggesting that these second induction that occurs just before bud-break is developmentally regulated.


Assuntos
Cianamida/farmacologia , Flores/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Oxigênio/farmacologia , Regulação para Cima/efeitos dos fármacos , Vitis/genética , Anaerobiose/efeitos dos fármacos , Flores/efeitos dos fármacos , Flores/crescimento & desenvolvimento , Dormência de Plantas/efeitos dos fármacos , Dormência de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vitis/efeitos dos fármacos
16.
Am J Physiol Heart Circ Physiol ; 302(3): H837-44, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22159996

RESUMO

We have previously shown that ethanol microinjection into the rostral ventrolateral medulla (RVLM) elicits sympathoexcitation and hypertension in conscious spontaneously hypertensive rats (SHRs) but not in Wistar-Kyoto (WKY) rats. In this study, evidence was sought to implicate the oxidative breakdown of ethanol in this strain-dependent hypertensive action of ethanol. Biochemical experiments revealed significantly higher catalase activity and similar aldehyde dehydrogenase (ALDH) activity in the RVLM of SHRs compared with WKY rats. We also investigated the influence of pharmacological inhibition of catalase (3-aminotriazole) or ALDH (cyanamide) on the cardiovascular effects of intra-RVLM ethanol or its metabolic product acetaldehyde in conscious rats. Compared with vehicle, ethanol (10 µg/rat) elicited a significant increase in blood pressure in SHRs that lasted for the 60-min observation period but had no effect on blood pressure in WKY rats. The first oxidation product, acetaldehyde, played a critical role in ethanol-evoked hypertension because 1) catalase inhibition (3-aminotriazole treatment) virtually abolished the ethanol-evoked pressor response in SHRs, 2) intra-RVLM acetaldehyde (2 µg/rat) reproduced the strain-dependent hypertensive effect of intra-RVLM ethanol, and 3) ALDH inhibition (cyanamide treatment) uncovered a pressor response to intra-RVLM acetaldehyde in WKY rats similar to the response observed in SHRs. These findings support the hypothesis that local production of acetaldehyde, due to enhanced catalase activity, in the RVLM mediates the ethanol-evoked pressor response in SHRs.


Assuntos
Acetaldeído/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Etanol/farmacocinética , Bulbo/fisiologia , Formação Reticular/fisiologia , Acetaldeído/farmacologia , Aldeído Desidrogenase/antagonistas & inibidores , Aldeído Desidrogenase/metabolismo , Animais , Vias Autônomas/efeitos dos fármacos , Vias Autônomas/fisiologia , Pressão Sanguínea/fisiologia , Catalase/metabolismo , Depressores do Sistema Nervoso Central/farmacocinética , Cianamida/farmacologia , Hipertensão/fisiopatologia , Masculino , Bulbo/efeitos dos fármacos , Metabolismo/fisiologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Formação Reticular/efeitos dos fármacos , Especificidade da Espécie
17.
Planta ; 236(5): 1629-38, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22847024

RESUMO

Cyanamide (CA) has been reported as a natural compound produced by hairy vetch (Vicia villosa Roth.) and it was shown also to be an allelochemical, responsible for strong allelopathic potential in this species. CA phytotoxicity has been demonstrated on various plant species, but to date little is known about its mode of action at cellular level. Treatment of tomato (Solanum lycopersicum L.) roots with CA (1.2 mM) resulted in inhibition of growth accompanied by alterations in cell division, and imbalance of plant hormone (ethylene and auxin) homeostasis. Moreover, the phytotoxic effect of CA was also manifested by modifications in expansin gene expression, especially in expansins responsible for cell wall remodeling after the cytokinesis (LeEXPA9, LeEXPA18). Based on these results the phytotoxic activity of CA on growth of roots of tomato seedlings is likely due to alterations associated with cell division.


Assuntos
Cianamida/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Solanum lycopersicum/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Plântula/citologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento
18.
Nitric Oxide ; 26(4): 223-8, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22465477

RESUMO

Responses to glyceryl trinitrate/nitroglycerin (GTN), S-nitrosoglutathione (GSNO), and sodium nitrite were compared in the intact chest rat. The iv injections of GTN, sodium nitrite, and GSNO produced dose-dependent decreases in pulmonary and systemic arterial pressures. In as much as cardiac output was not reduced, the decreases in pulmonary and systemic arterial pressures indicate that GTN, sodium nitrite, and GSNO have significant vasodilator activity in the pulmonary and systemic vascular beds in the rat. Responses to GTN were attenuated by cyanamide, but not allopurinol, whereas responses to nitrite formed by the metabolism of GTN were attenuated by allopurinol and cyanamide. The results with allopurinol and cyanamide suggest that only mitochondrial aldehyde dehydrogenase is involved in the bioactivation of GTN, sodium nitrite, and GSNO, whereas both pathways are involved in the bioactivation of nitrite anion in the intact rat. The comparison of vasodilator activity indicates that GSNO and GTN are more than 1000-fold more potent than sodium nitrite in decreasing pulmonary and systemic arterial pressures in the rat. Following administration of 1H-[1,2,4]-oxadizaolo[4,3-]quinoxaline-1-one (ODQ), responses to GTN were significantly attenuated, indicating that responses are mediated by the activation of soluble guanylyl cyclase. These data suggest that the reduction of nitrite to nitric oxide formed from the metabolism of GTN, cannot account for the vasodilator activity of GTN in the intact rat and that another mechanism; perhaps the formation of an S-NO, may mediate the vasodilator response to GTN in this species.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Nitroglicerina/farmacologia , Nitrito de Sódio/farmacologia , Vasodilatadores/farmacologia , Animais , Cianamida/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , S-Nitrosoglutationa/farmacologia , Tórax/irrigação sanguínea , Tórax/efeitos dos fármacos , Tórax/fisiologia
19.
Planta ; 234(3): 609-21, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21573814

RESUMO

Cyanamide is an allelochemical produced by hairy vetch (Vicia villosa Roth.). Its phyotoxic effect on plant growth was examined on roots of onion (Allium cepa L.) bulbs. Water solution of cyanamide (2-10 mM) restricted growth of onion roots in a dose-dependent manner. Treatment of onion roots with cyanamide resulted in a decrease in root growth rate accompanied by a decrease in accumulation of fresh and dry weight. The inhibitory effect of cyanamide was reversed by its removal from the environment, but full recovery was observed only for tissue treated with this chemical at low concentration (2-6 mM). Cytological observations of root tip cells suggest that disturbances in cell division may explain the strong cyanamide allelopathic activity. Moreover, in cyanamide-treated onion the following changes were detected: reduction of mitotic cells, inhibition of proliferation of meristematic cells and cell cycle, and modifications of cytoskeleton arrangement.


Assuntos
Cianamida/farmacologia , Cebolas/efeitos dos fármacos , Feromônios/farmacologia , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Meristema/crescimento & desenvolvimento , Mitose/efeitos dos fármacos , Cebolas/crescimento & desenvolvimento , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Vicia/química
20.
J Exp Bot ; 62(10): 3481-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21378115

RESUMO

The present study investigated the expressional regulation of PpDAM5 and PpDAM6, two of the six peach (Prunus persica) dormancy-associated MADS-box genes, in relation to lateral bud endodormancy. PpDAM5 and PpDAM6 were originally identified as homologues of Arabidopsis SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24 identified in the EVERGROWING locus of peach. Furthermore, PpDAM5 and PpDAM6 have recently been suggested to be involved in terminal bud dormancy. In this study, seasonal expression analyses using leaves, stems, and lateral buds of high-chill and low-chill peaches in field conditions indicated that both genes were up-regulated during the endodormancy period and down-regulated with endodormancy release. Controlled environment experiments showed that the expression of both PpDAM5 and PpDAM6 were up-regulated by ambient cool temperatures in autumn, while they were down-regulated by the prolonged period of cold temperatures in winter. A negative correlation between expression levels of PpDAM5 and PpDAM6 and bud burst percentage was found in the prolonged cold temperature treatment. Application of the dormancy-breaking reagent cyanamide to endo/ecodormant lateral buds induced early bud break and down-regulation of PpDAM5 and PpDAM6 expression at the same time. These results collectively suggest that PpDAM5 and PpDAM6 may function in the chilling requirement of peach lateral buds through growth-inhibiting functions for bud break.


Assuntos
Proteínas de Plantas/metabolismo , Prunus/metabolismo , Temperatura Baixa , Cianamida/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Caules de Planta/efeitos dos fármacos , Caules de Planta/genética , Caules de Planta/metabolismo , Prunus/efeitos dos fármacos , Prunus/genética , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA