Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Malar J ; 22(1): 264, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689679

RESUMO

BACKGROUND: The erythrocytic stage of the life cycle of the malaria parasite, Plasmodium falciparum, consists of trophozoite, schizont and gametocyte stages in humans. Various anti-malarial agents target different stages of the parasite to produce treatment outcomes. This study reports on the stage-specific anti-malarial activity of heptaphylline and imperatorin against human P. falciparum in addition to their cytotoxicity and selectivity indices (SI). METHODS: The compounds were isolated from Clausena anisata using column chromatography and their structures elucidated using NMR spectroscopy. The anti-malarial activity was determined by measuring the trophozoitocidal, schizonticidal and gametocytocidal activities of the compounds using the SYBR green assay. Cytotoxicity was evaluated using the tetrazolium-based colorimetric assay. RESULTS: Heptaphylline and imperatorin produced trophozoitocidal, schizonticidal and gametocytocidal activities with IC50s of 1.57 (0.2317)-26.92 (0.3144) µM with those of artesunate (the standard drug) being 0.00024 (0.0036)-0.0070 (0.0013) µM. In the cytotoxicity assay, the compounds produced CC50S greater than 350 µM and SI of 13.76-235.90. Also, the trophozoitocidal and schizonticidal activities of the compounds were more pronounced than their gametocytocidal activity. Imperatorin was 42.04% more trophozoitocidal than hepthaphyline. However, hepthaphyline has more schizonticidal and gametocytocidal properties than imperatorin. CONCLUSION: Heptaphylline and imperatorin are promising anti-malarial agents, since they possess potent anti-malarial activity with weak cytotoxicity on RBCs. However, imperatorin is a better anti-malarial prophylactic agent whereas heptaphylline is a better malaria treatment agent.


Assuntos
Alcaloides , Antimaláricos , Antiprotozoários , Clausena , Furocumarinas , Malária Falciparum , Parasitos , Humanos , Animais , Antimaláricos/farmacologia , Furocumarinas/farmacologia , Malária Falciparum/tratamento farmacológico
2.
Planta Med ; 89(12): 1165-1169, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37414059

RESUMO

Clausena excavata is a medicinal plant widely distributed in Southeast Asia. It is used for a variety of indications, including to treat malaria. In our present study, a phytochemical study of the methanol extract from the stem bark of C. excavata led to the isolation of five pyranocoumarins, nordentatin (1: ), dentatin (2: ), kinocoumarin (3: ), clausarin (4: ), and clausenidin (5: ), and a coumarin, 8-hydroxy-3″,4″-dihydrocapnolactone-2',3'-diol (6: ). The isolation of compound 6: from C. excavata and the antiplasmodial activities against a multidrug-resistant K1 strain of Plasmodium falciparum of 1, 3: , and 5: were reported for the first time. Compounds 3: and 4: exhibited potent antiplasmodial activities with EC50 values of 1.10 and 0.58 µM, respectively, while 1: and 5: had EC50 values of 5.62 and 7.15 µM, respectively. A prenyl group attached to the C-3 or C-12 position on the pyranocoumarin ring probably plays an important role on the activity. A hydroxyl group at the C-10 position is also likely to enhance the activity.


Assuntos
Antimaláricos , Clausena , Plantas Medicinais , Clausena/química , Antimaláricos/farmacologia , Antimaláricos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Casca de Planta , Plantas Medicinais/química , Plasmodium falciparum
3.
Plant Dis ; 107(5): 1613-1616, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36444142

RESUMO

Pantoea anthophila CL1 is a causal agent of soft rot disease in Clausena lansium (wampee) in China and has inhibitory activity against the bacterial wilt pathogen Ralstonia solanacearum. Here we report the genome sequencing and analysis of P. anthophila CL1, representing the first complete genome resource of the species. The CL1 genome consists of four circular replicons (one chromosome and three plasmids), with a total size of 4,594,065 bp, and contains 4,109 protein-coding genes and 106 RNA genes. Our bioinformatic analysis of CL1 predicted 228 virulence factors, two Type VI Secretion Systems, and six secondary metabolite biosynthesis gene clusters producing saccharides, siderophores, and terpene. The complete genome sequence of P. anthophila CL1 provides a solid foundation for further investigation of its pathogenesis and antimicrobial activity and also represents a valuable resource for the comparative genomics of Pantoea.


Assuntos
Clausena , Pantoea , Pantoea/genética , Clausena/genética , Genômica , Genoma Bacteriano/genética
4.
Molecules ; 28(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37513285

RESUMO

Induced by the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the COVID-19 pandemic underlined the clear need for antivirals against coronaviruses. In an effort to identify new inhibitors of SARS-CoV-2, a screening of 824 extracts prepared from various parts of 400 plant species belonging to the Rutaceae and Annonaceae families was conducted using a cell-based HCoV-229E inhibition assay. Due to its significant activity, the ethyl acetate extract of the leaves of Clausena harmandiana was selected for further chemical and biological investigations. Mass spectrometry-guided fractionation afforded three undescribed phenolic lipids (1-3), whose structures were determined via spectroscopic analysis. The absolute configurations of 1 and 2 were determined by analyzing Mosher ester derivatives. The antiviral activity against SARS-CoV-2 was subsequently shown, with IC50 values of 0.20 and 0.05 µM for 2 and 3, respectively. The mechanism of action was further assessed, showing that both 2 and 3 are inhibitors of coronavirus entry by acting directly on the viral particle. Phenolic lipids from Clausena harmandiana might be a source of new antiviral agents against human coronaviruses.


Assuntos
COVID-19 , Clausena , Humanos , SARS-CoV-2 , Clausena/química , Pandemias , Antivirais/farmacologia , Folhas de Planta , Lipídeos
5.
Molecules ; 28(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38138542

RESUMO

Infections caused by Candida albicans (C. albicans) and increasing resistance to commonly used drugs lead to a variety of mucosal diseases and systemic infectious diseases. We previously confirmed that the essential oil of Clausena lansium (Lour.) Skeels seeds (CSEO) had antifungal activity against C. albicans, but the detailed mechanism between the chemical components and antifungal activity is unclear. In this study, a quantitative analysis of five volatile components of CSEO, including sabinene, α-phellandrene, ß-phellandrene, 4-terpineol, and ß-caryophyllene, was carried out using the gas chromatography-mass spectrometry (GC-MS) method. Both the broth dilution and kinetic growth methods proved that the antifungal activity of CSEO against fluconazole-resistant C. albicans was better than that of its main components (sabinene and 4-terpineol). To further investigate the inhibitory mechanism, the transcriptional responses of C. albicans to CSEO, sabinene, and 4-terpineol treatment were determined based on RNA-seq. The Venn diagram and clustering analysis pattern of differential expression genes showed the mechanism of CSEO and 4-terpineol's anti-C. albicans activity might be similar from the perspective of the genes. Functional enrichment analysis suggested that CSEO regulated adherence-, hyphae-, and biofilm-formation-related genes, which may be CSEO's active mechanism of inhibiting the growth of fluconazole-resistant C. albicans. Overall, we preliminarily revealed the molecular mechanism between the chemical components and the antifungal activity of CSEO against C. albicans. This study provides new insights to overcome the azole resistance of C. albicans and promote the development and application of C. lansium (Lour.) Skeels seeds.


Assuntos
Clausena , Óleos Voláteis , Candida albicans/genética , Óleos Voláteis/química , Antifúngicos/química , Clausena/química , Cromatografia Gasosa-Espectrometria de Massas , Fluconazol , RNA-Seq , Sementes/química , Perfilação da Expressão Gênica , Testes de Sensibilidade Microbiana
6.
Genomics ; 113(6): 3696-3704, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34520805

RESUMO

Clausena lansium (Lour.) Skeels (Rutaceae), recognized as wampee, is a widely distributed fruit tree which is utilized as a folk-medicine for treatment of several common diseases. However, the genomic information about this medicinally important species is still lacking. Therefore, we assembled the first genome of Clausena genus with a total length of 310.51 Mb and scaffold N50 of 2.24 Mb by using 10× Genomics technology. Further annotation revealed a total of 34,419 protein-coding genes, while repetitive elements covered 39.08% (121.36 Mb) of the genome. The Clausena and Citrus genus were found to diverge around 22 MYA, and also shared an ancient whole-genome triplication event with Vitis. Furthermore, multi-tissue transcriptomic analysis enabled the identification of genes involved in the synthesis of carbazole alkaloids. Altogether, these findings provided new insights into the genome evolution of Wampee species and highlighted the possible role of key genes involved in the carbazole alkaloids biosynthetic pathway.


Assuntos
Alcaloides , Clausena , Carbazóis , Clausena/genética , Frutas , Estrutura Molecular
7.
Molecules ; 27(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35335333

RESUMO

Clausena lenis Drake (C. lenis) is a folk medicinal herb to treat influenza, colds, bronchitis, and malaria. The 95% and 50% ethanol extract of C. lenis showed significant nitric oxide (NO) inhibition activity in BV-2 microglial cells stimulated by lipopolysaccharide (LPS). Bio-guided isolation of the active extract afforded five new compounds, including a chlorine-containing furoquinoline racemate, (±)-claulenine A (1), an amide alkaloid, claulenine B (2), a prenylated coumarin, claulenin A (3), a furocoumarin glucoside, clauleside A (4), and a multi-prenylated p-hydroxybenzaldehyde, claulenin B (5), along with 33 known ones. Their structures were determined via spectroscopic methods, and the absolute configurations of new compounds were assigned via the electronic circular dichroism (ECD) calculations and single-crystal X-ray diffraction analysis. Compounds 2, 23, 27, 28, 33, and 34 showed potent anti-neuroinflammatory effects on LPS-induced NO production in BV-2 microglial cells, with IC50 values in the range of 17.6-40.9 µM. The possible mechanism was deduced to interact with iNOS through molecular docking.


Assuntos
Clausena , Linhagem Celular , Microglia , Simulação de Acoplamento Molecular , Óxido Nítrico
8.
Molecules ; 27(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35164038

RESUMO

Essential oils (EOs) of Clausena indica fruits, Zanthoxylum rhetsa fruits, and Michelia tonkinensis seeds were analyzed for their phytochemical profiles and biological activities, including anti-diabetes, anti-gout, and anti-leukemia properties. Sixty-six volatile compounds were identified by gas chromatography-mass spectrometry (GC-MS), in which, myristicin (68.3%), limonene (44.2%), and linalool (49.3%) were the most prominent components of EOs extracted from C. indica, Z. rhetsa, and M. tonkinensis, respectively. In addition, only EOs from C. indica inhibited the activities of all tested enzymes comprising α-amylase (IC50 = 7.73 mg/mL), α-glucosidase (IC50 = 0.84 mg/mL), and xanthine oxidase (IC50 = 0.88 mg/mL), which are related to type 2 diabetes and gout. Remarkably, all EOs from C. indica, Z. rhetsa (IC50 = 0.73 mg/mL), and M. tonkinensis (IC50 = 1.46 mg/mL) showed a stronger anti-α-glucosidase ability than acarbose (IC50 = 2.69 mg/mL), a known anti-diabetic agent. Moreover, the growth of leukemia cell Meg-01 was significantly suppressed by all EOs, of which, the IC50 values were recorded as 0.32, 0.64, and 0.31 mg/mL for EOs from C. indica, Z. rhetsa, and M. tonkinensis, respectively. As it stands, this is the first report about the inhibitory effects of EOs from C. indica and Z. rhetsa fruits, and M. tonkinensis seeds on the human leukemia cell line Meg-01 and key enzymes linked to diabetes and gout. In conclusion, the present study suggests that EOs from these natural spices may be promising candidates for pharmaceutical industries to develop nature-based drugs to treat diabetes mellitus or gout, as well as malignant hematological diseases such as leukemia.


Assuntos
Antineoplásicos/uso terapêutico , Clausena/química , Supressores da Gota/uso terapêutico , Hipoglicemiantes/uso terapêutico , Leucemia/tratamento farmacológico , Magnoliaceae/química , Óleos Voláteis/uso terapêutico , Zanthoxylum/química , Humanos , Óleos Voláteis/química
9.
J Org Chem ; 86(24): 17722-17726, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34817178

RESUMO

A unique prenylated bicarbazole alkaloid, clausanisumine (1), and two biogenetically related known monomer carbazole alkaloids, mukonal (2) and 3-methylcarbazole (3), were isolated from the fruits of Clausena anisum-olens. Clausanisumine (1) was an uncommon prenylated bicarbazole alkaloid, possessing an unprecedented carbon skeleton, which was composed of a simple carbazole alkaloid and a prenylated carbazole alkaloid. The chemical structure of 1 was established by a combination of comprehensive spectral methods. A plausible biosynthetic pathway of 1 was also proposed. Additionally, the potential anti-HIV activities of all isolates 1-3 in vitro were evaluated. Compound 1 exhibited remarkable anti-HIV-1 reverse transcriptase effects showing an EC50 value of 18.58 nM. The discovery of the prenylated bicarbazole alkaloid from C. anisum-olens with notable anti-HIV activity would be meaningful to discovering and developing new anti-HIV drugs.


Assuntos
Alcaloides , Fármacos Anti-HIV , Clausena , Alcaloides/farmacologia , Fármacos Anti-HIV/farmacologia , Carbazóis/farmacologia , Frutas , Estrutura Molecular
10.
Bioorg Chem ; 110: 104775, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33725509

RESUMO

The phytochemical investigation on the fruits of Clausena anisum-olens led to the isolation of 18 carbazole alkaloids (1-18), containing three new ones, clausenanisines A-C (1-3), and three new naturally occurring carbazole alkaloids, clausenanisines D-F (4-6), as well as 12 known analogues (7-18). The chemical structures of clausenanisines A-F (1-6) were elucidated by extensive spectroscopic methods. Notably, clausenanisine A (1) was a novel carbazole alkaloid with a unique five-membered cyclic ether, while clausenanisine E (5) is an unusual carbazole alkaloid owning an unprecedented naturally occurring carbon skeleton possessing 14 carbon atoms. The known carbazole alkaloids (7-18) were identified by the comparison of their spectral data with those data reported in the literature. All known carbazole alkaloids 7-18 were isolated from C. anisum-olens for the first time. Moreover, all isolated compounds 1-18 were assessed for their protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase inhibitory activities in vitro. Compounds 1-18 exhibited remarkable PTP1B inhibitory activities with IC50 values in the range of 0.58 ± 0.05 to 38.48 ± 0.32 µM, meanwhile, compounds 1-18 displayed significant α-glucosidase inhibitory activities with IC50 values ranging from 3.28 ± 0.16 to 192.23 ± 0.78 µM. These research results imply that the separation and identification of these carbazole alkaloids showing notable PTP1B and α-glucosidase inhibitory activities from the fruits of C. anisum-olens can be very significant for discovering and developing new PTP1B inhibitors and α-glucosidase inhibitors for the treatment of diabetes mellitus.


Assuntos
Alcaloides/farmacologia , Carbazóis/farmacologia , Clausena/química , Inibidores Enzimáticos/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , alfa-Glucosidases/metabolismo , Alcaloides/química , Alcaloides/isolamento & purificação , Carbazóis/química , Carbazóis/isolamento & purificação , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Frutas/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Relação Estrutura-Atividade
11.
J Asian Nat Prod Res ; 23(4): 385-391, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32865020

RESUMO

A new prenylated coumarin diglycoside, 6-prenylcoumarin-7-O-ß-D-apiofuranosyl-(1→6)-ß-D-glucopyranoside (1) and five known flavonoid glycosides (2-6) were isolated from the leaves and stems of Clausena dunniana. The structures of these isolates were elucidated based on comprehensive MS, UV, IR, and NMR spectroscopic data analysis and comparison with the data reported in literature. Compounds 2-6 are obtained from the title plant for the first time. All these isolates were evaluated for their insulin-release promoting effects, and compounds 1, 2, and 4 exhibited significant activities (2.0 to 3.3-fold higher in comparison with the control, p < 0.01) at 40 µM.[Formula: see text].


Assuntos
Clausena , Insulinas , Cumarínicos/farmacologia , Glicosídeos/farmacologia , Estrutura Molecular
12.
Molecules ; 26(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799365

RESUMO

Dihydrofuranocoumarin, chalepin (1) and furanocoumarin, chalepensin (2) are 3-prenylated bioactive coumarins, first isolated from the well-known medicinal plant Ruta chalepensis L. (Fam: Rutaceae) but also distributed in various species of the genera Boenminghausenia, Clausena and Ruta. The distribution of these compounds appears to be restricted to the plants of the family Rutaceae. To date, there have been a considerable number of bioactivity studies performed on coumarins 1 and 2, which include their anticancer, antidiabetic, antifertility, antimicrobial, antiplatelet aggregation, antiprotozoal, antiviral and calcium antagonistic properties. This review article presents a critical appraisal of publications on bioactivity of these 3-prenylated coumarins in the light of their feasibility as novel therapeutic agents and investigate their natural distribution in the plant kingdom, as well as a plausible biosynthetic route.


Assuntos
Furocumarinas/biossíntese , Furocumarinas/farmacologia , Animais , Clausena/química , Cumarínicos/química , Humanos , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Ruta/química , Rutaceae/química
13.
Molecules ; 26(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804175

RESUMO

The tumor suppressor p53 is inactivated by mutation in approximately 50% of human cancers. Small molecules that bind and stabilize those mutants may represent effective anticancer drugs. Herein, we report the tumor cell growth inhibitory activity of carbazole alkaloids and amino derivatives, as well as their potential activation of p53. Twelve aminocarbazole alkaloids were semi-synthesized from heptaphylline (1), 7-methoxy heptaphylline (2), and 7-methoxymukonal (3), isolated from Clausena harmandiana, using a reductive amination protocol. Naturally-occurring carbazoles 1-3 and their amino derivatives were evaluated for their potential effect on wild-type and mutant p53 activity using a yeast screening assay and on human tumor cell lines. Naturally-occurring carbazoles 1-3 showed the most potent growth inhibitory effects on wild-type p53-expressing cells, being heptaphylline (1) the most promising in all the investigated cell lines. However, compound 1 also showed growth inhibition against non-tumor cells. Conversely, semi-synthetic aminocarbazole 1d showed an interesting growth inhibitory activity in tumor cells expressing both wild-type and mutant p53, exhibiting low growth inhibition on non-tumor cells. The yeast assay showed a potential reactivation of mutant p53 by heptaphylline derivatives, including compound 1d. The results obtained indicate that carbazole alkaloids may represent a promising starting point to search for new mutp53-reactivating agents with promising applications in cancer therapy.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Carbazóis/síntese química , Carbazóis/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Alcaloides/síntese química , Alcaloides/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Clausena/química , Células HCT116 , Células HT29 , Humanos , Mutação/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
14.
J Appl Biomed ; 19(1): 40-47, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-34907714

RESUMO

CONTEXT: Clausena excavata Burm. f is a plant used in folklore medicine for the treatment of various ailments in South East Asia. The plant parts contain chemical components that are cytotoxic to many cancer cells. OBJECTIVE: The study investigated the cytotoxic effects of ethyl acetate, methanol and chloroform C. excavata leaf extracts on the non-small-lung cancer, NCI-H460, cell line. METHODS: Based on the 3-(4,5-dimethylthiazol-2-yl)-2,5,-diphenyltetrazolium bromide (MTT) assay, among extracts, ethyl acetate C. excavata leaf extract (EACE) was the most potent anti-NCI-H460 cells, with IC50 value of 47.1 ± 6.1 µg/ml. The effects of EACE on NCI-H460 cells were also determined by clonogenic, 4', 6-diamidino-2-phenylindole (DAPI), and annexin-V-fluorescein isothiocyanate/propidium iodide-PI flow cytometric assays. Reactive oxygen species (ROS) production and apoptotic gene expressions was determined via flow cytometry and real-time quantitative PCR, respectively. RESULTS: EACE-treated NCI-H460 cells after 48 h underwent apoptosis as evident by loss of cell viability, cell shrinkage, and chromatin condensation. The results also showed EACE mediated increase in ROS production by the NCI-H460 cells. After 48 h treatment, EACE increased the pro-apoptotic BAX and decreased the anti-apoptotic Bcl-2, Survivin and c-Myc gene expressions. CONCLUSIONS: EACE is a potential anti-lung cancer by increasing cancer cell ROS production and apoptosis.


Assuntos
Clausena , Neoplasias Pulmonares , Acetatos , Apoptose , Linhagem Celular , Clausena/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo
15.
Zhongguo Zhong Yao Za Zhi ; 46(17): 4438-4445, 2021 Sep.
Artigo em Zh | MEDLINE | ID: mdl-34581048

RESUMO

The chemical constituents from the stems and leaves of Clausena excavata were isolated and purified by column chromatography with silica gel, ODS, Sephadex LH-20 and RP-HPLC. The chemical structures of the isolated compounds were identified on the basis of physicochemical properties, spectroscopic analysis, as well as the comparisons with the data reported in literature. Nineteen compounds were isolated from the 90% ethanol extract of the stems and leaves of C. excavata, which were identified as methyl orsellinate(1), syringaresinol(2), lenisin A(3), scopoletin(4), osthenol(5), N-benzoyltyrarnine methyl ether(6), N-p-coumaroyltyramine(7), aurantiamide acetate(8), 1H-indole-3-carboxaldehyde(9), furostifoline(10), clausenalansine E(11), 3-formylcarbazole(12), clausine L(13), clausine E(14), methyl carbazole-3-carboxylate(15), glycosinin(16), murrayafoline A(17), clausine H(18) and 2,7-dihydroxy-3-formyl-1-(3'-methyl-2'-butenyl)carbazole(19). Among these isolated compounds, compounds 1-11 were isolated from C. excavata for the first time, and compounds 1, 2 and 10 were isolated from the genus Clausena for the first time. In addition, this study evaluated the anti-rheumatoid arthritis activities of compounds 1-19 by measuring their anti-proliferative effects on synoviocytes in vitro according to MTS method. Compounds 10-19 displayed remarkable anti-rheumatoid arthritis activities, which exhibited the inhibitory effects on the proliferation of MH7 A synovial fibroblast cells with the IC_(50) values ranging from(27.63±0.18) to(235.67±2.16) µmol·L~(-1).


Assuntos
Clausena , Sinoviócitos , Proliferação de Células , Cromatografia de Fase Reversa , Folhas de Planta
16.
Int J Syst Evol Microbiol ; 70(12): 6213-6219, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33095132

RESUMO

An endophytic actinobacterium, strain CLES2T, was discovered from the surface-sterilized stem of a Thai medicinal plant, Clausena excavala Burm. f., collected from the Phujong-Nayoa National Park, Ubon Ratchathani Province, Thailand. The results of a polyphasic taxonomic study identified this strain as a member of the genus Microbispora and a Gram-stain-positive, aerobic actinobacterium. It had well-developed substrate mycelia, which were non-motile and possessed paired spores. A phylogenetic evaluation based on 16S rRNA gene sequence analysis placed this strain in the family Streptosporangiaceae, being most closely related to Microbispora bryophytorum NEAU-TX2-2T (99.4 %), Microbispora camponoti 2C-HV3T (99.2 %), Microbispora catharanthi CR1-09T (99.2 %) and Microbispora amethystogenes JCM 3021T and Microbispora fusca NEAU-HEGS1-5T (both at 99.1 %). The major cellular fatty acid of this strain was iso-C16 : 0 and major menaquinone was MK-9(H4). The polar lipid profile of strain CLES2T contained diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylinositol and phosphatidylinositol dimannosides. These chemotaxonomic data confirmed the affiliation of strain CLES2T to the genus Microbispora. The DNA G+C content of this strain was 70 mol%. Digital DNA-DNA hybridization and average nucleotide identity blast values between strain CLES2T and M. catharanthi CR1-09T were 62.4 and 94.0 %, respectively. The results of the polyphasic study allowed the genotypic and phenotypic differentiation of strain CLES2T from its closest species with valid names. The name proposed for the new species is Microbispora clausenae sp. nov. The type strain is CLES2T (=DSM 101759T=NRRL B-65340T).


Assuntos
Actinobacteria/classificação , Clausena/microbiologia , Filogenia , Actinobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Caules de Planta/microbiologia , Plantas Medicinais/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tailândia , Vitamina K 2/análogos & derivados , Vitamina K 2/química
17.
Bioorg Chem ; 97: 103699, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32146173

RESUMO

The phytochemical study on the stems of Clausena lenis resulted in the isolation of three new prenylated coumarins, clauselenins A-C (1-3), together with nine known prenylated coumarins (4-12). The chemical structures of new prenylated coumarins (1-3) were elucidated by means of comprehensive spectral analyses and the known compounds (4-12) were determined by means of comparing their experimental spectral data with those described data in the literatures. All isolated prenylated coumarins were assessed for their anti-inflammatory effects together with anti-HIV activities in vitro. Prenylated coumarins 1-12 displayed remarkable inhibitory effects against nitric oxide (NO) production induced by lipopolysaccharide in mouse macrophage RAW 264.7 cells in vitro with the IC50 values which are comparable to hydrocortisone. Meanwhile, prenylated coumarins 1-12 exhibited considerable anti-HIV-1 reverse transcriptase (RT) activities possessing EC50 values in the range of 0.17-9.08 µM. These findings indicate that the isolation and identification of these prenylated coumarins with pronounced anti-inflammatory effects as well as anti-HIV activities separated from the stems of C. lenis could be of great significance to the development of new anti-inflammatory and anti-HIV agents and their potential applications in the pharmaceutical industry.


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Cumarínicos/química , Cumarínicos/farmacologia , Animais , Fármacos Anti-HIV/isolamento & purificação , Anti-Inflamatórios/isolamento & purificação , Clausena/química , Cumarínicos/isolamento & purificação , Infecções por HIV/tratamento farmacológico , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/metabolismo , HIV-1/efeitos dos fármacos , Humanos , Camundongos , Modelos Moleculares , Prenilação , Células RAW 264.7
18.
Pak J Pharm Sci ; 33(2(Supplementary)): 745-749, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32863247

RESUMO

Oxidative stress is considered to play an important role in the pathophysiology of hypertension. The aim of this research was to find out whether Clausena lansium (Lour.) Skeels of Wampee (WP) fruits extract attenuate the progression of high blood pressure, endothelial dysfunction and preservation of antioxidant status with using a nitric oxide synthase (NOS) inhibitor, N(G) (-nitro-L-arginine methyl ester (L-NAME) induced hypertension and oxidative stress in rats. Healthy adult male rats were received L-NAME at dose of 50mg/kg/day in drinking water for 4 weeks and were orally administered 250 or 500mg/kg of an aqueous extract of WP fruits extract daily for 2 consecutive weeks. Quercetin (QC; 25 mg/kg) was served as a positive control. The results showed that arterial blood pressure, vascular superoxide production, and plasma malondialdehyde level were markedly induced in L-NAME treated rats. In addition, serum nitric oxide, and glutathione levels were also reduced after L-NAME administration. However, daily administration with the high dose of WP fruits extract significantly alleviated these deleterious effects by attenuated high blood pressure, reversed the L-NAME-induced suppression in serum levels of nitric oxide, mitigated endothelial dysfunction, reduced oxidative stress and restored antioxidant glutathione. This suggests that WP fruits extract is a potential candidate for the development as a novel antihypertensive agents in the future.


Assuntos
Anti-Hipertensivos/farmacologia , Clausena/química , Frutas/química , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , NG-Nitroarginina Metil Éster/farmacologia , Substâncias Protetoras/farmacologia , Animais , Antioxidantes/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Glutationa/metabolismo , Hipertensão/metabolismo , Masculino , Malondialdeído/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley , Superóxidos/metabolismo
19.
Bioorg Chem ; 92: 103278, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31541802

RESUMO

Clausena lansium (Lour.) Skeels is an evergreen small tree or shrub with great economic value, which belongs to the genus Clausena of the Rutaceae family. C. lansium is indigenous to Southern China, while currently widely cultivated in subtropical and tropical regions not only for the nutritional value and pharmacological uses of its fruits but also as a medicinal and ornamental plant. In this study, a systematic phytochemical study on the stems and leaves of C. lansium caused the separation and identification of two new geranylated carbazole alkaloids, clauselansiumines A (1) and B (2), as well as 10 known geranylated carbazole alkaloids (3-12). The chemical structures of these isolated geranylated carbazole alkaloids (1-12) were unambiguously determined based on comprehensive spectral data analyses. All these isolated geranylated carbazole alkaloids were tested for their neuroprotective effects against 6-hydroxydopamine induced cell death in human neuroblastoma SH-SY5Y cells in vitro. Compounds 1-12 displayed remarkable neuroprotective effects holding the EC50 values ranging from 0.48 ±â€¯0.04 to 12.36 ±â€¯0.16 µM. These research results disclosed that the separation and purification of these geranylated carbazole alkaloids possessing remarkable neuroprotective effects separated from C. lansium could be extremely important to the discovery of new agents for the treatment and prevention for Parkinson's disease.


Assuntos
Alcaloides/farmacologia , Carbazóis/farmacologia , Clausena/química , Fármacos Neuroprotetores/farmacologia , Alcaloides/química , Alcaloides/isolamento & purificação , Carbazóis/química , Carbazóis/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Folhas de Planta/química , Caules de Planta/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
20.
Bioorg Chem ; 91: 103107, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31344516

RESUMO

Twelve prenylated carbazole alkaloids, containing a novel prenylated carbazole alkaloid, named as clausevestine (1), and 11 known prenylated carbazole alkaloids (2-12), were isolated and identified from the stems and leaves of Clausena vestita, which is a Chinese endemic plant. The chemical structure of 1 was established by means of comprehensive spectroscopic data analyses and the known compounds were determined via comparing their NMR and MS data as well as optical rotation values with those reported in literature. Especially, clausevestine (1) is an unusual prenylated carbazole alkaloid possessing an unprecedented carbon skeleton holding 20 carbon atoms. The anti-inflammatory effects and antiproliferative activities of those isolated prenylated carbazole alkaloids were tested. Prenylated carbazole alkaloids 1-12 displayed remarkable inhibitory effects on NO (nitric oxide) production with IC50 values equivalent to that of the positive control (hydrocortisone). Meanwhile, prenylated carbazole alkaloids 1-12 exhibited remarkable antiproliferative activities against diverse human cancer cell lines in vitro holding the IC50 values ranging from 0.32 ±â€¯0.04 to 18.76 ±â€¯0.18 µM. These findings indicate that these prenylated carbazole alkaloids possessing remarkable anti-inflammatory effects and antiproliferative activities could be meaningful to the discovery of new anti-inflammatory and anti-tumor candidate drugs.


Assuntos
Alcaloides/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Carbazóis/farmacologia , Clausena/química , Óxido Nítrico/antagonistas & inibidores , Alcaloides/química , Alcaloides/isolamento & purificação , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Carbazóis/química , Carbazóis/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Óxido Nítrico/biossíntese , Folhas de Planta/química , Células RAW 264.7 , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA