Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.399
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Water Health ; 22(4): 785-796, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38678430

RESUMO

Degradation of water quality is an emerging issue in many developing countries. In this context, industrial and domestic effluents heavily contaminate the coast of Moknine Continental Sebkha in Tunisia. The present study aimed to biomonitor the seawater quality of the Moknine Continental Sebkha coast using physicochemical and ecotoxicological approaches. The ecotoxicological assessment was performed using three species representing different trophic levels, namely Vibrio fischeri, Selenastrum capricornutum, and Lepidium sativum. In the physicochemical analysis such as BOD (biochemical oxygen demand), COD (chemical oxygen demand), TSS (total suspended solids), TOC (total organic carbon), NO3- (nitrate), AOX (adsorbable organic halogen), the recorded levels of pH and total suspended solids did not comply with the Tunisian standard (NT.09.11/1983). The ecotoxicological data confirmed that the tested water samples displayed toxicity to two test indicators L. sativum and S. capricornutum. A targeted chemical screening of the Moknine Continental Sebkha coast previously performed revealed the presence of total mercury, four phthalate acid esters, and one non-phthalate plasticizer, a fact that could explain the observed ecotoxicological effects and therefore might harm the biotic area and the health of the surrounding population.


Assuntos
Aliivibrio fischeri , Monitoramento Ambiental , Água do Mar , Poluentes Químicos da Água , Tunísia , Aliivibrio fischeri/efeitos dos fármacos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Água do Mar/química , Ecotoxicologia , Lepidium sativum/efeitos dos fármacos , Clorófitas/efeitos dos fármacos
2.
Ecotoxicol Environ Saf ; 278: 116437, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718728

RESUMO

This study explores the eco-geno-toxic impact of Acyclovir (ACV), a widely used antiviral drug, on various freshwater organisms, given its increasing detection in surface waters. The research focused on non-target organisms, including the green alga Raphidocelis subcapitata, the rotifer Brachionus calyciflorus, the cladoceran crustacean Ceriodaphnia dubia, and the benthic ostracod Heterocypris incongruens, exposed to ACV to assess both acute and chronic toxicity. The results indicate that while acute toxicity occurs at environmentally not-relevant concentrations, a significant chronic toxicity for C. dubia (EC50 = 0.03 µg/L, NOEC = 0.02·10-2 µg/L), highlighted substantial environmental concern. Furthermore, DNA strand breaks and reactive oxygen species detected in C. dubia indicate significant increase at concentrations exceeding 200 µg/L. Regarding environmental risk, the authors identified chronic exposures to acyclovir causing inhibitory effects on reproduction in B. calyciflorus at hundreds of µg/L and hundredths of µg/L for C. dubia as environmentally relevant environmental concentrations. The study concludes by quantifying the toxic and genotoxic risks of ACV showing a chronic risk quotient higher than the critical value of 1and a genotoxic risk quotient reaching this threshold, highlighting the urgent need for a broader risk assessment of ACV for its significant implications for aquatic ecosystems.


Assuntos
Aciclovir , Antivirais , Água Doce , Rotíferos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Antivirais/toxicidade , Aciclovir/toxicidade , Rotíferos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Cladocera/efeitos dos fármacos , Organismos Aquáticos/efeitos dos fármacos , Testes de Toxicidade Aguda , Dano ao DNA , Reprodução/efeitos dos fármacos , Testes de Toxicidade Crônica , Mutagênicos/toxicidade , Clorófitas/efeitos dos fármacos
3.
J Environ Sci (China) ; 112: 376-387, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34955220

RESUMO

Nanoparticles (NPs) are widely used for their special physical properties and released into the natural environment. When two types of NPs exist in the same environment, the presence of one type of NP may affect the properties of the other type of NP. This study investigated the toxic effects of multi-walled carbon nanotubes (MWCNTs) and copper oxide nanoparticles (CuO NPs) on Tetradesmus obliquus. Both NPs had toxic effects on algae, and the toxic effects of MWCNTs were significantly stronger than CuO NPs which the 96-hr median effective concentration to algae were 33.8 and 169.2 mg/L, respectively. Oxidative stress and cell membrane damage were the main reasons for the toxicity of NPs to algae, and they were concentration-dependent, and the existence of CuO NPs in some groups reduced cell membrane damage caused by MWCNTs which may because that CuO NPs formed heteroaggregation with MWCNTs, reducing the contact of nanoparticles with cell membranes, then reducing physical damage. Scanning electron microscopy (SEM) and transmission electron microscope (TEM) results indicated cell damage, the heteroaggregation of MWCNTs-CuO NPs and obvious nanoparticles internalization. In some groups, the presence of CuO NPs significantly reduced reactive oxygen species (ROS) level induced by MWCNTs. However, for the highest concentration group, the ROS level was much higher than that of the two NPs alone treatment groups, which might be related to the high concentration of MWCNTs promoting the internalization of CuO NPs. MWCNTs and CuO NPs affected and interacted with each other, causing more complex toxic effects on aquatic organisms.


Assuntos
Clorófitas/efeitos dos fármacos , Cobre , Nanopartículas Metálicas , Nanotubos de Carbono , Cobre/toxicidade , Água Doce , Nanopartículas Metálicas/toxicidade , Nanotubos de Carbono/toxicidade , Óxidos , Espécies Reativas de Oxigênio , Poluentes Químicos da Água/toxicidade
4.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830350

RESUMO

The study investigated the toxicity effects of 'form specific' engineered nanomaterials (ENMs) and ions released from nano-enabled products (NEPs), namely sunscreens, sanitisers, body creams and socks on Pseudokirchneriella subcapitata, Spirodela polyrhiza, and Daphnia magna. Additionally, risk estimation emanating from the exposures was undertaken. The ENMs and the ions released from the products both contributed to the effects to varying extents, with neither being a uniform principal toxicity agent across the exposures; however, the effects were either synergistic or antagonistic. D. magna and S. polyrhiza were the most sensitive and least sensitive test organisms, respectively. The most toxic effects were from ENMs and ions released from sanitisers and sunscreens, whereas body creams and sock counterparts caused negligible effects. The internalisation of the ENMs from the sunscreens could not be established; only adsorption on the biota was evident. It was established that ENMs and ions released from products pose no imminent risk to ecosystems; instead, small to significant adverse effects are expected in the worst-case exposure scenario. The study demonstrates that while ENMs from products may not be considered to pose an imminent risk, increasing nanotechnology commercialization may increase their environmental exposure and risk potential; therefore, priority exposure cases need to be examined.


Assuntos
Higienizadores de Mão/química , Nanoestruturas/toxicidade , Creme para a Pele/química , Protetores Solares/química , Animais , Araceae/efeitos dos fármacos , Araceae/fisiologia , Engenharia Química/métodos , Clorófitas/efeitos dos fármacos , Clorófitas/fisiologia , Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Humanos , Medição de Risco
5.
Chem Res Toxicol ; 33(7): 1835-1844, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32462864

RESUMO

We present a purely mechanistic model to predict protonophoric uncoupling activity ECw of organic acids. All required input information can be derived from their chemical structure. This makes it a convenient predictive model to gain valuable information on the toxicity of organic chemicals already at an early stage of development of new commercial chemicals (e.g., in agriculture or pharmaceutical industries). A critical component of the model is the consideration of the possible formation of heterodimers from the neutral and anionic monomer, and its permeation through the membrane. The model was tested against literature data measured in chromatophores, submitochondrial particles, isolated mitochondria, and intact green algae cells with good success. It was also possible to reproduce pH-dependencies in isolated mitochondria and intact cells. Besides the prediction of the ECw, the mechanistic nature of the model allows researchers to draw direct conclusions on the impact of single input factors such as pH- and voltage-gradients across the membrane, the anionic and neutral membrane permeability, and the heterodimerization constant. These insights are of importance in drug design or chemical regulation.


Assuntos
Ácidos/toxicidade , Modelos Teóricos , Compostos Orgânicos/toxicidade , Desacopladores/toxicidade , Ácidos/química , Fenômenos Biofísicos , Clorófitas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Estrutura Molecular , Compostos Orgânicos/química , Desacopladores/química
6.
Microb Ecol ; 79(3): 604-616, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31492977

RESUMO

Lichens undergo desiccation/rehydration cycles and are permeable to heavy metals, which induce free radicals. Nitrogen monoxide (NO) regulates important cellular functions, but the research on lichen NO is still very scarce. In Ramalina farinacea thalli, NO seems to be involved in the peroxidative damage caused by air pollution, antioxidant defence and regulation of lipid peroxidation and photosynthesis. Our hypothesis is that NO also has a critical role during the rehydration and in the responses to lead of its isolated phycobionts (Trebouxia sp. TR9 and Trebouxia jamesii). Therefore, we studied the intracellular reactive oxygen species (ROS) production, lipid peroxidation and chlorophyll autofluorescence during rehydration of thalli and isolated microalgae in the presence of a NO scavenger and Pb(NO3)2. During rehydration, NO scavenging modulates free radical release and chlorophyll autofluorescence but not lipid peroxidation in both thalli and phycobionts. Pb(NO3)2 reduced free radical release (hormetic effect) both in the whole thallus and in microalgae. However, only in TR9, the ROS production, chlorophyll autofluorescence and lipid peroxidation were dependent on NO. In conclusion, Pb hormetic effect seems to depend on NO solely in TR9, while is doubtful for T. jamesii and the whole thalli.


Assuntos
Poluentes Atmosféricos/metabolismo , Ascomicetos/metabolismo , Clorófitas/metabolismo , Chumbo/metabolismo , Líquens/metabolismo , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Ascomicetos/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Dessecação , Metabolismo Energético , Líquens/efeitos dos fármacos , Estresse Oxidativo
7.
Ecotoxicol Environ Saf ; 188: 109916, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31733936

RESUMO

Methylparaben (MeP) is one of the most used preservatives in the industry; however, the toxic effects on aquatic ecosystems are still poorly understood. Therefore, this study was conducted (1) to identify and compare the toxic effects of MeP on physiological parameters of different green microalgae species, using suitable mathematical models; and (2) to estimate a PNEC value for MeP in freshwater ecosystems, adopting either the deterministic or the probabilistic approaches. Toxicity tests were carried out with three green microalgae (Pseudopediastrum boryanum, Desmodesmus communis, Raphidocelis subcapitata), in which different endpoints such as growth rate, chlorophyll-a, and cell viability were measured and compared through the effective concentration which caused a response in x% of test organisms (ECx). ECx were obtained by adjusting different non-linear regression models for each microalgae dataset. Chlorophyll-a endpoint resulted in the lowest EC50 values, respectively 125, 81.2, 18.3 mg L-1 for D. communis, P. boryanum and R. subcapitata, showing R. subicapitata as the most sensitive, and D. communis as the most tolerant species to MeP (P < 0.05). PNEC was estimated from the present study and previous reports resulting in 5.7 and 65 µg L-1, respectively for the deterministic (PNECd) and the probabilistic (PNECp) approach. The development of chronic assays using test organisms from different ecological groups is encouraged to provide robust PNECp. In this meantime, we recommend the use of the estimated PNECd to support MeP risk assessments and policy formulation.


Assuntos
Clorófitas/efeitos dos fármacos , Água Doce/química , Microalgas/efeitos dos fármacos , Parabenos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Relação Dose-Resposta a Droga , Ecossistema , Modelos Teóricos , Dinâmica não Linear , Parabenos/análise , Testes de Toxicidade , Poluentes Químicos da Água/análise
8.
Ecotoxicol Environ Saf ; 204: 110977, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32739673

RESUMO

Indirect oxidation induced by reactive free radicals, such as hydroxyl radical (HO), sulfate radical (SO4-) and carbonate radical (CO3-), plays an important or even crucial role in the degradation of micropollutants. Thus, the coadjutant degradation of phenacetin (PNT) by HO, SO4- and CO3-, as well as the synergistic effect of O2 on HO and HO2 were studied through mechanism, kinetics and toxicity evaluation. The results showed that the degradation of PNT was mainly caused by radical adduct formation (RAF) reaction (69% for Г, the same as below) and H atom transfer (HAT) reaction (31%) of HO. For the two inorganic anionic radicals, SO4- initiated PNT degradation by sequential radical addition-elimination (SRAE; 55%), HAT (28%) and single electron transfer (SET; 17%) reactions, while only by HAT reaction for CO3-. The total initial reaction rate constants of PNT by three radicals were in the order: SO4- > HO > CO3-. The kinetics of PNT degradation simulated by Kintecus program showed that UV/persulfate could degrade target compound more effectively than UV/H2O2 in ultrapure water. In the subsequent reaction of PNT with O2, HO and HO2, the formation of mono/di/tri-hydroxyl substitutions and unsaturated aldehydes/ketones/alcohols were confirmed. The results of toxicity assessment showed that the acute and chronic toxicity of most products to fish increased and to daphnia decreased, and acute toxicity to green algae decreased while chronic toxicity increased.


Assuntos
Carbonatos/toxicidade , Peróxido de Hidrogênio/toxicidade , Fenacetina/toxicidade , Sulfatos/toxicidade , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Animais , Carbonatos/química , Clorófitas/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Peixes , Peróxido de Hidrogênio/química , Íons/química , Íons/toxicidade , Cinética , Modelos Químicos , Oxigênio/química , Fenacetina/química , Sulfatos/química , Água/química
9.
Ecotoxicol Environ Saf ; 198: 110659, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32330790

RESUMO

Alternative routes to degrade dyes are of crucial importance for the environment. Hence, we report the electrochemical removal of indanthrene blue by using a boron-doped diamond anode, focusing on the toxicity of the treated solutions. Different operational conditions were studied, such as current density (5, 10, and 20 mA cm-2) and electrolyte composition (Na2SO4, Na2CO3, and NaNO3). Besides, the pH was monitored throughout the experiment to consider its direct influence on the ecotoxicity effects. The highest electrochemical oxidation efficiency, measured as color removal, was seen in the 180 min condition of electrolysis in 0.033 M Na2SO4, applying 20 mA cm-2, resulting in a color removal of nearly 91% and 40.51 kWh m-3 of energy consumption. The toxicity towards Lactuca sativa depends solely on pH variations being indifferent to color removal. While the inhibition concentration (IC50) for Raphidocelis subcapitata increases 20% after treatment (in optimized conditions), suggesting that the byproducts are more toxic for this specific organism. Our data highlight the importance of analyzing the toxicity towards various organisms to understand the toxic effect of the treatment applied.


Assuntos
Antraquinonas/análise , Clorófitas/efeitos dos fármacos , Eletrólise/métodos , Lactuca/efeitos dos fármacos , Descoloração da Água/métodos , Poluentes Químicos da Água/análise , Antraquinonas/toxicidade , Boro/química , Clorófitas/crescimento & desenvolvimento , Diamante/química , Eletrodos , Lactuca/crescimento & desenvolvimento , Oxirredução , Poluentes Químicos da Água/toxicidade
10.
Ecotoxicol Environ Saf ; 192: 110309, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32061985

RESUMO

In this study, chronic toxicity of three endocrine disrupting chemicals (EDCs) used to make plastic products (i.e., bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and nonylphenol (NP)) in a Korean resident fish (Cyprinus carpio), crustacean (Moina macrocopa) and green alga (Pseudokirchneriella subcapitata) species was tested. It was found that M. macrocopa was particularly sensitive to those EDCs, especially DEHP and NP. We exposed M. macrocopa to DEHP (0.0012-0.1 mg/L) and NP (0.00037-0.03 mg/L), and as a result, both chemicals significantly delayed the first day of reproduction. The no observed effect concentrations (NOECs) of DEHP and NP for this endpoint were determined to be 0.0012 and 0.00037 mg/L, respectively, which are far lower than NOECs for any other freshwater species. Existing water quality criteria of various governmental agencies do not consider the toxicity of those EDCs on M. macrocopa, and thus, use of the existing criteria for the risk assessment of the Korean freshwater environment may underestimate the ecological risk. This study recommends using the water quality criteria derived in this study (0.95 µg/L for DEHP and 0.16 µg/L for NP) based on the chronic toxicity data on Korean resident species including M. macrocopa for the aquatic ecological risk assessment in Korea rather than adopting the existing water quality criteria.


Assuntos
Disruptores Endócrinos/toxicidade , Plastificantes/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Compostos Benzidrílicos/toxicidade , Carpas , Clorófitas/efeitos dos fármacos , Cladocera/efeitos dos fármacos , Dietilexilftalato/toxicidade , Fenômenos Ecológicos e Ambientais , Fenóis/toxicidade , Reprodução/efeitos dos fármacos , República da Coreia , Medição de Risco , Testes de Toxicidade Crônica , Qualidade da Água
11.
Ecotoxicol Environ Saf ; 189: 109995, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31785947

RESUMO

The use of p-chloroaniline (PCA) in various aspects leads to its existence and accumulation in the environment. Relevant researches showed that PCA was a prime toxic pollutant that had imposed a serious risk to public health and the environment. This paper investigated the toxicity effects of PCA on Platymonas subcordiformis (P. subcordiformis) and the biodegradation of PCA by the marine microalga. In the toxicity experiments, the EC50 of PCA on P. subcordiformis at 24 h, 48 h, 72 h and 96 h was 41.42, 24.04, 17.15 and 13.05 mg L-1, respectively. The pigment parameters including chlorophyll a, chlorophyll b, carotenoids, photosynthetic O2 release rate, respiration O2 consumption rate and the chlorophyll fluorescence parameters including Fv/Fm, ETR and qP decreased greatly while antioxidant enzyme activities (SOD, CAT) and the chlorophyll fluorescence parameter NPQ increased when P. subcordiformis exposed to PCA compared with the control group. Fv/Fm would be a suitable indicator for assessing the toxicity of PCA in marine environment based on the analysis of Pearson's correlation coefficient and Integrated Biomarker Response (IBR). The degradation assay in P. subcordiformis indicated that the green marine microalga had the ability to remove and degrade PCA, and the order of removal and degradation proportion of PCA was 2 mg L-1 > 5 mg L-1>10 mg L-1. The maximum removal and biodegradation percentage was 54% and 34%, respectively.


Assuntos
Compostos de Anilina/toxicidade , Clorófitas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Compostos de Anilina/metabolismo , Biodegradação Ambiental , Carotenoides/metabolismo , Clorofila/metabolismo , Clorofila A/metabolismo , Clorófitas/metabolismo , Oxigênio/metabolismo , Fotossíntese/efeitos dos fármacos , Poluentes Químicos da Água/metabolismo
12.
Ecotoxicol Environ Saf ; 195: 110488, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32200143

RESUMO

Effect of water accommodated fractions (WAF) of #180 fuel oil on fixed carbon and nitrogen in microalgae was studied by stable isotopes. Platymonas helgolandica, Heterosigma akashiwo and Nitzschia closterium were exposed to five WAF concentrations for 96 h. The δ13C value of microalgae was significantly lower than that of the control group, indicated that carbon was limited in the WAF concentrations. The δ13C value of microalgae appeared peak valley at 48 h in control group, corresponding to the enhanced capacity in carbon fixation during microalgae photosynthesis. The physiological acclimation capacity of microalgae was revealed by the occurrence time when the δ13C value was in peak valley, and thus the physiological acclimation capacity of microalgae decreased in the order of Nitzschia closterium > Heterosigma akashiwo > Platymonas helgolandica. Principal component analysis (PCA) were applied to the δ13C value in order to verify the "hormesis" phenomenon in microalgae. The δ13C value could discriminate between stimulatory effects at low doses and inhibitory effects at high doses. In addition, the present study also investigated the effect of the nitrogen on microalgae growth. Because microalgae could still absorb the NO3-N and release of NO2-N and NH4-N in present study, the nitrogen cycle in microalgae was in the equilibrium status. The δ15N value in microalgae exhibited no obvious change with the increasing of WAF concentrations at the same time. However, due to the enrichment of nitrogen, the δ15N value first increased gradually with the time and finally was stable. Overall, the fractionation of carbon and nitrogen stable isotopes illustrated that the effect of carbon on the growth of microalgae was more prominent than nitrogen. Stable isotopes was used to investigate the influence of WAF on fixed carbon and nitrogen in microalgae growth, providing a fundamental theoretical guidance for risk assessment of marine ecological environment.


Assuntos
Carbono/análise , Óleos Combustíveis/toxicidade , Microalgas/efeitos dos fármacos , Nitrogênio/análise , Poluentes Químicos da Água/toxicidade , Ciclo do Carbono/efeitos dos fármacos , Isótopos de Carbono/análise , Clorófitas/química , Clorófitas/efeitos dos fármacos , Clorófitas/crescimento & desenvolvimento , Diatomáceas/química , Diatomáceas/efeitos dos fármacos , Diatomáceas/crescimento & desenvolvimento , Microalgas/química , Microalgas/crescimento & desenvolvimento , Isótopos de Nitrogênio/análise , Fotossíntese/efeitos dos fármacos , Estramenópilas/química , Estramenópilas/efeitos dos fármacos , Estramenópilas/crescimento & desenvolvimento , Água/química , Poluentes Químicos da Água/química
13.
Environ Toxicol ; 35(3): 385-394, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31709674

RESUMO

In this study, the impact of alpha-iron oxide (α-Fe2 O3 , 20-40 nm) and gamma iron oxide (γ-Fe2 O3 , 20-40 nm) nanoparticles (NPs) on phytoplankton species Selenastrum capricornutum and Nannochloropsis oculata was investigated Characterizations of the NPs were systematically carried out by TEM, dynamic light scattering, zeta potential, X-ray diffraction, SEM, and Fourier transformation infrared spectroscopy. Acute toxicity was tested between 0.2 and 50 mg/L for each NP for a period of 72 hours exposure. γ-Fe2 O3 NP inhibited development of N oculata at the rate of 54% in 0.2 mg/L group with a high mortality rate of up to 82%. α-Fe2 O3 NPs were less toxic that induced 97% mortality on N oculata at 10 mg/L suspensions. In contrast, α-Fe2 O3 NP inhibited growth of S capricornutum strongly (73%) in 0.2 mg/L group. γ-Fe2 O3 NPs showed similar growth inhibition (72%) on S capricornutum in 10 mg/L suspensions. Despite the differential effects, the results indicated acute toxicity of α-Fe2 O3 and γ-Fe2 O3 NPs on N oculata and S capricornutum.


Assuntos
Clorófitas/efeitos dos fármacos , Compostos Férricos/toxicidade , Nanopartículas Metálicas/toxicidade , Fitoplâncton/efeitos dos fármacos , Estramenópilas/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
14.
Arch Environ Contam Toxicol ; 78(4): 545-554, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31915850

RESUMO

Chemicals pollution in the environment has attracted attention all over the world, and the toxicity prediction of chemical pollutants has become quite important. In this paper, we introduce a simple approach to predict the toxicity of some chemical components, in which the Tchebichef image moment (TM) method was employed to extract useful chemical information from the images of molecular structures to establish quantitative structure-activity relationship (QSAR) prediction models. The proposed approach was applied to predict the toxicity of anilines and phenols for the aquatic organisms of P. subcapitata and V. fischeri, in which the obtained TMs were defined as the independent variables, while the biological toxicity (pEC50) was regarded to be the dependent variable. Then, the predictive models were established by stepwise regression, respectively. The obtained squared correlation coefficients of leave-one-out cross-validation (Q2) for training sets and the predictive squared correlation coefficients (Rp2) for test sets of the two groups of data were higher than 0.79 and 0.75, respectively, which indicated that the obtained models possessed satisfactory accuracy and reliability. Compared with several reported methods, the proposed approach was more convenient and has a higher predictive capability. Our study provides another perspective in QSAR research.


Assuntos
Compostos de Anilina/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Modelos Teóricos , Fenóis/toxicidade , Poluentes Químicos da Água/toxicidade , Aliivibrio fischeri/efeitos dos fármacos , Compostos de Anilina/química , Clorófitas/efeitos dos fármacos , Fenóis/química , Valor Preditivo dos Testes , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes , Poluentes Químicos da Água/química
15.
Anal Chem ; 91(12): 7798-7806, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31117408

RESUMO

The study explored the chronic toxicity of triclosan to green microalga Chlorococcum sp. under multiple interactions among multiple environmental conditions. This is the first study on chronic algal toxicity to combine synchrotron-based Fourier transform infrared spectromicroscopy, factorial analysis, principal component analysis, and stepwise-cluster analysis. Such a combination helps to reveal the toxic mechanism at the molecular level and explore the inner correlationship among multiple environmental conditions. In the 120-h test, nitrogen content became the most significant factor of the physiochemical properties. Some insignificant factors in the 48-h test became significant in the 120-h test. Temperature * nitrogen content, temperature * phosphorus content, and pH * phosphorus content were the most significant two-order interactions. Temperature * pH * NaCl concentration and temperature * NaCl concentration * phosphorus content were the most significant three-order interactions. More high-order interactions became significant in the 120-h test, indicating the complexity and impacts of all the factors may increase when time was extended. The chronic toxicity of triclosan presented more distinguishable variations among treatments based on biochemical alterations. These results demonstrate that the sensitivity and fragility of algae to triclosan can be amplified with time extension. Long-term exposure can be applied to better evaluate and predict the environmental toxicity behavior of triclosan. It can also help with environmental evaluation and risk management of real-world triclosan toxicity.


Assuntos
Clorófitas/efeitos dos fármacos , Clorófitas/metabolismo , Exposição Ambiental/efeitos adversos , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Síncrotrons , Triclosan/toxicidade , Poluentes Químicos da Água/toxicidade , Análise de Componente Principal , Fatores de Tempo
16.
J Eukaryot Microbiol ; 66(5): 778-787, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30854724

RESUMO

Microalgae are a diverse group of photosynthetic eukaryotic organisms that are widely distributed globally. They are prolific sources of highly valuable compounds with fascinating chemical structures. Due to their balanced nutritional compositions and health benefits, they are increasingly being used as functional food ingredients. Carotenoid-based pigments and polyunsaturated fatty acids (PUFAs) are examples of high-value nutrients that can be accumulated abundantly in microalgae. Here, the effects of potassium chloride-induced stress on the productions of lipids and carotenoids in the green microalga of the Chlorococcaceae family were investigated. Under normal BG11 medium, this green microalga strain TISTR 9500 accumulated high levels of PUFA and primary carotenoid lutein. Stress tests revealed that KCl enhanced and modulated lipid and carotenoid accumulation levels. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed that secondary carotenoids astaxanthin and canthaxanthin were robustly produced under KCl stress with the similar content of lutein. Further, this stress led to a significant increase in the total FA amount with the higher proportion of unsaturated FA than saturated FA. Thus, this green microalga could be an attractive and alternative natural biosource for canthaxanthin and astaxanthin, as well as for functional lipids.


Assuntos
Cantaxantina/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Microalgas/metabolismo , Cloreto de Potássio/farmacologia , Cantaxantina/análise , Clorófitas/química , Clorófitas/efeitos dos fármacos , Clorófitas/metabolismo , Cromatografia Líquida de Alta Pressão , Lipídeos/química , Microalgas/química , Microalgas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Espectrometria de Massas em Tandem , Xantofilas/análise , Xantofilas/metabolismo
17.
Anal Bioanal Chem ; 411(10): 2057-2069, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30734083

RESUMO

Ecotoxicological screening of surface waters can involve multiple analyses using multiple bioassay and chemical analytical methods that require enriched samples to reach low concentrations. Such broad screening of the same sample necessitates sufficient sample volume-typically several liters-to produce a sufficient amount of enriched sample. Often, this is achieved by performing parallel solid-phase extractions (SPE) where extracts are combined into a pool-this is a laborious process. In this study, we first validated our existing SPE method for the chemical recovery of an extended set of compounds. We spiked four estrogenic compounds and 11 herbicides to samples from independent rivers (1 L) and wastewater treatment plant effluents (0.5 L). Then, we investigated the effect of increased sample loading of the SPE cartridges on both chemical and biological recoveries by comparing the validated volumes with four times larger sample volumes (i.e., 4 L river water and 2 L effluent). Samples were analyzed by LC-MS/MS and three bioassays: an estrogen receptor transactivation assay (ERα-CALUX), the combined algae test, and a bacterial bioluminescence inhibition assay. Our existing SPE method was found to be suitable for enriching the extended set of estrogens and herbicides in river water and effluents with near to perfect chemical recoveries (~ 100%), except for the herbicide metribuzin (46 ± 19%). In the large volume river and effluent samples, the biological activities and concentrations of the spiked compounds were between 87 and 104% of those measured with the lower sample loading, which is adequate. In addition, the ratio between the large and original volume SPE method for the non-target endpoint (bacterial bioluminescence inhibition) was acceptable (on average 82 ± 9%). Results indicate that our current water extraction method can be applied to up to four times larger sample volumes, resulting in four times more extract volumes, without significant reductions in recoveries for the tested estrogens and herbicides. Graphical abstract ᅟ.


Assuntos
Monitoramento Ambiental/métodos , Estrogênios/isolamento & purificação , Herbicidas/isolamento & purificação , Extração em Fase Sólida/métodos , Poluentes Químicos da Água/isolamento & purificação , Bactérias/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Cromatografia Líquida/métodos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Estrogênios/toxicidade , Herbicidas/toxicidade , Rios/química , Espectrometria de Massas em Tandem/métodos , Testes de Toxicidade/métodos , Águas Residuárias/análise , Poluentes Químicos da Água/toxicidade
18.
Ecotoxicol Environ Saf ; 182: 109413, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31284121

RESUMO

The effects of rhamnolipids (RLs) produced and further purified from Burkholderia thailandensis, on the unicellular microalgae Dunaliella tertiolecta were investigated, in terms of RLs ability to affect algal growth, photosynthetic apparatus structure and energy flux, round and through photosystems II and I. Specifically, 24-48 h RLs-treated algae (RLs at concentrations ranged from 5 to 50 mg L-1) showed significantly decreased levels of growth rate, while increased levels of Chl a and b were obtained only in 72-96 h RLs-treated algae. Similarly, although no changes were obtained in the Chl a/b ratio and almost all chlorophyll fluorescence parameters over time, yields of electron transport (ϕR0, ϕE0) and respective performance index (PItotal) were negatively affected at 72 and 96 h. Based on those findings, it seems that the inhibitory effect of RLs on the algae growth rate after 24 and 48 h and the gradual attenuation of the phenomenon (after 72 h of exposure), may indicate the initial response of the organism, as well as algae ability to overcome, since RLs showed no effects on algae photosynthetic ability. Those findings reveal for the first time that RLs from Burkholderia thailandensis are not harmful for Dunaliella tertiolecta. However, further studies with the use of more aquatic species could be essential for assessing the RLs-mediated effects on aquatic biota.


Assuntos
Burkholderia/fisiologia , Clorófitas/fisiologia , Glicolipídeos/toxicidade , Clorofíceas , Clorófitas/efeitos dos fármacos , Transporte de Elétrons , Fotossíntese , Complexo de Proteína do Fotossistema II
19.
Ecotoxicol Environ Saf ; 181: 60-68, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31174108

RESUMO

The widespread use of microplastics and nanomaterials resulting in environmental contamination is of high concern. Microplastics have been found to modulate the toxicity of other environmental contaminants. Thus, the hypothesis that microplastics increase the toxicity of gold nanoparticles to the marine microalgae Tetraselmis chuii was tested. In a laboratory bioassay, T. chuii cultures were exposed for 96 h to ∼5 nm diameter gold nanoparticles (AuNP) and to virgin 1-5 µm diameter microplastics (MP), alone and in mixture. The treatments were: control; citrate-control; AuNP alone (0.1, 0.3 and 3 mg/L); MP alone (0.3, 0.9 and 4 mg/L) and mixture of the two substances in three different concentrations (0.1 mg/L AuNP + 0.3 mg/L MP; 0.3 mg/L AuNP + 0.9 mg/L MP; 3 mg/l AuNP + 4 mg/L MP). The effect criterion was the inhibition of the average specific growth rate. AuNP alone and MP alone did not cause significant decrease of T. chui average specific growth rate up to 3 mg/L and 4 mg/L, respectively. The mixture containing 3 mg/L AuNP + 4 mg/L MP significantly reduced the average specific growth rate of the microalgae. Therefore, this mixture was more toxic to T. chuii than its components individually. Overall, the results of the present study indicated that the MP and AuNP tested have a relatively low toxicity to T. chuii, but the toxicity increases when they are in mixtures containing high concentrations of both substances. These proof-of-concept findings stress the need of more research on the toxicity of mixtures containing microplastics and nanomaterials.


Assuntos
Clorófitas/efeitos dos fármacos , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Microalgas/efeitos dos fármacos , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Bioensaio , Modelos Teóricos
20.
Ecotoxicol Environ Saf ; 184: 109632, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31514077

RESUMO

Marine biota is currently exposed to plastic pollution. The biological effects of plastics may vary according to polymer types (e.g. polystyrene, polyethylene, acrylate), size of particles (macro, micro or nanoparticles) and their shape. There is a considerable lack of knowledge in terms of effects of nanoplastics (NP) to marine biota particularly of polymers like polymethylmethacrylate (PMMA). Thus, this study aimed to assess its ecotoxicological effects using a battery of standard monospecific bioassays with four marine microalgae (Tetraselmis chuii, Nannochloropsis gaditana, Isochrysis galbana and Thalassiosira weissflogii) and a marine rotifer species (Brachionus plicatilis). The tested PMMA-NP concentrations allowed the estimation of median effect concentrations for all microalgae species. T. weissflogii and T. chuii were respectively the most sensitive (EC50,96h of 83.75 mg/L) and least sensitive species (EC50,96h of 132.52 mg/L). The PMMA-NP were also able to induce mortality in rotifers at concentrations higher than 4.69 mg/L with an estimated 48 h median lethal concentration of 13.27 mg/L. A species sensitivity distribution curve (SSD), constructed based on data available in the literature and the data obtained in this study, reveal that PMMA-NP appears as less harmful to marine biota than other polymers like polystyrene.


Assuntos
Clorófitas/efeitos dos fármacos , Microalgas/efeitos dos fármacos , Nanopartículas/toxicidade , Polimetil Metacrilato/toxicidade , Rotíferos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Ecotoxicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA