Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 715
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Biometals ; 37(5): 1225-1236, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38647983

RESUMO

Acanthamoeba spp. emerged as a clinically important pathogen related to amoebic keratitis. It is among the main causes of corneal transplantation and vision loss in ophthalmology. The treatment protocols have a low cure rate, high toxicity, and need for drug combination. Transition metal compounds have shown promising antiprotozoal effects. This study evaluates the amoebicidal activity of copper(II) coordination compounds in combination with chlorhexidine and the cytotoxicity to topical ocular application. These copper(II) coordination compounds were screened against Acanthamoeba castellanii trophozoites (ATCC 50492). The cytotoxicity on rabbit corneal cell line (ATCC-CCL 60) was performed. The compounds showed high amoebicidal potential, with inhibition of trophozoite viability above 80%. The Cp12 and Cp13 compounds showed Minimal Inhibitory Amoebicidal Concentration (MIAC) at 200 µM and mean inhibitory concentration (IC50) values lower than 10 µM. Against the cysts, Cp12 showed a reduction in viability (48%) in the longest incubation period. A synergistic effect for Cp12 with chlorhexidine was observed. The compounds have a dose-dependent effect against rabbit corneal cells. Compound Cp12 has potential for future application in developing ophthalmic formulations against Acanthamoeba keratitis and its use in multipurpose solutions is highlighted.


Assuntos
Acanthamoeba castellanii , Amebicidas , Cobre , Animais , Coelhos , Cobre/farmacologia , Cobre/química , Amebicidas/farmacologia , Amebicidas/química , Acanthamoeba castellanii/efeitos dos fármacos , Acanthamoeba castellanii/crescimento & desenvolvimento , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Testes de Sensibilidade Parasitária , Sinergismo Farmacológico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Antiprotozoários/farmacologia , Antiprotozoários/química , Clorexidina/farmacologia , Clorexidina/química , Ceratite por Acanthamoeba/tratamento farmacológico , Ceratite por Acanthamoeba/parasitologia , Córnea/efeitos dos fármacos , Córnea/parasitologia , Relação Dose-Resposta a Droga , Acanthamoeba/efeitos dos fármacos , Trofozoítos/efeitos dos fármacos
2.
BMC Oral Health ; 24(1): 579, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762747

RESUMO

BACKGROUND: Vinyl polyether silicone (VPES) is a novel impression biomaterial made of a combination of vinyl polysiloxane (VPS) and polyether (PE). Thus, it is significant to assess its properties and behaviour under varied disinfectant test conditions. This study aimed to assess the dimensional stability of novel VPES impression material after immersion in standard disinfectants for different time intervals. METHODS: Elastomeric impression material used -medium body regular set (Monophase) [Exa'lence GC America]. A total of 84 Specimens were fabricated using stainless steel die and ring (ADA specification 19). These samples were distributed into a control group (n=12) and a test group (n=72). The test group was divided into 3 groups, based on the type of disinfectant used - Group-A- 2% Glutaraldehyde, Group-B- 0. 5% Sodium hypochlorite and Group-C- 2% Chlorhexidine each test group was further divided into 2 subgroups (n=12/subgroup) based on time intervals for which each sample was immersed in the disinfectants - subgroup-1- 10 mins and Subgroup 2- 30 mins. After the impression material was set, it was removed from the ring and then it was washed in water for 15 seconds. Control group measurements were made immediately on a stereomicroscope and other samples were immersed in the three disinfection solutions for 10 mins and 30 mins to check the dimensional stability by measuring the distance between the lines generated by the stainless steel die on the samples using a stereomicroscope at x40 magnification. RESULTS: The distance measured in the control group was 4397.2078 µm and 4396.1571 µm; for the test group Group-A- 2% Glutaraldehyde was 4396.4075 µm and 4394.5992 µm; Group-B- 0. 5% Sodium hypochlorite was 4394.5453 µm and 4389.4711 µm Group-C- 2% Chlorhexidine was 4395.2953 µm and 4387.1703 µm respectively for 10 mins and 30 mins. Percentage dimensional change was in the range of 0.02 - 0.25 for all the groups for 10 mins and 30 mins. CONCLUSIONS: 2 % Glutaraldehyde is the most suitable disinfectant for VPES elastomeric impression material in terms of dimensional stability and shows minimum dimensional changes as compared to that of 2% Chlorhexidine and 0.5% Sodium hypochlorite.


Assuntos
Materiais para Moldagem Odontológica , Glutaral , Teste de Materiais , Polivinil , Siloxanas , Materiais para Moldagem Odontológica/química , Polivinil/química , Siloxanas/química , Fatores de Tempo , Glutaral/química , Desinfetantes de Equipamento Odontológico/química , Hipoclorito de Sódio/química , Desinfetantes/química , Clorexidina/química , Propriedades de Superfície , Humanos
3.
Eur J Prosthodont Restor Dent ; 32(1): 133-141, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38088266

RESUMO

AIM: To evaluate the microtensile bond strength of self-etching adhesive systems in dentin treated with 2% chlorhexidine digluconate (CHX). MATERIALS AND METHODS: The occlusal surfaces of 20 human molars were removed and divided into eight groups: 1A, Clearfil SE adhesive (SE) with self-etching technique (TS); 1B, SE with TS and previous application of CHX; 2A, Scotchbond Universal (SBU) adhesive with TS; 2B, SBU adhesive with TS and previous application of CHX; 1C, SE with total-etching technique (TT); 1D, SE with TT and previous application of CHX; 2C, SBU with TT; 2D SBU with TT and previous application of CHX. Composite resin (5mm) was applied on the hybridized surface. Samples were subjected to microtensile test and evaluated on Scanning Electron Microscope (SEM) and with energy-dispersive X-ray (EDX). RESULTS: Low values of bond strength were observed in groups 1A (39,77±11,56) and 2A (40,84±12,49) comparing with 1B (22,86±5,18) and 2B (27,02±5,58). TS group presented adhesive type remover fracture while TT groups presented cohesive at the top of hybrid layer. EDX revealed the presence of CHX crystals for TS, which was not found in the TT. CONCLUSION: The previous application of chlorhexidine on dentin decreased the bond strength of adhesive systems on self-etching technique.


Assuntos
Clorexidina , Colagem Dentária , Humanos , Clorexidina/química , Cimentos Dentários , Colagem Dentária/métodos , Cimentos de Resina/química , Resinas Compostas/química , Dentina , Resistência à Tração , Adesivos Dentinários/química , Teste de Materiais , Adesivos
4.
Proc Natl Acad Sci U S A ; 117(29): 17011-17018, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32636271

RESUMO

Few antibiotics are effective against Acinetobacter baumannii, one of the most successful pathogens responsible for hospital-acquired infections. Resistance to chlorhexidine, an antiseptic widely used to combat A. baumannii, is effected through the proteobacterial antimicrobial compound efflux (PACE) family. The prototype membrane protein of this family, AceI (Acinetobacter chlorhexidine efflux protein I), is encoded for by the aceI gene and is under the transcriptional control of AceR (Acinetobacter chlorhexidine efflux protein regulator), a LysR-type transcriptional regulator (LTTR) protein. Here we use native mass spectrometry to probe the response of AceI and AceR to chlorhexidine assault. Specifically, we show that AceI forms dimers at high pH, and that binding to chlorhexidine facilitates the functional form of the protein. Changes in the oligomerization of AceR to enable interaction between RNA polymerase and promoter DNA were also observed following chlorhexidine assault. Taken together, these results provide insight into the assembly of PACE family transporters and their regulation via LTTR proteins on drug recognition and suggest potential routes for intervention.


Assuntos
Acinetobacter baumannii , Antibacterianos , Proteínas de Bactérias , Clorexidina , Proteínas de Membrana Transportadoras , Acinetobacter baumannii/química , Acinetobacter baumannii/enzimologia , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Clorexidina/química , Clorexidina/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Resistência Microbiana a Medicamentos , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Ligação Proteica , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
5.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372949

RESUMO

Maxillofacial surgery placement of fixatures (Leonard Buttons, LB) at close proximity to surgical incisions provides a potential reservoir as a secondary local factor to advanced periodontal disease, with bacterial formation around failed fixatures implicating plaque. To address infection rates, we aimed to surface coat LB and Titanium (Ti) discs using a novel form of chlorhexidine (CHX), CHX-CaCl2 and 0.2% CHX digluconate mouthwash as a comparison. CHX-CaCl2 coated, double-coated and mouthwash coated LB and Ti discs were transferred to 1 mL artificial saliva (AS) at specified time points, and UV-Visible spectroscopy (254 nm) was used to measure CHX release. The zone of inhibition (ZOI) was measured using collected aliquots against bacterial strains. Specimens were characterized using Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). SEM displayed copious dendritic crystals on LB/ Ti disc surfaces. Drug release from double-coated CHX-CaCl2 was 14 days (Ti discs) and 6 days (LB) above MIC, compared to the comparison group (20 min). The ZOI for the CHX-CaCl2 coated groups was significantly different within groups (p < 0.05). CHX-CaCl2 surface crystallization is a new drug technology for controlled and sustained CHX release; its antibacterial effectiveness makes this drug an ideal adjunct following clinical and surgical procedures to maintain oral hygiene and prevent surgical site infections.


Assuntos
Anti-Infecciosos , Doenças Periodontais , Humanos , Clorexidina/farmacologia , Clorexidina/química , Antissépticos Bucais/farmacologia , Cloreto de Cálcio , Anti-Infecciosos/farmacologia , Bactérias , Titânio/farmacologia , Titânio/química
6.
Niger J Clin Pract ; 26(9): 1242-1248, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37794535

RESUMO

Background and Aim: Fiber posts are widely used in endodontically treated teeth with extensive loss of coronal structure. The purpose of this study was to investigate immediate and the long-term effects of chlorhexidine (CHX) and benzalkonium chloride (BAC) application, on the push-out bond strength of fiber posts. Material and Methods: Sixty mandibular premolars were decoronated, and root canal treatment was performed. After post space preparation, the specimens were divided into three groups according to the post space-surface pretreatment (n = 20); no surface treatment (control group-Group 1), 2% CHX application (Group 2), and 1% BAC application (Group 3). A self-curing adhesive cement and an etch and rinse adhesive were used for the cementation of posts. Three sections (one cervical, one middle, and one apical) of 1 mm thickness were prepared from each specimen. A push-out test was performed immediately on the half of the specimen sections (n = 10). The other half of the specimen sections were subjected to 20.000 thermal cycles before applying the push-out test (n = 10). The failure mode of each specimen was observed under a stereomicroscope at ×40 magnification. Results: The data were analyzed by one-way analysis of variance (ANOVA), Tukey Honestly significant difference (HSD), and Tamhane tests (P = 0.05). The cervical thirds displayed the highest, and the apical thirds showed the lowest values in all groups (P < 0.05), except the control-aged group (P = 0.554). The aged control groups' values were found to be significantly lower than the aged CHX and BAC groups (P < 0.001). Aging significantly reduced the bond strength values of specimens in control groups (P < 0.001). However, aging did not significantly affect the push-out bond strength values of CHX and BAC groups (P > 0.050). The failure types were adhesive between the post and cement (type 1) in all groups, except control-aged group (type 2). Conclusion: The application of 2% chlorhexidine or 1% BAC may be an essential step that can be taken to preserve the bond strength of fiber posts.


Assuntos
Colagem Dentária , Técnica para Retentor Intrarradicular , Humanos , Clorexidina/química , Compostos de Benzalcônio , Teste de Materiais , Tratamento do Canal Radicular , Cimentos de Resina/química , Dentina , Vidro/química
7.
Pharm Dev Technol ; 27(5): 545-553, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35730959

RESUMO

Blockage and infection are common in hospitals, especially with long-term indwelling catheters, due to bacterial adhesion, colonization, and other reasons. A drug-sustained-release antibacterial coating for urinary catheters was described in this paper. Chlorhexidine (CHX) and triclosan (TCS) were encapsulated in poly(lactic-co-glycolic acid) microspheres and mixed with a modified chitosan hydrogel deposited on the surface of silicone rubber. The results showed that drugs can be released continuously more than 35 days. Catechol-modified chitosan (Chi-C) hydrogel was successful synthesized according to FT-IR and UV spectrophotometry, as well as 1H NMR. Furthermore, the coating with CHX and TCS presented stable antibacterial ability compared to the other groups. The results of CCK-8 revealed that the coating was cytotoxic-free and had a wide range of applications. The findings could provide a new drug sustained-release system and hydrogel-microsphere assembly for urinary catheters. HighlightsThe microspheres presented a sustained release more than 40 days with a remarkable initial burst release.The microspheres/catechol-modified chitosan (Chi-C)/silicon rubber system emerged stable binding ability in liquid environment more than 14 days.The Chi-C/chlorhexidine (CHX)+triclosan (TCS) microspheres system presented better antimicrobial property for entire experiment period.The coated samples showed no significant difference for relative growth rate (RGR) compared to different groups.


Assuntos
Quitosana , Triclosan , Antibacterianos/química , Antibacterianos/farmacologia , Catecóis , Quitosana/química , Clorexidina/química , Preparações de Ação Retardada , Hidrogéis , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Espectroscopia de Infravermelho com Transformada de Fourier , Cateteres Urinários/microbiologia
8.
Niger J Clin Pract ; 25(5): 670-676, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35593611

RESUMO

Background: Irrigant activation techniques, which are more effective in anatomically complex areas, can be used to maximize irrigant efficacy. Aim: This in vitro study aimed to evaluate the efficacy of different agitation techniques on the dislocation resistance of Biodentine to the root canal dentin. Materials and Methods: Seventy single-rooted teeth divided into seven experimental groups (n = 10); Group I-Irritrol/Photon-induced-photoacoustic-streaming (PIPS), Group II-Irritrol/EDDY®, Group III- Irritrol/Syringe-needle-irrigation (SNI), Group IV-Chlorhexidine-gluconate (CHX)/PIPS, Group V-CHX/EDDY®, Group VI-CHX/SNI, Group VII-Saline. The midroot dentin slice was obtained from each tooth, and Biodentine was condensed with hand pluggers into the root canal lumen. The push-out bond strength values were measured using a universal testing machine. Each sample was categorized into one of the three failure modes: adhesive/cohesive/mixed. Scanning-Electron-Microscopy (SEM) was used to conduct the analyses, and the composition of Biodentine was analyzed using Energy-Dispersive Spectroscopy. The One-way ANOVA, post-hoc Tukey's test, and the Chi-square test were used for statistical analysis. Results: The push-out bond strength values of Biodentine showed that Group VII-Saline had a statistically significant difference (P = 0.002), however, the differences between the other groups were not statistically significant (P = 0.922). The percentages of the failure modes of the samples showed that there was a higher rate of mixed failure except for Group VII-Saline. SEM examination showed that Group VII-Saline had no open dentinal tubules, whereas the other groups, particularly the Irritrol groups, had open dentinal tubule areas. Conclusions: Within the scope of the study, using Irritrol or CHX as the final irrigation in the root canal treatment did not result in differences in the dislocation resistance of Biodentine to root canal dentin when PIPS and EDDY® were used.


Assuntos
Clorexidina , Colagem Dentária , Compostos de Cálcio , Clorexidina/química , Clorexidina/farmacologia , Cavidade Pulpar , Dentina , Humanos , Irrigantes do Canal Radicular/química , Irrigantes do Canal Radicular/farmacologia , Preparo de Canal Radicular , Silicatos , Análise Espectral
9.
Eur J Clin Microbiol Infect Dis ; 40(7): 1517-1520, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33635424

RESUMO

This study aimed to compare the antimicrobial action of three soaps for hand hygiene (HH): 2.0% Tea Tree Oil (TTO); 0.5% triclosan; 2.0% chlorhexidine, and to explore the perception of healthcare professionals about TTO. Two-step study: a quantitative, to determine the logarithmic reduction of Escherichia coli K12 colony-forming units before and after HH of 15 volunteers and quali-quantitative, through interviews with 23 health professionals. All the three products demonstrated antimicrobial action (a log10 reduction factor of 4.18 for TTO, 4.31 for triclosan, 3.89 for chlorhexidine, and 3.17 for reference soap). Professionals remarked the pleasant aroma and non-dryness of skin when using soap containing TTO.


Assuntos
Clorexidina/farmacologia , Higiene das Mãos , Sabões/farmacologia , Óleo de Melaleuca/química , Óleo de Melaleuca/farmacologia , Triclosan/farmacologia , Adulto , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Clorexidina/química , Estudos Cross-Over , Humanos , Pessoa de Meia-Idade , Pele/efeitos dos fármacos , Sabões/química , Triclosan/química , Adulto Jovem
10.
J Nanobiotechnology ; 19(1): 43, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563280

RESUMO

BACKGROUND: A low pH environment is created due to the production of acids by oral biofilms that further leads to the dissolution of hydroxyapatite crystal in the tooth structure significantly altering the equilibrium. Although the overall bacterial counts may not be eradicated from the oral cavity, however, synthesis of engineered anti-bacterial materials are warranted to reduce the pathogenic impact of the oral biofilms. The purpose of this study was to synthesize and characterize chlorhexidine (CHX)-loaded mesoporous silica nanoparticles (MSN) grafted with poly-L-glycolic acid (PGA) and to test the in vitro drug release in various pH environments, cytotoxicity, and antimicrobial capacity. In addition, this study aimed to investigate the delivery of CHX-loaded/MSN-PGA nanoparticles through demineralized dentin tubules and how these nanoparticles interact with tooth dentin after mixing with commercial dentin adhesive for potential clinical application. RESULTS: Characterization using SEM/TEM and EDX confirmed the synthesis of CHX-loaded/MSN-PGA. An increase in the percentage of drug encapsulation efficiency from 81 to 85% in CHX loaded/MSN and 92-95% in CHX loaded/MSN-PGA proportionately increased with increasing the amount of CHX during the fabrication of nanoparticles. For both time-periods (24 h or 30 days), the relative microbial viability significantly decreased by increasing the CHX content (P < 0.001). Generally, the cell viability percentage of DPSCs exposed to MSN-PGA/Blank, CHX-loaded/MSN, and CHX-loaded/MSN-PGA, respectively was > 80% indicating low cytotoxicity profiles of experimental nanoparticles. After 9 months in artificial saliva (pH 7.4), the significantly highest micro-tensile bond strength value was recorded for 25:50 CHX/MSN and 25:50:50 CHX/MSN-PGA. A homogenous and widely distributed 50:50:50 CHX-loaded/MSN-PGA nanoparticles exhibited excellent bonding with the application of commercially available dentin adhesive. CONCLUSIONS: A pH-sensitive CHX release response was noted when loaded in MSN grafted PGA nanoparticles. The formulated drug-loaded nanocarrier demonstrated excellent physicochemical, spectral, and biological characteristics. Showing considerable capacity to penetrate effectively inside dentinal tubules and having high antibacterial efficacy, this system could be potentially used in adhesive and restorative dentistry.


Assuntos
Antibacterianos/farmacologia , Clorexidina/farmacologia , Resinas Compostas/química , Dentina , Glicolatos/farmacologia , Nanopartículas/química , Dióxido de Silício/química , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Clorexidina/química , Materiais Dentários/química , Dentina/diagnóstico por imagem , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Glicolatos/química , Humanos , Concentração de Íons de Hidrogênio , Teste de Materiais , Resistência à Tração
11.
J Mater Sci Mater Med ; 32(12): 139, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34800182

RESUMO

Dental implants are an increasingly popular way to replace missing teeth. Whilst implant survival rates are high, a small number fail soon after placement, with various factors, including bacterial contamination, capable of disrupting osseointegration. This work describes the development of chlorhexidine-hexametaphosphate coatings for titanium that hydrolyse to release the antiseptic agent chlorhexidine. The aim was to develop a coating for titanium that released sufficient chlorhexidine to prevent biofilm formation, whilst simultaneously maintaining cytocompatibility with cells involved in osseointegration. The coatings were characterised with respect to physical properties, after which antibiofilm efficacy was investigated using a multispecies biofilm model, and cytocompatibility determined using human mesenchymal stem cells. The coatings exhibited similar physicochemical properties to some implant surfaces in clinical use, and significantly reduced formation of multispecies biofilm biomass up to 72 h. One coating had superior cytocompatibility, with mesenchymal stem cells able to perform normal functions and commence osteoblastic differentiation, although at a slower rate than those grown on uncoated titanium. With further refinement, these coatings may have application in the prevention of bacterial contamination of dental implants at the time of surgery. This could aid a reduction in rates of early implant failure.


Assuntos
Biofilmes/efeitos dos fármacos , Clorexidina/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Fosfatos/farmacologia , Titânio/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Adesão Celular , Clorexidina/química , Humanos , Células-Tronco Mesenquimais/fisiologia , Fosfatos/química , Propriedades de Superfície
12.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34948060

RESUMO

Metal ions such as cobalt (II) and chromium (III) might be present in the oral cavity, as a consequence of the corrosion of Co-Cr dental alloys. The diffusion of such metal ions into the organism, carried by saliva, can cause health problems as a consequence of their toxicity, enhanced by a cumulative effect in the body. The effect of the chlorhexidine digluconate, which is commonly used in mouthwash formulations, on the transport of these salts is evaluated in this paper by using the Taylor dispersion technique, which will allow an assessment of how the presence of chlorhexidine digluconate (either in aqueous solution or in a commercial formulation) may affect the diffusion of metal ions. The ternary mutual diffusion coefficients of metal ions (Co and Cr) in the presence of chlorhexidine digluconate, in an artificial saliva media, were measured. Significant coupled diffusion of CoCl2 (and CrCl3) and chlorhexidine digluconate is observed by analysis of the non-zero values of the cross-diffusion coefficients, D12 and D21. The observed interactions between metal ions and chlorhexidine digluconate suggest that the latter might be considered as an advantageous therapeutic agent, once they contribute to the reduction of the concentration of those ions inside the mouth.


Assuntos
Clorexidina/análogos & derivados , Cromo/análise , Cobalto/análise , Saliva Artificial/análise , Clorexidina/química , Ligas de Cromo/química , Corrosão , Difusão , Humanos , Conformação Molecular
13.
Molecules ; 26(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33799954

RESUMO

Bacterial strains become resistant to almost all classes of antibiotics, which makes it necessary to look for new substitutes. The non-absorbable ciprofloxacin-biguanide bismuth complex, used locally, may be a good alternative to a conventional therapy. The purpose of this study was to study the structure of the proposed ciprofloxacin (CIP) -bismuth(III)-chlorhexidine (CHX) composite (CIP-Bi-CHX). The spectroscopic techniques such as UV-VIS (ultraviolet-visible) spectroscopy, FTIR (Fourier-transform infrared) spectroscopy and NMR (Nuclear Magnetic Resonance) spectroscopy were used for structure characterization of the hybrid compound. The performed analysis confirmed the presence of the two active components-CIP and CHX and revealed the possible coordination sites of the ligands with bismuth ion in the metallo-organic structure. Spectroscopic study showed that the complexation between Bi(III) and CIP occurs through the carboxylate and ketone groups of the quinolone ring, while CHX combines with the central ion via the biguanide moieties.


Assuntos
Antibacterianos/química , Bismuto/química , Clorexidina/química , Ciprofloxacina/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Espectroscopia de Ressonância Magnética/métodos , Estrutura Molecular , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
14.
Molecules ; 26(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652887

RESUMO

Although several natural plants and mixtures have been known and used over the centuries for their antibacterial activity, few have been thoroughly explored in the field of dentistry. Thus, the aim of this study was to enhance the antimicrobial activity of a conventional glass ionomer cement (GIC) with natural plant extracts. The effect of this alteration on the bond strength and film thickness of glass ionomer cement was evaluated and related to an 0.5% chlorohexidine modified GIC. Olive leaves (Olea europaea), Fig tree (Ficus carica), and the leaves and roots of Miswak (Salvadora persica) were used to prepare an alcoholic extract mixture. The prepared extract mixture after the evaporation of the solvent was used to modify a freeze-dried glass ionomer cement at three different extracts: water mass ratios 1:2, 1:1, and 2:1. An 0.5% chlorhexidine diacetate powder was added to a conventional GIC for the preparation of a positive control group (CHX-GIC) for comparison. The bond strength to dentine was assessed using a material-testing machine at a cross head speed of 0.5 mm/min. Failure mode was analyzed using a stereomicroscope at 12× magnification. The cement film thickness was evaluated in accordance with ISO standard 9917-1. The minimum number of samples in each group was n = 10. Statistical analysis was performed using a Kruskal-Wallis test followed by Dunn's post hoc test for pairwise comparison. There was a statistically insignificant difference between the median shear bond strength (p = 0.046) of the control group (M = 3.4 MPa), and each of the CHX-GIC (M = 1.7 MPa), and the three plant modified groups of 1:2, 1:1, 2:1 (M = 5.1, 3.2, and 4.3 MPa, respectively). The CHX-GIC group showed statistically significant lower median values compared to the three plant-modified groups. Mixed and cohesive failure modes were predominant among all the tested groups. All the tested groups (p < 0.001) met the ISO standard of having less than 25 µm film thickness, with the 2:1 group (M = 24 µm) being statistically the highest among all the other groups. The plant extracts did not alter either the shear bond strength or the film thickness of the GIC and thus might represent a promising additive to GICs.


Assuntos
Anti-Infecciosos/química , Cimentos Dentários/química , Cimentos de Ionômeros de Vidro/química , Extratos Vegetais/farmacologia , Anti-Infecciosos/farmacologia , Clorexidina/química , Clorexidina/farmacologia , Cimentos Dentários/farmacologia , Dentina/química , Dentina/microbiologia , Ficus/química , Cimentos de Ionômeros de Vidro/farmacologia , Humanos , Teste de Materiais , Olea/química , Extratos Vegetais/química , Folhas de Planta/química , Raízes de Plantas/química , Salvadoraceae/química , Resistência ao Cisalhamento , Propriedades de Superfície
15.
J Mater Sci Mater Med ; 31(12): 116, 2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33247427

RESUMO

Literature lacks sufficient data regarding addition of natural antibacterial agents to glass ionomer cement (GICs). Hence, the aim of the study was to increase the antimicrobial properties of GICs through its modification with mixture of plant extracts to be evaluated along with an 0.5% chlorohexidine-modified GIC (CHX-GIC) with regard to biological and compressive strength properties. Conventional GIC (freeze-dried version) and CHX were used. Alcoholic extract of Salvadora persica, Olea europaea, and Ficus carcia leaves were prepared using a Soxhlet extractor for 12 h. The plant extract mixture (PE) was added in three different proportions to the water used for preparation of the dental cement (Group 1:1 PE, 2:1 PE, and 1:2 PE). Specimens were then prepared and tested against the unmodified GIC (control) and the 0.5% CHX-GIC. Chemical analysis of the extract mixture was performed using Gas chromatography-mass spectrometry. Antimicrobial activity was evaluated using agar diffusion assay against Micrococcus luteus and Streptoccocus mutans. Compressive strength was evaluated according to ISO 9917-1:2007 using a Zwick testing machine at a crosshead speed of 0.5 mm/min. Antimicrobial activity against Streptoccocus mutans was significantly increased for all the extract-modified materials compared to the unmodified cement, and the highest concentration was comparable to the CHX-GIC mixture. The activity against Micrococcus luteus was also significantly increased, but only for the material with the highest extract concentration, and here the CHX-GIC group showed statistically the highest antimicrobial activity. Compressive strength results revealed that there was no statistically significant difference between the different mixtures and the control except for the highest tested concentration that showed the highest mean values. The plant extracts (PEs) enhanced the antimicrobial activity against S. mutans and also against M. luteus in the higher concentration while compressive strength was improved by addition of the PE at higher concentrations.


Assuntos
Anti-Infecciosos/farmacologia , Cimentos Dentários , Extratos Vegetais/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos Locais/química , Anti-Infecciosos Locais/farmacologia , Clorexidina/química , Clorexidina/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Força Compressiva/efeitos dos fármacos , Cimentos Dentários/síntese química , Cimentos Dentários/química , Cimentos Dentários/farmacologia , Ficus/química , Cimentos de Ionômeros de Vidro/síntese química , Cimentos de Ionômeros de Vidro/química , Cimentos de Ionômeros de Vidro/farmacologia , Teste de Materiais , Testes de Sensibilidade Microbiana , Micrococcus luteus , Olea/química , Extratos Vegetais/química , Salvadoraceae/química , Streptococcus mutans
16.
Molecules ; 25(2)2020 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-31963668

RESUMO

Chlorhexidine (CHX) and octenidine (OCT), antimicrobial compounds used in oral care products (toothpastes and mouthwashes), were recently revealed to interfere with human sex hormone receptor pathways. Experiments employing model organisms-white-rot fungi Irpex lacteus and Pleurotus ostreatus-were carried out in order to investigate the biodegradability of these endocrine-disrupting compounds and the capability of the fungi and their extracellular enzyme apparatuses to biodegrade CHX and OCT. Up to 70% ± 6% of CHX was eliminated in comparison with a heat-killed control after 21 days of in vivo incubation. An additional in vitro experiment confirmed manganese-dependent peroxidase and laccase are partially responsible for the removal of CHX. Up to 48% ± 7% of OCT was removed in the same in vivo experiment, but the strong sorption of OCT on fungal biomass prevented a clear evaluation of the involvement of the fungi or extracellular enzymes. On the other hand, metabolites indicating the enzymatic transformation of both CHX and OCT were detected and their chemical structures were proposed by means of liquid chromatography-mass spectrometry. Complete biodegradation by the ligninolytic fungi was not achieved for any of the studied analytes, which emphasizes their recalcitrant character with low possibility to be removed from the environment.


Assuntos
Anti-Infecciosos Locais/metabolismo , Biodegradação Ambiental , Clorexidina/metabolismo , Fungos/metabolismo , Piridinas/metabolismo , Clorexidina/química , Assistência Odontológica , Humanos , Iminas , Metabolômica/métodos , Piridinas/química , Transformação Genética
17.
Niger J Clin Pract ; 23(3): 381-385, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32134039

RESUMO

OBJECTIVES: This study aimed to compare the effect of different solutions on the removal of orange-brown precipitate with or without ultrasonic activation. MATERIALS AND METHODS: One hundred and twenty extracted maxillary anterior teeth were instrumented. In experimental groups (n = 10), canals were flushed with 17% EDTA, 10% citric acid, 1% phytic acid, 96% alcohol and distilled water either using syringe irrigation or ultrasonic activation, after creating orange-brown precipitate. Teeth were sectioned longitudinally and subjected to stereomicroscopic analysis. The amount of precipitate was scored and the data were analyzed (P = 0.05). RESULTS: There were no differences detected among the tested solutions (P > 0.05). There was a significant difference between ultrasonically activated irrigation and syringe irrigation for EDTA and distilled water in coronal, middle portions (P < 0.05). CONCLUSIONS: Ultrasonic activation significantly improved the precipitate removal capacity of EDTA and DW. Tested solutions were similarly effective regarding the removal of the precipitate.


Assuntos
Clorexidina/química , Hipoclorito de Sódio/química , Sonicação/métodos , Dente/química , Humanos , Preparo de Canal Radicular
18.
J Mater Sci Mater Med ; 30(12): 132, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31786679

RESUMO

The adhesive systems have the function to establish the connection between the restorative material and dental tissue, therefore it is of fundamental importance, because failures in the adhesive interface can reduce the life of a dental restoration. This study investigated the possibility of using the adhesive layer as a chlorhexidine modified release system evaluating their impact on the properties of these systems as well as evaluating the impact of these systems on immediate and post-aging dentin adhesion. Were used a matrix with BisGMA, UDMA, HEMA and TEGDMA copolymer and clay particles (Dellite 67G); associated with a chlorhexidine and a camphorquinone photoinitiator system. The properties of these systems were evaluated by the XRD, FTIR spectrophotometer, flexural strength, elasticity modulus, drug release, enzymatic inhibition and dentin adhesion resistance. The presence of the clay can raise the mechanical properties of the adhesive systems engendering a more resistant hybrid layer and led to a more sustained release of chlorhexidine in the systems, allowing a longer effective period of MMP-2 inhibition. The hypothesis that the addition of clays as release modulators could increase the effectiveness of these drugs in inhibiting the dentin's MPPs and consequently enhancing the adhesive durability was confirmed. These results indicate that the controlled release of chlorhexidine is able to reduce the process of loss of adhesion presenting itself as a promising system to increase the longevity of dental restorations.


Assuntos
Clorexidina/química , Argila/química , Materiais Dentários , Dentina/química , Liberação Controlada de Fármacos , Materiais Biocompatíveis , Preparações de Ação Retardada , Adesivos Dentinários , Teste de Materiais , Resistência à Tração , Fatores de Tempo
19.
Drug Dev Ind Pharm ; 45(2): 314-322, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30372644

RESUMO

OBJECTIVE: The objective was to evaluate the influencing factors in the fabrication of gelatin matrix (gelatin chips) for drug delivery. The attributes affecting drug release characteristics of the gelatin products were examined. SIGNIFICANCE: Understanding the attributes that affect drug release from gelatin matrix could provide the knowledge base for the development, manufacturing, and performance evaluation of gelatin-based drug products for sustained drug delivery. METHODS: Chlorhexidine (CHX) was the model drug in the gelatin-product testing. The gelatin products were fabricated by two methods: a single-pot mixing of all the components and a two-step gelatin crosslinking followed by drug loading. Different gelatin types (Type A porcine and Type B bovine), glutaraldehyde (GTA) crosslinking conditions, glycerin concentration, and CHX concentration in drug loading and loading time were used to fabricate the products. The cumulative amounts of CHX release from the gelatin products were determined using in vitro release testing (IVRT). RESULTS: The attributes affecting CHX release from the gelatin products were gelatin type, GTA crosslinking, and CHX loading concentration. The fabrication methods (two-step method of gelatin crosslinking and drug loading by equilibration vs. direct mixing of the components) also affected CHX release. Other attributes such as glycerin and CHX loading time did not show significant effects on drug release under the conditions studied. In addition, the results in the two IVRT methods employed in this study were comparable. CONCLUSION: Gelatin products of qualitative (Q1) and quantitative (Q2) differences could lead to different drug release behaviors. Drug release was also affected by the ingredient mixing steps during gelatin chip fabrication.


Assuntos
Clorexidina/administração & dosagem , Clorexidina/química , Desinfetantes/administração & dosagem , Desinfetantes/química , Gelatina/química , Animais , Bovinos , Reagentes de Ligações Cruzadas , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Excipientes , Glutaral/química , Glicerol/química , Suínos
20.
Pharm Dev Technol ; 24(4): 402-409, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30265590

RESUMO

In this study, chlorhexidine-loaded poly(ε-caprolactone) nanospheres (CHX-NS) were prepared and successfully coated on the urinary catheters. Properties of CHX-NS were evaluated including drug loading content and the nanosphere size. Effects of different lyoprotectants for long-term storage of CHX-NS were also investigated. In vitro release study and antibacterial activity were also conducted using 20 cycles coated-urinary catheters. Results showed that the high-pressure emulsification-solvent evaporation technique provided the drug loading content at 1.14 ± 0.16% and the size of nanospheres was 152 ± 37 nm. The suitable lyoprotectant for long-term storage of CHX-NS was sucrose which provided noticeably no aggregation at the degree of reconstitution at 89.95%. The amount of CHX loading on coated catheters was at 4.55 ± 0.31 mg. Drug release from the coated catheters in artificial urine could be prolonged up to 2 weeks and bacteria proliferation was inhibited up to 14 days. These results suggest that the antimicrobial activity of CHX-NS reduces the adherence of the uropathogens to the catheter surface. Chlorhexidine-loaded polymeric nanospheres were fabricated which can be successfully coated on urinary catheters. These systems have potential use for prolonged antimicrobial applications.


Assuntos
Antibacterianos/química , Anti-Infecciosos Locais/química , Caproatos/química , Clorexidina/química , Lactonas/química , Nanosferas/química , Cateteres Urinários , Antibacterianos/administração & dosagem , Anti-Infecciosos Locais/administração & dosagem , Caproatos/administração & dosagem , Clorexidina/administração & dosagem , Avaliação Pré-Clínica de Medicamentos/métodos , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Liofilização/métodos , Lactonas/administração & dosagem , Testes de Sensibilidade Microbiana/métodos , Nanosferas/administração & dosagem , Cateteres Urinários/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA