Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 22(4): e3002561, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568895

RESUMO

Environmental bacteria influence many facets of choanoflagellate biology, yet surprisingly few examples of symbioses exist. We need to find out why, as choanoflagellates can help us to understand how symbiosis may have shaped the early evolution of animals.


Assuntos
Coanoflagelados , Animais , Coanoflagelados/genética , Simbiose , Bactérias
2.
Cell ; 142(5): 661-7, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20813250

RESUMO

Tyrosine phosphorylation controls many cellular functions. Yet the three-part toolkit that regulates phosphotyrosine signaling-tyrosine kinases, phosphotyrosine phosphatases, and Src Homology 2 (SH2) domains-is a relatively new innovation. Genomic analyses reveal how this revolutionary signaling system may have originated and why it rapidly became critical to metazoans.


Assuntos
Evolução Molecular , Fosfotirosina/metabolismo , Transdução de Sinais , Animais , Coanoflagelados/genética , Coanoflagelados/metabolismo , Proteínas Tirosina Quinases/metabolismo
3.
Mol Biol Evol ; 39(4)2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277960

RESUMO

Neuropeptides are a diverse class of signaling molecules in metazoans. They occur in all animals with a nervous system and also in neuron-less placozoans. However, their origin has remained unclear because no neuropeptide shows deep homology across lineages, and none have been found in sponges. Here, we identify two neuropeptide precursors, phoenixin (PNX) and nesfatin, with broad evolutionary conservation. By database searches, sequence alignments, and gene-structure comparisons, we show that both precursors are present in bilaterians, cnidarians, ctenophores, and sponges. We also found PNX and a secreted nesfatin precursor homolog in the choanoflagellate Salpingoeca rosetta. PNX, in particular, is highly conserved, including its cleavage sites, suggesting that prohormone processing occurs also in choanoflagellates. In addition, based on phyletic patterns and negative pharmacological assays, we question the originally proposed GPR-173 (SREB3) as a PNX receptor. Our findings revealed that secreted neuropeptide homologs derived from longer precursors have premetazoan origins and thus evolved before neurons.


Assuntos
Coanoflagelados , Ctenóforos , Neuropeptídeos , Animais , Evolução Biológica , Coanoflagelados/genética , Sistema Nervoso , Neuropeptídeos/genética
4.
Development ; 147(23)2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33272929

RESUMO

Almost all animals undergo embryonic development, going from a single-celled zygote to a complex multicellular adult. We know that the patterning and morphogenetic processes involved in development are deeply conserved within the animal kingdom. However, the origins of these developmental processes are just beginning to be unveiled. Here, we focus on how the protist lineages sister to animals are reshaping our view of animal development. Most intriguingly, many of these protistan lineages display transient multicellular structures, which are governed by similar morphogenetic and gene regulatory processes as animal development. We discuss here two potential alternative scenarios to explain the origin of animal embryonic development: either it originated concomitantly at the onset of animals or it evolved from morphogenetic processes already present in their unicellular ancestors. We propose that an integrative study of several unicellular taxa closely related to animals will allow a more refined picture of how the last common ancestor of animals underwent embryonic development.


Assuntos
Evolução Biológica , Coanoflagelados/crescimento & desenvolvimento , Desenvolvimento Embrionário/genética , Morfogênese/genética , Animais , Coanoflagelados/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Mamíferos/genética , Filogenia , Zigoto/crescimento & desenvolvimento
5.
Anim Cogn ; 26(6): 1767-1782, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37067637

RESUMO

All animals evolved from a single lineage of unicellular precursors more than 600 million years ago. Thus, the biological and genetic foundations for animal sensation, cognition and behavior must necessarily have arisen by modifications of pre-existing features in their unicellular ancestors. Given that the single-celled ancestors of the animal kingdom are extinct, the only way to reconstruct how these features evolved is by comparing the biology and genomic content of extant animals to their closest living relatives. Here, we reconstruct the Umwelt (the subjective, perceptive world) inhabited by choanoflagellates, a group of unicellular (or facultatively multicellular) aquatic microeukaryotes that are the closest living relatives of animals. Although behavioral research on choanoflagellates remains patchy, existing evidence shows that they are capable of chemosensation, photosensation and mechanosensation. These processes often involve specialized sensorimotor cellular appendages (cilia, microvilli, and/or filopodia) that resemble those that underlie perception in most animal sensory cells. Furthermore, comparative genomics predicts an extensive "sensory molecular toolkit" in choanoflagellates, which both provides a potential basis for known behaviors and suggests the existence of a largely undescribed behavioral complexity that presents exciting avenues for future research. Finally, we discuss how facultative multicellularity in choanoflagellates might help us understand how evolution displaced the locus of decision-making from a single cell to a collective, and how a new space of behavioral complexity might have become accessible in the process.


Assuntos
Coanoflagelados , Animais , Coanoflagelados/genética , Sensação
6.
PLoS Biol ; 17(4): e3000226, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30978201

RESUMO

Although collar cells are conserved across animals and their closest relatives, the choanoflagellates, little is known about their ancestry, their subcellular architecture, or how they differentiate. The choanoflagellate Salpingoeca rosetta expresses genes necessary for animal development and can alternate between unicellular and multicellular states, making it a powerful model for investigating the origin of animal multicellularity and mechanisms underlying cell differentiation. To compare the subcellular architecture of solitary collar cells in S. rosetta with that of multicellular 'rosette' colonies and collar cells in sponges, we reconstructed entire cells in 3D through transmission electron microscopy on serial ultrathin sections. Structural analysis of our 3D reconstructions revealed important differences between single and colonial choanoflagellate cells, with colonial cells exhibiting a more amoeboid morphology consistent with higher levels of macropinocytotic activity. Comparison of multiple reconstructed rosette colonies highlighted the variable nature of cell sizes, cell-cell contact networks, and colony arrangement. Importantly, we uncovered the presence of elongated cells in some rosette colonies that likely represent a distinct and differentiated cell type, pointing toward spatial cell differentiation. Intercellular bridges within choanoflagellate colonies displayed a variety of morphologies and connected some but not all neighbouring cells. Reconstruction of sponge choanocytes revealed ultrastructural commonalities but also differences in major organelle composition in comparison to choanoflagellates. Together, our comparative reconstructions uncover the architecture of cell differentiation in choanoflagellates and sponge choanocytes and constitute an important step in reconstructing the cell biology of the last common ancestor of animals.


Assuntos
Coanoflagelados/fisiologia , Morfogênese/fisiologia , Poríferos/fisiologia , Animais , Diferenciação Celular/genética , Coanoflagelados/genética , Coanoflagelados/metabolismo , Microscopia Eletrônica de Transmissão , Filogenia , Poríferos/genética
7.
Mol Biol Evol ; 37(2): 379-394, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31589243

RESUMO

Eph receptor (Eph) and ephrin signaling regulate fundamental developmental processes through both forward and reverse signaling triggered upon cell-cell contact. In vertebrates, they are both classified into classes A and B, and some representatives have been identified in many metazoan groups, where their expression and functions have been well studied. We have extended previous phylogenetic analyses and examined the presence of Eph and ephrins in the tree of life to determine their origin and evolution. We have found that 1) premetazoan choanoflagellates may already have rudimental Eph/ephrin signaling as they have an Eph-/ephrin-like pair and homologs of downstream-signaling genes; 2) both forward- and reverse-downstream signaling might already occur in Porifera since sponges have most genes involved in these types of signaling; 3) the nonvertebrate metazoan Eph is a type-B receptor that can bind ephrins regardless of their membrane-anchoring structure, glycosylphosphatidylinositol, or transmembrane; 4) Eph/ephrin cross-class binding is specific to Gnathostomata; and 5) kinase-dead Eph receptors can be traced back to Gnathostomata. We conclude that Eph/ephrin signaling is of older origin than previously believed. We also examined the presence of protein domains associated with functional characteristics and the appearance and conservation of downstream-signaling pathways to understand the original and derived functions of Ephs and ephrins. We find that the evolutionary history of these gene families points to an ancestral function in cell-cell interactions that could contribute to the emergence of multicellularity and, in particular, to the required segregation of cell populations.


Assuntos
Efrinas/genética , Efrinas/metabolismo , Receptores da Família Eph/genética , Receptores da Família Eph/metabolismo , Animais , Comunicação Celular , Coanoflagelados/genética , Coanoflagelados/metabolismo , Evolução Molecular , Humanos , Filogenia , Poríferos/genética , Poríferos/metabolismo , Transdução de Sinais , Vertebrados/genética , Vertebrados/metabolismo
8.
Annu Rev Genet ; 47: 509-37, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24050174

RESUMO

The first animals arose more than six hundred million years ago, yet they left little impression in the fossil record. Nonetheless, the cell biology and genome composition of the first animal, the Urmetazoan, can be reconstructed through the study of phylogenetically relevant living organisms. Comparisons among animals and their unicellular and colonial relatives reveal that the Urmetazoan likely possessed a layer of epithelium-like collar cells, preyed on bacteria, reproduced by sperm and egg, and developed through cell division, cell differentiation, and invagination. Although many genes involved in development, body patterning, immunity, and cell-type specification evolved in the animal stem lineage or after animal origins, several gene families critical for cell adhesion, signaling, and gene regulation predate the origin of animals. The ancestral functions of these and other genes may eventually be revealed through studies of gene and genome function in early-branching animals and their closest non-animal relatives.


Assuntos
Evolução Biológica , Eucariotos/fisiologia , Animais , Adesão Celular , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/fisiologia , Coanoflagelados/classificação , Coanoflagelados/citologia , Coanoflagelados/genética , Cnidários/classificação , Cnidários/citologia , Cnidários/embriologia , Cnidários/genética , Ctenóforos/classificação , Ctenóforos/citologia , Ctenóforos/embriologia , Ctenóforos/genética , Eucariotos/classificação , Eucariotos/genética , Fósseis , Interação Gene-Ambiente , Genes , Genoma , Filogenia , Poríferos/classificação , Poríferos/citologia , Poríferos/embriologia , Poríferos/genética , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/fisiologia , Relação Estrutura-Atividade
9.
Int J Mol Sci ; 21(2)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936900

RESUMO

Synthesis of the CCA end of essential tRNAs is performed either by CCA-adding enzymes or as a collaboration between enzymes restricted to CC- and A-incorporation. While the occurrence of such tRNA nucleotidyltransferases with partial activities seemed to be restricted to Bacteria, the first example of such split CCA-adding activities was reported in Schizosaccharomyces pombe. Here, we demonstrate that the choanoflagellate Salpingoeca rosetta also carries CC- and A-adding enzymes. However, these enzymes have distinct evolutionary origins. Furthermore, the restricted activity of the eukaryotic CC-adding enzymes has evolved in a different way compared to their bacterial counterparts. Yet, the molecular basis is very similar, as highly conserved positions within a catalytically important flexible loop region are missing in the CC-adding enzymes. For both the CC-adding enzymes from S. rosetta as well as S. pombe, introduction of the loop elements from closely related enzymes with full activity was able to restore CCA-addition, corroborating the significance of this loop in the evolution of bacterial as well as eukaryotic tRNA nucleotidyltransferases. Our data demonstrate that partial CC- and A-adding activities in Bacteria and Eukaryotes are based on the same mechanistic principles but, surprisingly, originate from different evolutionary events.


Assuntos
Eucariotos/enzimologia , Eucariotos/genética , Evolução Molecular , RNA Nucleotidiltransferases/genética , Sequência de Aminoácidos , Bactérias/enzimologia , Bactérias/genética , Domínio Catalítico , Coanoflagelados/enzimologia , Coanoflagelados/genética , Células Eucarióticas/enzimologia , Filogenia , RNA Nucleotidiltransferases/classificação , RNA Nucleotidiltransferases/metabolismo , RNA de Transferência , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Alinhamento de Sequência
10.
Mol Biol Evol ; 35(10): 2499-2511, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30169693

RESUMO

Choanoflagellates and filastereans are the closest known single celled relatives of Metazoa within Holozoa and provide insight into how animals evolved from their unicellular ancestors. Codon usage bias has been extensively studied in metazoans, with both natural selection and mutation pressure playing important roles in different species. The disparate nature of metazoan codon usage patterns prevents the reconstruction of ancestral traits. However, traits conserved across holozoan protists highlight characteristics in the unicellular ancestors of Metazoa. Presented here are the patterns of codon usage in the choanoflagellates Monosiga brevicollis and Salpingoeca rosetta, as well as the filasterean Capsaspora owczarzaki. Codon usage is shown to be remarkably conserved. Highly biased genes preferentially use GC-ending codons, however there is limited evidence this is driven by local mutation pressure. The analyses presented provide strong evidence that natural selection, for both translational accuracy and efficiency, dominates codon usage bias in holozoan protists. In particular, the signature of selection for translational accuracy can be detected even in the most weakly biased genes. Biased codon usage is shown to have coevolved with the tRNA species, with optimal codons showing complementary binding to the highest copy number tRNA genes. Furthermore, tRNA modification is shown to be a common feature for amino acids with higher levels of degeneracy and highly biased genes show a strong preference for using modified tRNAs in translation. The translationally optimal codons defined here will be of benefit to future transgenics work in holozoan protists, as their use should maximise protein yields from edited transgenes.


Assuntos
Coanoflagelados/genética , Códon , Animais , Expressão Gênica , Mutação , RNA de Transferência/genética , Seleção Genética
11.
Biochem J ; 475(6): 1121-1128, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29483295

RESUMO

It is since many years textbook knowledge that the concentration of the second messenger cGMP is regulated in animal rod and cone cells by type II rhodopsins via a G-protein signaling cascade. Microbial rhodopsins with enzymatic activity for regulation of cGMP concentration were only recently discovered: in 2014 light-activated guanylyl-cyclase opsins in fungi and in 2017 a novel rhodopsin phosphodiesterase (RhoPDE) in the protist Salpingoeca rosetta (SrRhoPDE). The light regulation of SrRhoPDE, however, seemed very weak or absent. Here, we present strong evidence for light regulation by studying SrRhoPDE, expressed in Xenopus laevis oocytes, at different substrate concentrations. Hydrolysis of cGMP shows an ∼100-fold higher turnover than that of cAMP. Light causes a strong decrease in the Km value for cGMP from 80 to 13 µM but increases the maximum turnover only by ∼30%. The PDE activity for cAMP is similarly enhanced by light at low substrate concentrations. Illumination does not affect the cGMP degradation of Lys296 mutants that are not able to form a covalent bond of Schiff base type to the chromophore retinal. We demonstrate that SrRhoPDE shows cytosolic N- and C-termini, most likely via an eight-transmembrane helix structure. SrRhoPDE is a new optogenetic tool for light-regulated cGMP manipulation which might be further improved by genetic engineering.


Assuntos
Coanoflagelados/enzimologia , Luz , Diester Fosfórico Hidrolases/metabolismo , Rodopsinas Microbianas/metabolismo , Animais , Coanoflagelados/genética , Organismos Geneticamente Modificados , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Rodopsinas Microbianas/química , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Especificidade por Substrato/efeitos da radiação , Xenopus laevis
12.
J Biol Chem ; 292(18): 7531-7541, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28302718

RESUMO

Photoactivated adenylyl cyclase (PAC) and guanylyl cyclase rhodopsin increase the concentrations of intracellular cyclic nucleotides upon illumination, serving as promising second-generation tools in optogenetics. To broaden the arsenal of such tools, it is desirable to have light-activatable enzymes that can decrease cyclic nucleotide concentrations in cells. Here, we report on an unusual microbial rhodopsin that may be able to meet the demand. It is found in the choanoflagellate Salpingoeca rosetta and contains a C-terminal cyclic nucleotide phosphodiesterase (PDE) domain. We examined the enzymatic activity of the protein (named Rh-PDE) both in HEK293 membranes and whole cells. Although Rh-PDE was constitutively active in the dark, illumination increased its hydrolytic activity 1.4-fold toward cGMP and 1.6-fold toward cAMP, as measured in isolated crude membranes. Purified full-length Rh-PDE displayed maximal light absorption at 492 nm and formed the M intermediate with the deprotonated Schiff base upon illumination. The M state decayed to the parent spectral state in 7 s, producing long-lasting activation of the enzyme domain with increased activity. We discuss a possible mechanism of the Rh-PDE activation by light. Furthermore, Rh-PDE decreased cAMP concentration in HEK293 cells in a light-dependent manner and could do so repeatedly without losing activity. Thus, Rh-PDE may hold promise as a potential optogenetic tool for light control of intracellular cyclic nucleotides (e.g. to study cyclic nucleotide-associated signal transduction cascades).


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Coanoflagelados/enzimologia , Luz , Proteínas de Protozoários/metabolismo , Rodopsina/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/genética , Coanoflagelados/genética , Células HEK293 , Humanos , Domínios Proteicos , Proteínas de Protozoários/genética , Rodopsina/genética
13.
Biochemistry ; 56(43): 5812-5822, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28976747

RESUMO

RhoPDE is a type I rhodopsin/phosphodiesterase gene fusion product from the choanoflagellate Salpingoeca rosetta. The gene was discovered around the time that a similar type I rhodopsin/guanylyl cyclase fusion protein, RhoGC, was shown to control phototaxis of an aquatic fungus through a cGMP signaling pathway. RhoPDE has potential as an optogenetic tool catalyzing the hydrolysis of cyclic nucleotides. Here we provide an expression and purification system for RhoPDE, as well as a crystal structure of the C-terminal phosphodiesterase catalytic domain. We show that RhoPDE contains an even number of transmembrane segments, with N- and C-termini both located on the cytoplasmic surface of the cell membrane. The purified protein exhibits an absorption maximum at 490 nm in the dark state, which shifts to 380 nm upon exposure to light. The protein acts as a cGMP-selective phosphodiesterase. However, the activity does not appear to be modulated by light. The protein is also active with cAMP as a substrate, but with a roughly 5-7-fold lower kcat. A truncation consisting solely of the phosphodiesterase domain is also active with a kcat for cGMP roughly 6-9-fold lower than that of the full-length protein. The isolated PDE domain was crystallized, and the X-ray structure showed the protein to be a dimer similar to human PDE9. We anticipate that the purification system introduced here will enable further structural and biochemical experiments to improve our understanding of the function and mechanism of this unique fusion protein.


Assuntos
Coanoflagelados/enzimologia , Diester Fosfórico Hidrolases , Proteínas de Protozoários , Coanoflagelados/genética , Cristalografia por Raios X , Expressão Gênica , Humanos , Diester Fosfórico Hidrolases/biossíntese , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/isolamento & purificação , Domínios Proteicos , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação
14.
Biochim Biophys Acta Proteins Proteom ; 1865(1): 107-112, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27693250

RESUMO

Nitrile hydratase (NHase), an industrially important enzyme that catalyzes the hydration of nitriles to their corresponding amides, has only been characterized from prokaryotic microbes. The putative NHase from the eukaryotic unicellular choanoflagellate organism Monosiga brevicollis (MbNHase) was heterologously expressed in Escherichia coli. The resulting enzyme expressed as a single polypeptide with fused α- and ß-subunits linked by a seventeen-histidine region. Size-exclusion chromatography indicated that MbNHase exists primarily as an (αß)2 homodimer in solution, analogous to the α2ß2 homotetramer architecture observed for prokaryotic NHases. The NHase enzyme contained its full complement of Co(III) and was fully functional without the co-expression of an activator protein or E. coli GroES/EL molecular chaperones. The homology model of MbNHase was developed identifying Cys400, Cys403, and Cys405 as active site ligands. The results presented here provide the first experimental data for a mature and active eukaryotic NHase with fused subunits. Since this new member of the NHase family is expressed from a single gene without the requirement of an activator protein, it represents an alternative biocatalyst for industrial syntheses of important amide compounds.


Assuntos
Coanoflagelados/enzimologia , Cobalto/química , Hidroliases/química , Metaloproteínas/química , Proteínas de Protozoários/química , Sequência de Aminoácidos , Coanoflagelados/genética , Cristalografia por Raios X , Hidroliases/genética , Metaloproteínas/genética , Modelos Moleculares , Conformação Proteica em Folha beta , Proteínas de Protozoários/genética , Espectrofotometria Ultravioleta
15.
Mol Phylogenet Evol ; 107: 166-178, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27765632

RESUMO

Recent studies have shown that molecular phylogenies of the choanoflagellates (Class Choanoflagellatea) are in disagreement with their traditional taxonomy, based on morphology, and that Choanoflagellatea requires considerable taxonomic revision. Furthermore, phylogenies suggest that the morphological and ecological evolution of the group is more complex than has previously been recognized. Here we address the taxonomy of the major choanoflagellate order Craspedida, by erecting four new genera. The new genera are shown to be morphologically, ecologically and phylogenetically distinct from other choanoflagellate taxa. Furthermore, we name five novel craspedid species, as well as formally describe ten species that have been shown to be either misidentified or require taxonomic revision. Our revised phylogeny, including 18 new species and sequence data for two additional genes, provides insights into the morphological and ecological evolution of the choanoflagellates. We examine the distribution within choanoflagellates of these two additional genes, EF-1A and EFL, closely related translation GTPases which are required for protein synthesis. Mapping the presence and absence of these genes onto the phylogeny highlights multiple events of gene loss within the choanoflagellates.


Assuntos
Coanoflagelados/genética , Genes de Protozoários , Filogenia , Animais , Coanoflagelados/classificação , DNA Ribossômico/genética , Evolução Molecular , Água Doce , Funções Verossimilhança , Água do Mar , Especificidade da Espécie
16.
EMBO Rep ; 16(10): 1308-17, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26338476

RESUMO

Complexins are synaptic SNARE complex-binding proteins that cooperate with synaptotagmins in activating Ca(2+)-stimulated, synaptotagmin-dependent synaptic vesicle exocytosis and in clamping spontaneous, synaptotagmin-independent synaptic vesicle exocytosis. Here, we show that complexin sequences are conserved in some non-metazoan unicellular organisms and in all metazoans, suggesting that complexins are a universal feature of metazoans that predate metazoan evolution. We show that complexin from Nematostella vectensis, a cnidarian sea anemone far separated from mammals in metazoan evolution, functionally replaces mouse complexins in activating Ca(2+)-triggered exocytosis, but is unable to clamp spontaneous exocytosis. Thus, the activating function of complexins is likely conserved throughout metazoan evolution.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Evolução Biológica , Coanoflagelados/genética , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica/genética , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Coanoflagelados/química , Sequência Conservada , Exocitose , Camundongos , Filogenia , Estrutura Secundária de Proteína , Proteínas SNARE , Transmissão Sináptica , Sinaptotagminas/genética , Sinaptotagminas/fisiologia
17.
Nucleic Acids Res ; 43(14): 6739-46, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26117543

RESUMO

Transfer RNAs (tRNAs) require the absolutely conserved sequence motif CCA at their 3'-ends, representing the site of aminoacylation. In the majority of organisms, this trinucleotide sequence is not encoded in the genome and thus has to be added post-transcriptionally by the CCA-adding enzyme, a specialized nucleotidyltransferase. In eukaryotic genomes this ubiquitous and highly conserved enzyme family is usually represented by a single gene copy. Analysis of published sequence data allows us to pin down the unusual evolution of eukaryotic CCA-adding enzymes. We show that the CCA-adding enzymes of animals originated from a horizontal gene transfer event in the stem lineage of Holozoa, i.e. Metazoa (animals) and their unicellular relatives, the Choanozoa. The tRNA nucleotidyltransferase, acquired from an α-proteobacterium, replaced the ancestral enzyme in Metazoa. However, in Choanoflagellata, the group of Choanozoa that is closest to Metazoa, both the ancestral and the horizontally transferred CCA-adding enzymes have survived. Furthermore, our data refute a mitochondrial origin of the animal tRNA nucleotidyltransferases.


Assuntos
Alphaproteobacteria/genética , Evolução Molecular , Transferência Genética Horizontal , RNA Nucleotidiltransferases/genética , Alphaproteobacteria/classificação , Animais , Coanoflagelados/genética , Eucariotos/classificação , Eucariotos/genética , Filogenia
18.
Nucleic Acids Res ; 42(13): 8243-57, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24981511

RESUMO

Cyclic GMP-AMP (cGAMP) synthase (cGAS) is recently identified as a cytosolic DNA sensor and generates a non-canonical cGAMP that contains G(2',5')pA and A(3',5')pG phosphodiester linkages. cGAMP activates STING which triggers innate immune responses in mammals. However, the evolutionary functions and origins of cGAS and STING remain largely elusive. Here, we carried out comprehensive evolutionary analyses of the cGAS-STING pathway. Phylogenetic analysis of cGAS and STING families showed that their origins could be traced back to a choanoflagellate Monosiga brevicollis. Modern cGAS and STING may have acquired structural features, including zinc-ribbon domain and critical amino acid residues for DNA binding in cGAS as well as carboxy terminal tail domain for transducing signals in STING, only recently in vertebrates. In invertebrates, cGAS homologs may not act as DNA sensors. Both proteins cooperate extensively, have similar evolutionary characteristics, and thus may have co-evolved during metazoan evolution. cGAS homologs and a prokaryotic dinucleotide cyclase for canonical cGAMP share conserved secondary structures and catalytic residues. Therefore, non-mammalian cGAS may function as a nucleotidyltransferase and could produce cGAMP and other cyclic dinucleotides. Taken together, assembling signaling components of the cGAS-STING pathway onto the eukaryotic evolutionary map illuminates the functions and origins of this innate immune pathway.


Assuntos
Evolução Molecular , Proteínas de Membrana/química , Nucleotidiltransferases/química , Animais , Coanoflagelados/genética , Proteínas de Ligação a DNA/química , Humanos , Proteínas de Membrana/classificação , Camundongos , Nematoides/genética , Nucleotidiltransferases/classificação , Filogenia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Transdução de Sinais
19.
Traffic ; 14(6): 636-49, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23433073

RESUMO

The organelle paralogy hypothesis is one model for the acquisition of nonendosymbiotic organelles, generated from molecular evolutionary analyses of proteins encoding specificity in the membrane traffic system. GTPase activating proteins (GAPs) for the ADP-ribosylation factor (Arfs) GTPases are additional regulators of the kinetics and fidelity of membrane traffic. Here we describe molecular evolutionary analyses of the Arf GAP protein family. Of the 10 subfamilies previously defined in humans, we find that 5 were likely present in the last eukaryotic common ancestor. Of the 3 most recently derived subfamilies, 1 was likely present in the ancestor of opisthokonts (animals and fungi) and apusomonads (flagellates classified as the sister lineage to opisthokonts), while 2 arose in the holozoan lineage. We also propose to have identified a novel ancient subfamily (ArfGAPC2), present in diverse eukaryotes but which is lost frequently, including in the opisthokonts. Surprisingly few ancient domains accompanying the ArfGAP domain were identified, in marked contrast to the extensively decorated human Arf GAPs. Phylogenetic analyses of the subfamilies reveal patterns of single and multiple gene duplications specific to the Holozoa, to some degree mirroring evolution of Arf GAP targets, the Arfs. Conservation, and lack thereof, of various residues in the ArfGAP structure provide contextualization of previously identified functional amino acids and their application to Arf GAP biology in general. Overall, our results yield insights into current Arf GAP biology, reveal complexity in the ancient eukaryotic ancestor and integrate the Arf GAP family into a proposed mechanism for the evolution of nonendosymbiotic organelles.


Assuntos
Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/química , Fatores de Ribosilação do ADP/classificação , Sequência de Aminoácidos , Animais , Coanoflagelados/química , Coanoflagelados/genética , Sequência Conservada , Evolução Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Fungos/química , Fungos/genética , Duplicação Gênica , Dados de Sequência Molecular , Família Multigênica , Filogenia , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/classificação , Proteínas de Protozoários/genética , Homologia de Sequência
20.
J Mol Evol ; 80(5-6): 278-91, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25987356

RESUMO

Cathepsins are enzymes capable of degrading proteins intracellularly. They occur ubiquitously in opisthokonts, but their potential to provide insight across the evolutionary transition from protists to metazoans remains poorly investigated. Here, we explore the evolution of cathepsins using comparative analyses of transcriptomic datasets, focusing on both, protists (closely related to metazoans), and early divergent animals (i.e., sponges). We retrieved DNA sequences of nine cathepsin types (B, C, D, F, H, L, O, Z, and silicatein) in the surveyed taxa. In choanoflagellates, only five types (B, C, L, O, Z) were identified, all of them being also found in sponges, indicating that while all cathepsins present in protists were conserved across metazoan lineages, cathepsins F and H (and probably D) are metazoan acquisitions. The phylogeny of cysteine protease cathepsins (excluding cathepsin D) revealed two major lineages: lineage B (cathepsins B and C) and lineage L (cathepsins F, H, L, O, Z). In the latter lineage, a mutation at the active site of cathepsin L gave rise to silicatein, an enzyme exclusively known to date from siliceous sponges and involved in the production of their silica spicules. However, we found that several sponges with siliceous spicules did not express silicatein genes and that, in contrast, several aspiculate sponges did contain silicatein genes. Our results suggest that the ability to silicify may have evolved independently within sponges, some of them losing this capacity secondarily. We also show that most phylogenies based on cathepsin and silicatein genes (except for that of cathepsin O) failed to recover the major lineages of sponges.


Assuntos
Catepsinas/genética , Coanoflagelados/genética , Evolução Molecular , Poríferos/genética , Animais , Domínio Catalítico , Catepsinas/metabolismo , Coanoflagelados/classificação , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Mutação , Filogenia , Poríferos/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA