Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
N Engl J Med ; 389(13): 1191-1202, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37754284

RESUMO

BACKGROUND: Although the clinical efficacy of antimalarial artemisinin-based combination therapies in Africa remains high, the recent emergence of partial resistance to artemisinin in Plasmodium falciparum on the continent is troubling, given the lack of alternative treatments. METHODS: In this study, we used data from drug-efficacy studies conducted between 2016 and 2019 that evaluated 3-day courses of artemisinin-based combination therapy (artesunate-amodiaquine or artemether-lumefantrine) for uncomplicated malaria in Eritrea to estimate the percentage of patients with day-3 positivity (i.e., persistent P. falciparum parasitemia 3 days after the initiation of therapy). We also assayed parasites for mutations in Pfkelch13 as predictive markers of partial resistance to artemisinin and screened for deletions in hrp2 and hrp3 that result in variable performance of histidine rich protein 2 (HRP2)-based rapid diagnostic tests for malaria. RESULTS: We noted an increase in the percentage of patients with day-3 positivity from 0.4% (1 of 273) in 2016 to 1.9% (4 of 209) in 2017 and 4.2% (15 of 359) in 2019. An increase was also noted in the prevalence of the Pfkelch13 R622I mutation, which was detected in 109 of 818 isolates before treatment, from 8.6% (24 of 278) in 2016 to 21.0% (69 of 329) in 2019. The odds of day-3 positivity increased by a factor of 6.2 (95% confidence interval, 2.5 to 15.5) among the patients with Pfkelch13 622I variant parasites. Partial resistance to artemisinin, as defined by the World Health Organization, was observed in Eritrea. More than 5% of the patients younger than 15 years of age with day-3 positivity also had parasites that carried Pfkelch13 R622I. In vitro, the R622I mutation conferred a low level of resistance to artemisinin when edited into NF54 and Dd2 parasite lines. Deletions in both hrp2 and hrp3 were identified in 16.9% of the parasites that carried the Pfkelch13 R622I mutation, which made them potentially undetectable by HRP2-based rapid diagnostic tests. CONCLUSIONS: The emergence and spread of P. falciparum lineages with both Pfkelch13-mediated partial resistance to artemisinin and deletions in hrp2 and hrp3 in Eritrea threaten to compromise regional malaria control and elimination campaigns. (Funded by the Bill and Melinda Gates Foundation and others; Australian New Zealand Clinical Trials Registry numbers, ACTRN12618001223224, ACTRN12618000353291, and ACTRN12619000859189.).


Assuntos
Antimaláricos , Combinação Arteméter e Lumefantrina , Resistência a Medicamentos , Malária Falciparum , Plasmodium falciparum , Humanos , Amodiaquina/administração & dosagem , Amodiaquina/farmacologia , Amodiaquina/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/farmacologia , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/administração & dosagem , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Resistência a Medicamentos/genética , Eritreia/epidemiologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Prevalência
2.
Clin Infect Dis ; 78(2): 445-452, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-38019958

RESUMO

BACKGROUND: Recent cases of clinical failure in malaria patients in the United Kingdom (UK) treated with artemether-lumefantrine have implications for malaria chemotherapy worldwide. METHODS: Parasites were isolated from an index case of confirmed Plasmodium falciparum treatment failure after standard treatment, and from comparable travel-acquired UK malaria cases. Drug susceptibility in vitro and genotypes at 6 resistance-associated loci were determined for all parasite isolates and compared with clinical outcomes for each parasite donor. RESULTS: A traveler, who returned to the UK from Uganda in 2022 with Plasmodium falciparum malaria, twice failed treatment with full courses of artemether-lumefantrine. Parasites from the patient exhibited significantly reduced susceptibility to artemisinin (ring-stage survival, 17.3% [95% confidence interval {CI}, 13.6%-21.1%]; P < .0001) and lumefantrine (effective concentration preventing 50% of growth = 259.4 nM [95% CI, 130.6-388.2 nM]; P = .001). Parasite genotyping identified an allele of pfk13 encoding both the A675V variant in the Pfk13 propeller domain and a novel L145V nonpropeller variant. In vitro susceptibility testing of 6 other P. falciparum lines of Ugandan origin identified reduced susceptibility to artemisinin and lumefantrine in 1 additional line, also from a 2022 treatment failure case. These parasites did not harbor a pfk13 propeller domain variant but rather the novel nonpropeller variant T349I. Variant alleles of pfubp1, pfap2mu, and pfcoronin were also identified among the 7 parasite lines. CONCLUSIONS: We confirm, in a documented case of artemether-lumefantrine treatment failure imported from Uganda, the presence of pfk13 mutations encoding L145V and A675V. Parasites with reduced susceptibility to both artemisinin and lumefantrine may be emerging in Uganda.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Humanos , Lumefantrina/farmacologia , Lumefantrina/uso terapêutico , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/farmacologia , Combinação Arteméter e Lumefantrina/uso terapêutico , Uganda , Resistência a Medicamentos , Artemeter/farmacologia , Artemeter/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Falha de Tratamento , Reino Unido , Proteínas de Protozoários/genética
3.
Malar J ; 23(1): 92, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570791

RESUMO

BACKGROUND: Artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) are the currently recommended first- and second-line therapies for uncomplicated Plasmodium falciparum infections in Togo. This study assessed the efficacy of these combinations, the proportion of Day3-positive patients (D3 +), the proportion of molecular markers associated with P. falciparum resistance to anti-malarial drugs, and the variable performance of HRP2-based malaria rapid diagnostic tests (RDTs). METHODS: A single arm prospective study evaluating the efficacy of AL and DP was conducted at two sites (Kouvé and Anié) from September 2021 to January 2022. Eligible children were enrolled, randomly assigned to treatment at each site and followed up for 42 days after treatment initiation. The primary endpoint was polymerase chain reaction (PCR) adjusted adequate clinical and parasitological response (ACPR). At day 0, samples were analysed for mutations in the Pfkelch13, Pfcrt, Pfmdr-1, dhfr, dhps, and deletions in the hrp2/hrp3 genes. RESULTS: A total of 179 and 178 children were included in the AL and DP groups, respectively. After PCR correction, cure rates of patients treated with AL were 97.5% (91.4-99.7) at day 28 in Kouvé and 98.6% (92.4-100) in Anié, whereas 96.4% (CI 95%: 89.1-98.8) and 97.3% (CI 95%: 89.5-99.3) were observed at day 42 in Kouvé and Anié, respectively. The cure rates of patients treated with DP at day 42 were 98.9% (CI 95%: 92.1-99.8) in Kouvé and 100% in Anié. The proportion of patients with parasites on day 3 (D3 +) was 8.5% in AL and 2.6% in DP groups in Anié and 4.3% in AL and 2.1% DP groups in Kouvé. Of the 357 day 0 samples, 99.2% carried the Pfkelch13 wild-type allele. Two isolates carried nonsynonymous mutations not known to be associated with artemisinin partial resistance (ART-R) (A578S and A557S). Most samples carried the Pfcrt wild-type allele (97.2%). The most common Pfmdr-1 allele was the single mutant 184F (75.6%). Among dhfr/dhps mutations, the quintuple mutant haplotype N51I/C59R/S108N + 437G/540E, which is responsible for SP treatment failure in adults and children, was not detected. Single deletions in hrp2 and hrp3 genes were detected in 1/357 (0.3%) and 1/357 (0.3%), respectively. Dual hrp2/hrp3 deletions, which could affect the performances of HRP2-based RDTs, were not observed. CONCLUSION: The results of this study confirm that the AL and DP treatments are highly effective. The absence of the validated Pfkelch13 mutants in the study areas suggests the absence of ART -R, although a significant proportion of D3 + cases were found. The absence of dhfr/dhps quintuple or sextuple mutants (quintuple + 581G) supports the continued use of SP for IPTp during pregnancy and in combination with amodiaquine for seasonal malaria chemoprevention. TRIAL REGISTRATION: ACTRN12623000344695.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Piperazinas , Quinolinas , Criança , Adulto , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Combinação Arteméter e Lumefantrina/farmacologia , Prevalência , Togo/epidemiologia , Estudos Prospectivos , Artemeter/uso terapêutico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária/tratamento farmacológico , Resistência a Medicamentos , Tetra-Hidrofolato Desidrogenase/genética , Biomarcadores , Combinação de Medicamentos , Plasmodium falciparum/genética
4.
Malar J ; 23(1): 71, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461239

RESUMO

BACKGROUND: Therapeutic efficacy studies (TESs) and detection of molecular markers of drug resistance are recommended by the World Health Organization (WHO) to monitor the efficacy of artemisinin-based combination therapy (ACT). This study assessed the trends of molecular markers of artemisinin resistance and/or reduced susceptibility to lumefantrine using samples collected in TES conducted in Mainland Tanzania from 2016 to 2021. METHODS: A total of 2,015 samples were collected during TES of artemether-lumefantrine at eight sentinel sites (in Kigoma, Mbeya, Morogoro, Mtwara, Mwanza, Pwani, Tabora, and Tanga regions) between 2016 and 2021. Photo-induced electron transfer polymerase chain reaction (PET-PCR) was used to confirm presence of malaria parasites before capillary sequencing, which targeted two genes: Plasmodium falciparum kelch 13 propeller domain (k13) and P. falciparum multidrug resistance 1 (pfmdr1). RESULTS: Sequencing success was ≥ 87.8%, and 1,724/1,769 (97.5%) k13 wild-type samples were detected. Thirty-seven (2.1%) samples had synonymous mutations and only eight (0.4%) had non-synonymous mutations in the k13 gene; seven of these were not validated by the WHO as molecular markers of resistance. One sample from Morogoro in 2020 had a k13 R622I mutation, which is a validated marker of artemisinin partial resistance. For pfmdr1, all except two samples carried N86 (wild-type), while mutations at Y184F increased from 33.9% in 2016 to about 60.5% in 2021, and only four samples (0.2%) had D1246Y mutations. pfmdr1 haplotypes were reported in 1,711 samples, with 985 (57.6%) NYD, 720 (42.1%) NFD, and six (0.4%) carrying minor haplotypes (three with NYY, 0.2%; YFD in two, 0.1%; and NFY in one sample, 0.1%). Between 2016 and 2021, NYD decreased from 66.1% to 45.2%, while NFD increased from 38.5% to 54.7%. CONCLUSION: This is the first report of the R622I (k13 validated mutation) in Tanzania. N86 and D1246 were nearly fixed, while increases in Y184F mutations and NFD haplotype were observed between 2016 and 2021. Despite the reports of artemisinin partial resistance in Rwanda and Uganda, this study did not report any other validated mutations in these study sites in Tanzania apart from R622I suggesting that intensified surveillance is urgently needed to monitor trends of drug resistance markers and their impact on the performance of ACT.


Assuntos
Antimaláricos , Artemisininas , Carrubicina/análogos & derivados , Malária Falciparum , Humanos , Lumefantrina/farmacologia , Lumefantrina/uso terapêutico , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Tanzânia , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Artemeter/uso terapêutico , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Combinação Arteméter e Lumefantrina/farmacologia , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Falciparum/epidemiologia , Biomarcadores , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/uso terapêutico
5.
Malar J ; 22(1): 344, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946208

RESUMO

BACKGROUND: Attractive targeted sugar bait (ATSB) is a novel approach to vector control, offering an alternative mode of insecticide delivery via the insect alimentary canal, with potential to deliver a variety of compounds new to medical entomology and malaria control. Its potential to control mosquitoes was recently demonstrated in major field trials in Africa. The pyrrole chlorfenapyr is an insecticide new to malaria vector control, and through its unique mode of action-disruption of ATP mediated energy transfer in mitochondria-it may have direct action on energy transfer in the flight muscle cells of mosquitoes. It may also have potential to disrupt mitochondrial function in malarial parasites co-existing within the infected mosquito. However, little is known about the impact of such compounds on vector competence in mosquitoes responsible for malaria transmission. METHODS: In this study, ATSBs containing chlorfenapyr insecticide and, as a positive control, the anti-malarial drugs artemether/lumefantrine (A/L) were compared for their effect on Plasmodium falciparum development in wild pyrethroid-resistant Anopheles gambiae sensu stricto (s.s.) and for their capacity to reduce vector competence. Female mosquitoes were exposed to ATSB containing either sublethal dose of chlorfenapyr (CFP: 0.025%) or concentrations of A/L ranging from 0.4/2.4 mg/ml to 2.4/14.4 mg/ml, either shortly before or after taking infective blood meals. The impact of their component compounds on the prevalence and intensity of P. falciparum infection were compared between treatments. RESULTS: Both the prevalence and intensity of infection were significantly reduced in mosquitoes exposed to either A/L or chlorfenapyr, compared to unexposed negative control mosquitoes. The A/L dose (2.4/14.4 mg/ml) totally erased P. falciparum parasites: 0% prevalence of infection in female mosquitoes exposed compared to 62% of infection in negative controls (df = 1, χ2 = 31.23 p < 0.001). The dose of chlorfenapyr (0.025%) that killed < 20% females in ATSB showed a reduction in oocyte density of 95% per midgut (0.18/3.43 per midgut). CONCLUSION: These results are evidence that chlorfenapyr, in addition to its direct killing effect on the vector, has the capacity to block Plasmodium transmission by interfering with oocyte development inside pyrethroid-resistant mosquitoes, and through this dual action may potentiate its impact under field conditions.


Assuntos
Anopheles , Antimaláricos , Inseticidas , Malária Falciparum , Malária , Piretrinas , Animais , Feminino , Humanos , Masculino , Inseticidas/farmacologia , Antimaláricos/farmacologia , Açúcares/farmacologia , Plasmodium falciparum , Controle de Mosquitos/métodos , Malária/prevenção & controle , Combinação Arteméter e Lumefantrina/farmacologia , Mosquitos Vetores , Artemeter , Piretrinas/farmacologia , Carboidratos , Malária Falciparum/prevenção & controle , Resistência a Inseticidas
6.
Parasitol Res ; 122(8): 1841-1850, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37256314

RESUMO

This study investigated the effects of co-administration of a commercial juice rich in vitamin C (Vit C) on the antimalarial efficacy of artemether-lumefantrine (AL) in Plasmodium berghei-infected mice. Fifty Balb/c mice were infected with Plasmodium berghei NK65 strain from a donor mouse. Parasitemia was established after 72 h. Animals were grouped into 6 (n = 10) and treated daily for 3 days with normal saline, chloroquine, artemether-lumefantrine (AL), AL plus 50% commercial juice (CJ), and AL plus 50% Vit C supplementation in drinks ad libitum, respectively. Body weight, parasitemia levels, and mean survival time were determined. Tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), nitrite, malondialdehyde, reduced glutathione (GSH), catalase, and superoxide dismutase (SOD) were determined in the serum and liver tissues. Spleen histopathological changes were determined by H&E staining. Parasitemia was cleared by administration of AL and was not affected by Vit C and CJ supplementation. Vit C significantly prevented body weight reduction in AL-treated mice. CJ and Vit C supplementation to AL-treated mice significantly improved survival proportion compared with AL alone animals. Vit C and CJ supplementation significantly improved reduction of TNF-α, IL-6, and malondialdehyde, and increased GSH, CAT, and SOD in AL-treated mice. Spleen cell degeneration and presence of malaria pigment were reduced in AL-treated animals. The results suggest that ad libitum co-administration of commercial juice and vitamin C with artemether-lumefantrine does not impair its antimalarial efficacy but rather improved antioxidant and anti-inflammatory effects in mice.


Assuntos
Antimaláricos , Malária , Animais , Camundongos , Antimaláricos/uso terapêutico , Antimaláricos/farmacologia , Combinação Arteméter e Lumefantrina/farmacologia , Combinação Arteméter e Lumefantrina/uso terapêutico , Plasmodium berghei , Artemeter/farmacologia , Artemeter/uso terapêutico , Malária/tratamento farmacológico , Malária/patologia , Ácido Ascórbico/farmacologia , Parasitemia/tratamento farmacológico , Interleucina-6 , Fator de Necrose Tumoral alfa , Superóxido Dismutase , Malondialdeído
7.
Malar J ; 21(1): 331, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376921

RESUMO

BACKGROUND: Gametocytes are the sexual stages ensuring continuity of the development cycle of the parasite, as well as its transmission to humans. The efficacy of artemisinin-based anti-malarials against asexual stages of Plasmodium has been reported in Madagascar, but their effects on gametocytes are not well documented. The present study aims to determine the emergence of gametocyte and gametocyte clearance after artesunate-amodiaquine (ASAQ) or artemether-lumefantrine (AL) treatment in children with uncomplicated Plasmodium falciparum malaria in 5 regions of Madagascar. METHODS: 558 children with uncomplicated P. falciparum malaria, aged between 1 and 15 years, were assigned randomly to AL or ASAQ treatment. They come from 5 regions of Madagascar with different epidemiological facies related to malaria: Ankilivalo, Benenitra, Ampanihy, Ankazomborona and Matanga. Gametocytes were identified by microscopy, from t blood smears at day 1, day 2, day 3, day 7, day 14, day 21 and day 28 after treatment. RESULTS: At baseline, 9.7% (54/558) children [95% CI: 7.4-12.5%] had detectable gametocyte by microscopy. Among the 54 enrolled children, gametocytes emergence rate was high during the first days of treatment in both treatment arms (AL and ASAQ), especially on day 1. Gametocytes were undetectable from day 14 for AL arm while for ASAQ arm, gametocyte carriage was gradually decreased but persisted until day 21. CONCLUSION: This study demonstrates that AL has a more rapid effect on gametocyte clearance compared to ASAQ in children with uncomplicated Plasmodium falciparum malaria.


Assuntos
Antimaláricos , Malária Falciparum , Adolescente , Criança , Pré-Escolar , Humanos , Lactente , Amodiaquina/uso terapêutico , Amodiaquina/farmacologia , Antimaláricos/uso terapêutico , Antimaláricos/farmacologia , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Combinação Arteméter e Lumefantrina/farmacologia , Artesunato/uso terapêutico , Combinação de Medicamentos , Etanolaminas/uso terapêutico , Etanolaminas/farmacologia , Madagáscar , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum
8.
Malar J ; 21(1): 134, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477399

RESUMO

BACKGROUND: Artesunate-amodiaquine (ASAQ) and Artemether-lumefantrine (AL) are the recommended treatment for uncomplicated Plasmodium falciparum malaria in Liberia. Intermittent preventive treatment with sulfadoxine/pyrimethamine is also recommended for pregnant women. The therapeutic efficacy of Artesunate-amodiaquine and Artemether-lumefantrine, and the frequency of molecular markers associated with anti-malarial drug resistance were investigated. METHODS: The therapeutic efficacy of ASAQ and AL was evaluated using the standard World Health Organization protocol (WHO. Methods for Surveillance of Antimalarial Drug Efficacy. Geneva: World Health Organization; 2009. https://www.who.int/malaria/publications/atoz/9789241597531/en/ ). Eligible children were recruited and monitored clinically and parasitologically for 28 days. Polymorphisms in the Pfkelch 13, chloroquine resistance transporter (Pfcrt), multidrug resistance 1 (Pfmdr-1), dihydrofolate reductase (Pfdhfr), and dihydropteroate synthase (Pfdhps) genes and copy number variations in the plasmepsin-2 (Pfpm2) gene were assessed in pretreatment samples. RESULTS: Of the 359 children enrolled, 180 were treated with ASAQ (89 in Saclepea and 91 in Bensonville) and 179 with AL (90 in Sinje and 89 in Kakata). Of the recruited children, 332 (92.5%) reached study endpoints. PCR-corrected per-protocol analysis showed ACPR of 90.2% (95% CI: 78.6-96.7%) in Bensonville and 92.7% (95% CI: 83.4.8-96.5%) in Saclepea for ASAQ, while ACPR of 100% was observed in Kakata and Sinje for AL. In both treatment groups, only two patients had parasites on day 3. No artemisinin resistance associated Pfkelch13 mutations or multiple copies of Pfpm2 were found. Most samples tested had the Pfcrt 76 T mutation (80/91, 87.9%), while the Pfmdr-1 86Y (40/91, 44%) and 184F (47/91, 51.6%) mutations were less frequent. The Pfdhfr triple mutant (51I/59R/108 N) was the predominant allele (49.2%). For the Pfdhps gene, it was the 540E mutant (16.0%), and the 436A mutant (14.3%). The quintuple allele (51I/59R/108 N-437G/540E) was detected in only one isolate (1/357). CONCLUSION: This study reports a decline in the efficacy of ASAQ treatment, while AL remained highly effective, supporting the recent decision by NMCP to replace ASAQ with AL as first-line treatment for uncomplicated falciparum malaria. No association between the presence of the mutations in Pfcrt and Pfmdr-1 and the risk of parasite recrudescence in patients treated with ASAQ was observed. Parasites with signatures known to be associated with artemisinin and piperaquine resistance were not detected. The very low frequency of the quintuple Pfdhfr/Pfdhps mutant haplotype supports the continued use of SP for IPTp. Monitoring of efficacy and resistance markers of routinely used anti-malarials is necessary to inform malaria treatment policy. Trial registration ACTRN12617001064392.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Amodiaquina/farmacologia , Amodiaquina/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/farmacologia , Combinação Arteméter e Lumefantrina/uso terapêutico , Artesunato/farmacologia , Artesunato/uso terapêutico , Criança , Cloroquina/farmacologia , Variações do Número de Cópias de DNA , Feminino , Humanos , Libéria , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Proteínas de Membrana Transportadoras/genética , Plasmodium falciparum , Gravidez
9.
Malar J ; 20(1): 48, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468147

RESUMO

BACKGROUND: The World Health Organization recommends regularly assessing the efficacy of artemisinin-based combination therapy (ACT), which is a critical tool in the fight against malaria. This study evaluated the efficacy of two artemisinin-based combinations recommended to treat uncomplicated Plasmodium falciparum malaria in Burkina Faso in three sites: Niangoloko, Nanoro, and Gourcy. METHODS: This was a two-arm randomized control trial of the efficacy of artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP). Children aged 6-59 months old were monitored for 42 days. The primary outcomes of the study were uncorrected and PCR-corrected efficacies to day 28 for AL and 42 for DP. Molecular markers of resistance to artemisinin derivatives and partner drugs were also analysed. RESULTS: Of 720 children enrolled, 672 reached study endpoints at day 28, 333 in the AL arm and 339 in the DP arm. PCR-corrected 28-day per protocol efficacy in the AL arm was 74% (64-83%) in Nanoro, 76% (66-83%) in Gourcy, and 92% (84-96%) in Niangoloko. The PCR-corrected 42-day per protocol efficacy in the DP arm was 84% (75-89%) in Gourcy, 89% (81-94%) in Nanoro, and 97% (92-99%) in Niangoloko. No Pfk13 mutation previously associated with artemisinin-resistance was observed. No statistically significant association was found between treatment outcome and presence of the 86Y mutation in the Pfmdr1 gene. There was also no association observed between treatment outcome and Pfpm2 or Pfmdr1 copy number variation. CONCLUSION: The results of this study indicate evidence of inadequate efficacy of AL at day 28 and DP at day 42 in the same two sites. A change of first-line ACT may be warranted in Burkina Faso. Trial Registry Pan African Clinical Trial Registry Identifier: PACTR201708002499311. Date of registration: 8/3/2017 https://pactr.samrc.ac.za/Search.aspx.


Assuntos
Antimaláricos/farmacologia , Combinação Arteméter e Lumefantrina/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos , Malária Falciparum/tratamento farmacológico , Quinolinas/farmacologia , Burkina Faso , Pré-Escolar , Feminino , Humanos , Lactente , Masculino
10.
Malar J ; 20(1): 144, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33706773

RESUMO

BACKGROUND: The national policy for malaria treatment of the Democratic Republic of Congo recommends two first-line artemisinin-based combinations for the treatment of uncomplicated malaria: artesunate-amodiaquine and artemether-lumefantrine. This study investigated the presence of markers associated with resistance to the current first-line artemisinin-based combination therapy (ACT) in isolates of Plasmodium falciparum from treatment failure patients in the Democratic Republic of Congo. METHODS: From November 2018 to November 2019, dried blood spots were taken from patients returning to health centres for fever within 28 days after an initial malaria treatment in six sentinel sites of the National Malaria Control Programme across Democratic Republic of Congo. The new episode of malaria was first detected by a rapid diagnostic test and then confirmed by a real-time PCR assay to define treatment failure. Fragments of interest in pfk13 and pfcrt genes were amplified by conventional PCR before sequencing and the Pfmdr1 gene copy number was determined by a TaqMan real-time PCR assay. RESULTS: Out of 474 enrolled patients, 364 (76.8%) were confirmed positive by PCR for a new episode of P. falciparum malaria, thus considered as treatment failure. Of the 325 P. falciparum isolates obtained from 364 P. falciparum-positive patients and successfully sequenced in the pfk13-propeller gene, 7 (2.2%) isolates carried non-synonymous mutations, among which 3 have been previously reported (N498I, N554K and A557S) and 4 had not yet been reported (F506L, E507V, D516E and G538S). Of the 335 isolates successfully sequenced in the pfcrt gene, 139 (41.5%) harboured the K76T mutation known to be associated with chloroquine resistance. The SVMNT haplotype associated with resistance to amodiaquine was not found. None of the isolates carried an increased copy number of the pfmdr1 gene among the 322 P. falciparum isolates successfully analysed. CONCLUSION: No molecular markers currently known to be associated with resistance to the first-line ACT in use were detected in isolates of P. falciparum from treatment failure patients. Regular monitoring through in vivo drug efficacy and molecular studies must continue to ensure the effectiveness of malaria treatment in Democratic Republic of Congo.


Assuntos
Amodiaquina/farmacologia , Antimaláricos/farmacologia , Combinação Arteméter e Lumefantrina/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos/genética , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , República Democrática do Congo , Combinação de Medicamentos , Feminino , Marcadores Genéticos/genética , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Falha de Tratamento , Adulto Jovem
11.
Artigo em Inglês | MEDLINE | ID: mdl-31871092

RESUMO

There is an increased recognition of the need to identify and quantify the impact of genetic polymorphisms on drug-drug interactions. This study investigated the pharmacogenetics of the pharmacokinetic drug-drug interaction between nevirapine and artemether-lumefantrine in HIV-positive and HIV-negative adult Nigerian subjects. Thirty each of HIV-infected patients on nevirapine-based antiretroviral therapy and HIV-negative volunteers without clinical malaria, but with predetermined CYP2B6 c.516GG and TT genotypes, were administered a complete treatment dose of 3 days of artemether-lumefantrine. Rich pharmacokinetic sampling prior to and following the last dose was conducted, and the plasma concentrations of artemether/dihydroartemisinin and lumefantrine/desbutyl-lumefantrine were quantified using tandem mass spectrometry. Pharmacokinetic parameters of artemether-lumefantrine and its metabolites in HIV-infected patients on nevirapine were compared to those in the absence of nevirapine in HIV-negative volunteers. Overall, nevirapine reduced exposure to artemether and desbutyl-lumefantrine by 39 and 34%, respectively. These reductions were significantly greater in GG versus TT subjects for artemether (ratio of geometric mean [90% confidence interval]: 0.42 [0.29 to 0.61] versus 0.81 [0.51 to 1.28]) and for desbutyl-lumefantrine (0.56 [0.43 to 0.74] versus 0.75 [0.56 to 1.00]). On the contrary, it increased exposure to dihydroartemisinin and lumefantrine by 47 and 30%, respectively. These increases were significantly higher in TT versus GG subjects for dihydroartemisinin (1.67 [1.20 to 2.34] versus 1.25 [0.88 to 1.78]) and for lumefantrine (1.51 [1.20 to 1.90] versus 1.08 [0.82 to 1.42]). This study underscores the importance of incorporating pharmacogenetics into all drug-drug interaction studies with potential for genetic polymorphisms to influence drug disposition.


Assuntos
Citocromo P-450 CYP2B6/genética , Polimorfismo Genético/genética , Artemeter/farmacologia , Combinação Arteméter e Lumefantrina/farmacologia , Genótipo , HIV/genética , Nevirapina/farmacologia
12.
BMC Med ; 18(1): 47, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32098634

RESUMO

BACKGROUND: The majority of Plasmodium falciparum malaria cases in Africa are treated with the artemisinin combination therapies artemether-lumefantrine (AL) and artesunate-amodiaquine (AS-AQ), with amodiaquine being also widely used as part of seasonal malaria chemoprevention programs combined with sulfadoxine-pyrimethamine. While artemisinin derivatives have a short half-life, lumefantrine and amodiaquine may give rise to differing durations of post-treatment prophylaxis, an important additional benefit to patients in higher transmission areas. METHODS: We analyzed individual patient data from 8 clinical trials of AL versus AS-AQ in 12 sites in Africa (n = 4214 individuals). The time to PCR-confirmed reinfection after treatment was used to estimate the duration of post-treatment protection, accounting for variation in transmission intensity between settings using hidden semi-Markov models. Accelerated failure-time models were used to identify potential effects of covariates on the time to reinfection. The estimated duration of chemoprophylaxis was then used in a mathematical model of malaria transmission to determine the potential public health impact of each drug when used for first-line treatment. RESULTS: We estimated a mean duration of post-treatment protection of 13.0 days (95% CI 10.7-15.7) for AL and 15.2 days (95% CI 12.8-18.4) for AS-AQ overall. However, the duration varied significantly between trial sites, from 8.7-18.6 days for AL and 10.2-18.7 days for AS-AQ. Significant predictors of time to reinfection in multivariable models were transmission intensity, age, drug, and parasite genotype. Where wild type pfmdr1 and pfcrt parasite genotypes predominated (<=20% 86Y and 76T mutants, respectively), AS-AQ provided ~ 2-fold longer protection than AL. Conversely, at a higher prevalence of 86Y and 76T mutant parasites (> 80%), AL provided up to 1.5-fold longer protection than AS-AQ. Our simulations found that these differences in the duration of protection could alter population-level clinical incidence of malaria by up to 14% in under-5-year-old children when the drugs were used as first-line treatments in areas with high, seasonal transmission. CONCLUSION: Choosing a first-line treatment which provides optimal post-treatment prophylaxis given the local prevalence of resistance-associated markers could make a significant contribution to reducing malaria morbidity.


Assuntos
Amodiaquina/uso terapêutico , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/patogenicidade , Amodiaquina/farmacologia , Antimaláricos/farmacologia , Combinação Arteméter e Lumefantrina/farmacologia , Artemisininas/farmacologia , Pré-Escolar , Combinação de Medicamentos , Feminino , Humanos , Lactente , Masculino
13.
Artigo em Inglês | MEDLINE | ID: mdl-30559133

RESUMO

The potential spread of antimalarial drug resistance to Africa, in particular for artemisinins and key partner drugs, is a major concern. We surveyed Plasmodium falciparum genetic markers associated with drug sensitivity on 3 occasions at ∼6-month intervals in 2016 and 2017 at 10 sites representing a range of epidemiological settings in Uganda. For putative drug transporters, we found continued evolution toward wild-type sequences associated with increased sensitivity to chloroquine. For pfcrt K76T, by 2017 the prevalence of the wild type was >60% at all sites and >90% at 6 sites. For the pfmdr1 N86Y and D1246Y alleles, wild type prevalence ranged from 80 to 100%. We found low prevalence of K13 propeller domain mutations, which are associated with artemisinin resistance in Asia, but one mutation previously identified in northern Uganda, 675V, was seen in 2.0% of samples, including 5.5% of those from the 3 northernmost sites. Amplification of the pfmdr1 and plasmepsin2 genes, associated elsewhere with decreased sensitivity to lumefantrine and piperaquine, respectively, was seen in <1% of samples. For the antifolate targets pfdhfr and pfdhps, 5 mutations previously associated with resistance were very common, and the pfdhfr 164L and pfdhps 581G mutations associated with higher-level resistance were seen at multiple sites, although prevalence did not clearly increase over time. Overall, changes were consistent with the selective pressure of the national treatment regimen, artemether-lumefantrine, with increased sensitivity to chloroquine, and with poor efficacy of antifolates. Strong evidence for resistance to artemisinins was not seen. Continued surveillance of markers that predict antimalarial drug sensitivity is warranted.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Combinação Arteméter e Lumefantrina/farmacologia , Artemisininas/farmacologia , Ácido Aspártico Endopeptidases/genética , Criança , Cloroquina/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Humanos , Lumefantrina/farmacologia , Malária Falciparum/tratamento farmacológico , Proteínas de Membrana Transportadoras/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Protozoários/genética , Quinolinas/farmacologia , Uganda
14.
J Antimicrob Chemother ; 74(7): 1890-1893, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30869127

RESUMO

BACKGROUND: Delayed parasite clearance and, consequently, reduced efficacy of artemisinin-based combination therapies have been linked with Plasmodium falciparum K13 gene SNPs in Southeast Asia. In Africa, significantly prolonged clearance has not yet been observed and the presently restricted variation in parasite clearance cannot be explained by K13 polymorphisms. OBJECTIVES: Our aim was to study the in vivo pfK13 transcriptional response in patients treated with artemether-lumefantrine and explore whether the pfk13 transcripts can explain the patients' parasite clearance outcomes. PATIENTS AND METHODS: A total of 47 Tanzanian children with microscopically confirmed uncomplicated P. falciparum malaria were hospitalized and received artemether-lumefantrine treatment (clinical trial ID: NCT00336375). RNA was extracted from venous blood samples collected before treatment initiation and at five more timepoints after treatment. cDNA was synthesized and pfk13 transcripts measured by real-time PCR. RESULTS: A wide range of pfk13 transcript variation was observed throughout all timepoints after artemether-lumefantrine treatment. Taking parasite clearance data together with the pfk13 transcripts profile, we observed a negative correlation inferring that pfk13 down-regulation is associated with longer parasite clearance time. CONCLUSIONS: The findings suggest that a reduced PfK13 transcriptional response may represent a first step towards artemisinin tolerance/resistance.


Assuntos
Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Tolerância a Medicamentos , Expressão Gênica , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/genética , Animais , Antimaláricos/farmacologia , Combinação Arteméter e Lumefantrina/farmacologia , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Malária Falciparum/parasitologia , Masculino , Tanzânia , Resultado do Tratamento
15.
PLoS Med ; 15(6): e1002579, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29894518

RESUMO

BACKGROUND: The fixed dose combination of artemether-lumefantrine (AL) is the most widely used treatment for uncomplicated Plasmodium falciparum malaria. Relatively lower cure rates and lumefantrine levels have been reported in young children and in pregnant women during their second and third trimester. The aim of this study was to investigate the pharmacokinetic and pharmacodynamic properties of lumefantrine and the pharmacokinetic properties of its metabolite, desbutyl-lumefantrine, in order to inform optimal dosing regimens in all patient populations. METHODS AND FINDINGS: A search in PubMed, Embase, ClinicalTrials.gov, Google Scholar, conference proceedings, and the WorldWide Antimalarial Resistance Network (WWARN) pharmacology database identified 31 relevant clinical studies published between 1 January 1990 and 31 December 2012, with 4,546 patients in whom lumefantrine concentrations were measured. Under the auspices of WWARN, relevant individual concentration-time data, clinical covariates, and outcome data from 4,122 patients were made available and pooled for the meta-analysis. The developed lumefantrine population pharmacokinetic model was used for dose optimisation through in silico simulations. Venous plasma lumefantrine concentrations 7 days after starting standard AL treatment were 24.2% and 13.4% lower in children weighing <15 kg and 15-25 kg, respectively, and 20.2% lower in pregnant women compared with non-pregnant adults. Lumefantrine exposure decreased with increasing pre-treatment parasitaemia, and the dose limitation on absorption of lumefantrine was substantial. Simulations using the lumefantrine pharmacokinetic model suggest that, in young children and pregnant women beyond the first trimester, lengthening the dose regimen (twice daily for 5 days) and, to a lesser extent, intensifying the frequency of dosing (3 times daily for 3 days) would be more efficacious than using higher individual doses in the current standard treatment regimen (twice daily for 3 days). The model was developed using venous plasma data from patients receiving intact tablets with fat, and evaluations of alternative dosing regimens were consequently only representative for venous plasma after administration of intact tablets with fat. The absence of artemether-dihydroartemisinin data limited the prediction of parasite killing rates and recrudescent infections. Thus, the suggested optimised dosing schedule was based on the pharmacokinetic endpoint of lumefantrine plasma exposure at day 7. CONCLUSIONS: Our findings suggest that revised AL dosing regimens for young children and pregnant women would improve drug exposure but would require longer or more complex schedules. These dosing regimens should be evaluated in prospective clinical studies to determine whether they would improve cure rates, demonstrate adequate safety, and thereby prolong the useful therapeutic life of this valuable antimalarial treatment.


Assuntos
Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/farmacologia , Combinação Arteméter e Lumefantrina/uso terapêutico , Antimaláricos/farmacocinética , Combinação Arteméter e Lumefantrina/farmacocinética , Pré-Escolar , Relação Dose-Resposta a Droga , Etanolaminas/metabolismo , Etanolaminas/farmacocinética , Etanolaminas/farmacologia , Feminino , Fluorenos/metabolismo , Fluorenos/farmacocinética , Fluorenos/farmacologia , Humanos , Lactente , Recém-Nascido , Malária Falciparum/tratamento farmacológico , Masculino , Modelos Químicos , Gravidez
16.
Malar J ; 17(1): 398, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30376843

RESUMO

BACKGROUND: There are concerns that resistance to artemisinin-based combination therapy might emerge in Kenya and sub-Saharan Africa (SSA) in the same pattern as was with chloroquine and sulfadoxine-pyrimethamine. Single nucleotide polymorphisms (SNPs) in critical alleles of pfmdr1 gene have been associated with resistance to artemisinin and its partner drugs. Microsatellite analysis of loci flanking genes associated with anti-malarial drug resistance has been used in defining the geographic origins, dissemination of resistant parasites and identifying regions in the genome that have been under selection. METHODS: This study set out to investigate evidence of selective sweep and genetic lineages in pfmdr1 genotypes associated with the use of artemether-lumefantrine (AL), as the first-line treatment in Kenya. Parasites (n = 252) from different regions in Kenya were assayed for SNPs at codons 86, 184 and 1246 and typed for 7 neutral microsatellites and 13 microsatellites loci flanking (± 99 kb) pfmdr1 in Plasmodium falciparum infections. RESULTS: The data showed differential site and region specific prevalence of SNPs associated with drug resistance in the pfmdr1 gene. The prevalence of pfmdr1 N86, 184F, and D1246 in western Kenya (Kisumu, Kericho and Kisii) compared to the coast of Kenya (Malindi) was 92.9% vs. 66.7%, 53.5% vs. to 24.2% and 96% vs. to 87.9%, respectively. The NFD haplotype which is consistent with AL selection was at 51% in western Kenya compared to 25% in coastal Kenya. CONCLUSION: Selection pressures were observed to be different in different regions of Kenya, especially the western region compared to the coastal region. The data showed independent genetic lineages for all the pfmdr1 alleles. The evidence of soft sweeps in pfmdr1 observed varied in direction from one region to another. This is challenging for malaria control programs in SSA which clearly indicate effective malaria control policies should be based on the region and not at a country wide level.


Assuntos
Antimaláricos/farmacologia , Combinação Arteméter e Lumefantrina/farmacologia , Resistência a Medicamentos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/genética , Seleção Genética , Quênia , Malária Falciparum/transmissão , Plasmodium falciparum/efeitos dos fármacos
17.
J Travel Med ; 31(3)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38157311

RESUMO

BACKGROUND: Failure of artemisinin-based combination therapy is increasingly reported in patients with Plasmodium falciparum malaria in sub-Saharan Africa. We aimed to describe the clinical and genomic characteristics of recent cases of P. falciparum malaria failing artemether-lumefantrine in Belgium. METHODS: Travel-related cases of malaria confirmed at the national reference laboratory of the Institute of Tropical Medicine, Antwerp, Belgium, were reviewed. All cases for which attending clinicians reported persistence (beyond Day 3 post-treatment initiation, i.e. early failure) or recrudescence (from Day 7 to 42, i.e. late failure) of P. falciparum parasites despite adequate drug intake were analysed. Both initial and persistent/recurrent samples were submitted to next generation sequencing to investigate resistance-conferring mutations. RESULTS: From July 2022 to June 2023, eight P. falciparum cases of failure with artemether-lumefantrine therapy were reported (early failure = 1; late failure = 7). All travellers were returning from sub-Saharan Africa, most (6/8) after a trip to visit friends and relatives. PfKelch13 (PF3D7_1343700) mutations associated with resistance to artemisinin were found in two travellers returning from East Africa, including the validated marker R561H in the patient with early failure and the candidate marker A675V in a patient with late failure. Additional mutations were detected that could contribute to decreased susceptibility to artemisinin in another three cases, lumefantrine in six cases and proguanil in all eight participants. Various regimens were used to treat the persistent/recrudescent cases, with favourable outcome. CONCLUSION: Within a 12-month period, we investigated eight travellers returning from sub-Saharan Africa with P. falciparum malaria and in whom artemether-lumefantrine failure was documented. Mutations conferring resistance to antimalarials were found in all analysed blood samples, especially against lumefantrine and proguanil, but also artemisinin. There is a pressing need for systematic genomic surveillance of resistance to antimalarials in international travellers with P. falciparum malaria, especially those experiencing treatment failure.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Humanos , Antimaláricos/farmacologia , Artemeter/farmacologia , Combinação Arteméter e Lumefantrina/farmacologia , Artemisininas/farmacologia , Bélgica , Combinação de Medicamentos , Genômica , Lumefantrina/farmacologia , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Plasmodium falciparum/genética , Proguanil/farmacologia , Viagem , Doença Relacionada a Viagens
18.
Parasitol Int ; 101: 102873, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38428566

RESUMO

Malaria remains a major public health issue worldwide, with high rates of morbidity and mortality. The resistance of Plasmodium parasites to commonly used antimalarial drugs has necessitated the development of novel drugs and targets for malaria treatment. Lycopene is a natural compound present in tomatoes and other red fruits and vegetables. This study aimed to evaluate the antimalarial activity of lycopene and its co-administration with chloroquine against chloroquine-resistant malaria, as well as to assess its impact on hematological abnormalities associated with malaria infection. The experimental animals for this study were infected with 10 7 NK65 Plasmodium berghei-infected red blood cells via intraperitoneal injection. The animals were then treated with artemether-lumefantrine, chloroquine, and varying doses of lycopene. The study evaluated percentage parasitemia, mean survival time, and various hematological parameters, including red blood cell count, hematocrit, hemoglobin concentration, mean corpuscular volume, mean corpuscular hemoglobin, red blood cell distribution width - coefficient of variation, red blood cell distribution width - standard deviation, white blood cell count, granulocyte count, lymphocyte count, monocyte count, and procalcitonin level. The study revealed that lycopene demonstrated significant (p < 0.05) antimalarial activity and the ability to ameliorate hematological abnormalities associated with acute malaria infection. The findings of this study highlight the potential of lycopene as a novel antimalarial agent. The results of this study may contribute to the development of new drugs for malaria treatment, particularly in low- and middle-income countries.


Assuntos
Antimaláricos , Cloroquina , Licopeno , Malária , Plasmodium berghei , Licopeno/farmacologia , Licopeno/administração & dosagem , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Camundongos , Malária/tratamento farmacológico , Plasmodium berghei/efeitos dos fármacos , Resistência a Medicamentos , Modelos Animais de Doenças , Parasitemia/tratamento farmacológico , Masculino , Combinação Arteméter e Lumefantrina/uso terapêutico , Combinação Arteméter e Lumefantrina/farmacologia
19.
Toxicon ; 222: 106988, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36473514

RESUMO

Aflatoxin B1 (AFB1) is a mycotoxin synthesised as a secondary metabolite by members of the Aspergillus species contaminating agricultural produce. Aspergillus species thrive in tropical climes, endemic to malaria. Artemisinin-based combination therapies (ACTs) effectively treat and prevent malaria recrudescence; Coartem (COA) is an ACT whose toxicity is evident. Although there are scanty studies on COA toxicity, the scientific literature is replete on AFB1 toxic effects -including carcinogenicity. The current research investigates AFB1 and COA toxicity in experimental Wistar rats' hepatorenal systems. Thirty albino rats were randomly grouped into five cohorts (n = 6) and treated as follows: Group I: Untreated control (2 mL/kg of corn oil); group II: AFB1 alone (70 µg/kg); group III: COA alone (5 mg/kg); group IV: COA and a low dose of AFB11 (5 mg/kg & 35 µg/kg); while Group V: COA and a high dose AFB12 (5 mg/kg & 70 µg/kg) by gavage. Our results show that exposure to AFB1 and COA significantly (p < 0.05) reduced superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase activities, besides reduced glutathione and total sulfhydryl groups level. Reactive oxygen and nitrogen species, lipid peroxidation, 8-hydroxy-2'-deoxyguanosine, nitric oxide, xanthine oxidase, and myeloperoxidase levels were increased (p < 0.05) in rats co-treated with COA and AFB1. Cell death was aggravated in COA and AFB1 groups, exemplified by increased Caspase-3 and 9 activities and alterations in the typical histological features of experimental rats' livers and kidneys. Finally, rats co-treated with AFB1 and COA experienced increased hepatorenal dysregulation, oxidative and inflammatory tissue damage, and apoptotic cell death. All the observed systemic perturbations occurred dose-dependently. It is crucial, therefore, to prevent AFB1 dietary contaminations during COA therapeutic regimen due to increased pathophysiological damage exerted on experimental rat liver and kidneys, as evidenced in this study.


Assuntos
Aflatoxina B1 , Antioxidantes , Animais , Ratos , Antioxidantes/farmacologia , Aflatoxina B1/toxicidade , Aflatoxina B1/metabolismo , Combinação Arteméter e Lumefantrina/metabolismo , Combinação Arteméter e Lumefantrina/farmacologia , Estresse Oxidativo , Ratos Wistar , Fígado , Apoptose , Rim/metabolismo
20.
Mycotoxin Res ; 39(1): 67-80, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36701108

RESUMO

Populations in malaria endemic areas are frequently exposed to mycotoxin-contaminated diets. The possible toxicological outcome of co-exposure to dietary aflatoxin B1 (AFB1) and artemisinin-based combination therapy warrants investigation to ascertain amplification or attenuation of cellular injury. Here, we investigated the neurobehavioral and biochemical responses associated with co-exposure to anti-malarial drug coartem, an artemether-lumefantrine combination (5 mg/kg body weight, twice a day and 3 days per week) and AFB1 (35 and 70 µg/kg body weight) in rats. Motor deficits, locomotor incompetence, and anxiogenic-like behavior induced by low AFB1 dose were significantly (p < 0.05) assuaged by coartem but failed to rescue these behavioral abnormalities in high AFB1-dosed group. Coartem administration did not alter exploratory deficits typified by reduced track plot densities and greater heat map intensity in high AFB1-dosed animals. Furthermore, the reduction in cerebral and cerebellar acetylcholinesterase activity, anti-oxidant enzyme activities, and glutathione and thiol levels were markedly assuaged by coartem administration in low AFB1 group but not in high AFB1-dosed animals. The significant attenuation of cerebral and cerebellar oxidative stress indices namely reactive oxygen and nitrogen species, xanthine oxidase activity, and lipid peroxidation by coartem administration was evident in low AFB1 group but not high AFB1 dose. Although coartem administration abated nitric oxide level, activities of myeloperoxidase, caspase-9, and caspase-3 in animals exposed to both doses of AFB1, these indices were significantly higher than the control. Coartem administration ameliorated histopathological and mophometrical changes due to low AFB1 exposure but not in high AFB1 exposure. In conclusion, contrary to AFB1 alone, behavioral and biochemical responses were not altered in animals singly exposed to coartem. Co-exposure to coartem and AFB1 elicited no additional risk but partially lessened neurotoxicity associated with AFB1 exposure.


Assuntos
Antimaláricos , Artemisininas , Ratos , Animais , Aflatoxina B1/toxicidade , Aflatoxina B1/metabolismo , Preparações Farmacêuticas/metabolismo , Antimaláricos/metabolismo , Antimaláricos/farmacologia , Combinação Arteméter e Lumefantrina/metabolismo , Combinação Arteméter e Lumefantrina/farmacologia , Acetilcolinesterase/metabolismo , Acetilcolinesterase/farmacologia , Artemeter/metabolismo , Artemeter/farmacologia , Estresse Oxidativo , Artemisininas/metabolismo , Artemisininas/farmacologia , Peso Corporal , Fígado/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA