Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 191(3): 1803-1817, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36516417

RESUMO

Linear photosynthetic electron flow (LEF) produces NADPH and generates a proton electrochemical potential gradient across the thylakoid membrane to synthesize ATP, both of which are required for CO2 fixation. As cellular demand for ATP and NADPH varies, cyclic electron flow (CEF) between Photosystem I and the cytochrome b6f complex (b6f) produces extra ATP. b6f regulates LEF and CEF via photosynthetic control, which is a pH-dependent b6f slowdown of plastoquinol oxidation at the lumenal site. This protection mechanism is triggered at more alkaline lumen pH in the pgr1 (proton gradient regulation 1) mutant of the vascular plant Arabidopsis (Arabidopsis thaliana), which contains a Pro194Leu substitution in the b6f Rieske Iron-sulfur protein Photosynthetic Electron Transfer C (PETC) subunit. In this work, we introduced the equivalent pgr1 mutation in the green alga Chlamydomonas reinhardtii to generate PETC-P171L. Consistent with the pgr1 phenotype, PETC-P171L displayed impaired NPQ induction along with slower photoautotrophic growth under high light conditions. Our data provide evidence that the ΔpH component in PETC-P171L depends on oxygen availability. Only under low oxygen conditions was the ΔpH component sufficient to trigger a phenotype in algal PETC-P171L where the mutant b6f was more restricted to oxidize the plastoquinol pool and showed diminished electron flow through the b6f complex. These results demonstrate that photosynthetic control of different stringency are established in C. reinhardtii depending on the cellular metabolism, and the lumen pH-sensitive PETC-P171L was generated to read out various associated effects.


Assuntos
Arabidopsis , Complexo Citocromos b6f , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Prótons , Elétrons , NADP/metabolismo , Transporte de Elétrons/fisiologia , Fotossíntese/genética , Oxirredução , Arabidopsis/genética , Arabidopsis/metabolismo , Trifosfato de Adenosina/metabolismo , Oxigênio/metabolismo
2.
Plant Physiol ; 192(4): 2803-2821, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37144829

RESUMO

Plants have evolved multiple mechanisms to cope with diverse types of light stress, particularly the regulation of the electron transport chain (ETC). Under high light (HL) conditions, the balance of electron flux in the ETC is disturbed, which leads to the overaccumulation of reactive oxygen species (ROS) and results in photodamage and photoinhibition. The cytochrome (Cyt) b6/f complex, which coordinates electron transfer between photosystems I and II (PSI and PSII), plays an essential role in regulating the ETC and initiating photoprotection. However, how the Cyt b6/f complex is maintained under HL conditions remains unclear. Here, we report that the activity of the Cyt b6/f complex is sustained by thylakoid-localized cyclophilin 37 (CYP37) in Arabidopsis (Arabidopsis thaliana). Compared with wild-type plants, cyp37 mutants displayed an imbalance in electron transport from Cyt b6/f to PSI under HL stress, which led to increased ROS accumulation, decreased anthocyanin biosynthesis, and increased chlorophyll degradation. Surprisingly, CYP37's role in regulating ETC balance was independent of photosynthesis control, which was indicated by a higher Y (ND), an indicator of P700 oxidation in PSI. Furthermore, the interaction between CYP37 and photosynthetic electron transfer A (PetA), a subunit of the Cyt b6/f complex, suggests that the central function of CYP37 is to maintain Cyt b6/f complex activity rather than to serve as an assembly factor. Our study provides insights into how plants balance electron flow between PSII and PSI via Cyt b6/f complex under HL.


Assuntos
Arabidopsis , Transporte de Elétrons/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Ciclofilinas/genética , Ciclofilinas/metabolismo , Citocromos b6/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Clorofila/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Plantas/metabolismo
3.
Plant Cell ; 33(8): 2583-2601, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34048579

RESUMO

Genetic incompatibility between the cytoplasm and the nucleus is thought to be a major factor in species formation, but mechanistic understanding of this process is poor. In evening primroses (Oenothera spp.), a model plant for organelle genetics and population biology, hybrid offspring regularly display chloroplast-nuclear incompatibility. This usually manifests in bleached plants, more rarely in hybrid sterility or embryonic lethality. Hence, most of these incompatibilities affect photosynthetic capability, a trait that is under selection in changing environments. Here we show that light-dependent misregulation of the plastid psbB operon, which encodes core subunits of photosystem II and the cytochrome b6f complex, can lead to hybrid incompatibility, and this ultimately drives speciation. This misregulation causes an impaired light acclimation response in incompatible plants. Moreover, as a result of their different chloroplast genotypes, the parental lines differ in photosynthesis performance upon exposure to different light conditions. Significantly, the incompatible chloroplast genome is naturally found in xeric habitats with high light intensities, whereas the compatible one is limited to mesic habitats. Consequently, our data raise the possibility that the hybridization barrier evolved as a result of adaptation to specific climatic conditions.


Assuntos
Especiação Genética , Genoma de Cloroplastos , Oenothera biennis/genética , Óperon , Fotossíntese/genética , Aclimatação/genética , Complexo Citocromos b6f/genética , Luz , Oenothera biennis/fisiologia , Complexo de Proteína do Fotossistema II/genética , Proteínas de Plantas/genética , Plastídeos/genética , Regiões Promotoras Genéticas , Edição de RNA
4.
Physiol Plant ; 174(6): e13803, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36259085

RESUMO

Photosynthesis is fundamental for plant growth and yield. The cytochrome b6 f complex catalyses a rate-limiting step in thylakoid electron transport and therefore represents an important point of regulation of photosynthesis. Here we show that overexpression of a single core subunit of cytochrome b6 f, the Rieske FeS protein, led to up to a 40% increase in the abundance of the complex in Nicotiana tabacum (tobacco) and was accompanied by an enhanced in vitro cytochrome f activity, indicating a full functionality of the complex. Analysis of transgenic plants overexpressing Rieske FeS by the light-induced fluorescence transients technique revealed a more oxidised primary quinone acceptor of photosystem II (QA ) and plastoquinone pool and faster electron transport from the plastoquinone pool to photosystem I upon changes in irradiance, compared to control plants. A faster establishment of qE , the energy-dependent component of nonphotochemical quenching, in transgenic plants suggests a more rapid buildup of the transmembrane proton gradient, also supporting the increased in vivo cytochrome b6 f activity. However, there was no consistent increase in steady-state rates of electron transport or CO2 assimilation in plants overexpressing Rieske FeS grown in either laboratory conditions or field trials, suggesting that the in vivo activity of the complex was only transiently increased upon changes in irradiance. Our results show that overexpression of Rieske FeS in tobacco enhances the abundance of functional cytochrome b6 f and may have the potential to increase plant productivity if combined with other traits.


Assuntos
Citocromos b , Nicotiana , Nicotiana/genética , Nicotiana/metabolismo , Citocromos b/metabolismo , Plastoquinona , Fotossíntese/fisiologia , Transporte de Elétrons/fisiologia , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Plantas Geneticamente Modificadas/metabolismo
5.
Plant Cell Physiol ; 62(10): 1603-1614, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34283246

RESUMO

The cytochrome b6f (cyt b6f) acts as a common linker of electron transport between photosystems I and II in oxygenic photosynthesis. PetM, one of eight subunits of the cyt b6f complex, is a small hydrophobic subunit at the outside periphery, the functional mechanism of which remains to be elucidated in higher plants. In this work, we found that unlike the PetM mutant in Synechocystis sp. PCC 6803, the Arabidopsis thaliana PetM mutant showed a bleached phenotype with yellowish leaves, block of photosynthetic electron transport and loss of photo-autotrophy, similar to the Arabidopsis PetC mutant. Although PetM is relatively conserved between higher plants and cyanobacteria, Synechocystis PetM could not rescue the PetM-knockout phenotype in Arabidopsis. We provide evidence that the Synechocystis PetM did not stably bind to the Arabidopsis cyt b6f complex. Based on these results, we suggest that PetM is required by Arabidopsis to maintain the function of the cyt b6f complex, likely through its close link with core subunits to form a tight 'fence' that stabilizes the core of the complex.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Complexo Citocromos b6f/genética , Mutação , Fotossíntese , Folhas de Planta/genética , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Cor , Complexo Citocromos b6f/química , Complexo Citocromos b6f/metabolismo , Transporte de Elétrons , Fenótipo , Alinhamento de Sequência
7.
Plant Physiol ; 179(2): 588-600, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30464024

RESUMO

In response to a sudden increase in light intensity, plants must cope with absorbed excess photon energy to protect photosystems from photodamage. Under fluctuating light, PSI is severely photodamaged in the Arabidopsis (Arabidopsis thaliana) proton gradient regulation5 (pgr5) mutant defective in the main pathway of PSI cyclic electron transport (CET). Here, we aimed to determine how PSI is protected by two proposed regulatory roles of CET via transthylakoid ΔpH formation: (1) reservation of electron sink capacity by adjusting the ATP/NADPH production ratio (acceptor-side regulation) and (2) down-regulation of the cytochrome b 6 f complex activity called photosynthetic control for slowing down the electron flow toward PSI (donor-side regulation). We artificially enhanced donor- and acceptor-side regulation in the wild-type and pgr5 backgrounds by introducing the pgr1 mutation conferring the hypersensitivity of the cytochrome b 6 f complex to luminal acidification and moss Physcomitrella patens flavodiiron protein genes, respectively. Enhanced photosynthetic control partially alleviated PSI photodamage in the pgr5 mutant background but restricted linear electron transport under constant high light, suggesting that the strength of photosynthetic control should be optimized. Flavodiiron protein-dependent oxygen photoreduction formed a large electron sink and alleviated PSI photoinhibition, accompanied by the induction of photosynthetic control. Thus, donor-side regulation is essential for PSI photoprotection but acceptor-side regulation also is important to rapidly induce donor-side regulation. In angiosperms, PGR5-dependent CET is required for both functions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Arabidopsis/genética , Bryopsida/genética , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Transporte de Elétrons , Concentração de Íons de Hidrogênio , Luz , Mutação , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteína do Fotossistema I/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Biologia Sintética/métodos
8.
J Biol Chem ; 293(45): 17559-17573, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30228184

RESUMO

The supramolecular organization of membrane proteins (MPs) is sensitive to environmental changes in photosynthetic organisms. Isolation of MP supercomplexes from the green algae Chlamydomonas reinhardtii, which are believed to contribute to cyclic electron flow (CEF) between the cytochrome b6f complex (Cyt-b6f) and photosystem I (PSI), proved difficult. We were unable to isolate a supercomplex containing both Cyt-b6f and PSI because in our hands, most of Cyt-b6f did not comigrate in sucrose density gradients, even upon using chemical cross-linkers or amphipol substitution of detergents. Assisted by independent affinity purification and MS approaches, we utilized disintegrating MP assemblies and demonstrated that the algae-specific CEF effector proteins PETO and ANR1 are bona fide Cyt-b6f interactors, with ANR1 requiring the presence of an additional, presently unknown, protein. We narrowed down the Cyt-b6f interface, where PETO is loosely attached to cytochrome f and to a stromal region of subunit IV, which also contains phosphorylation sites for the STT7 kinase.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Complexo Citocromos b6f/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Chlamydomonas reinhardtii/genética , Complexo Citocromos b6f/genética , Complexo de Proteína do Fotossistema I/genética
9.
Plant Physiol ; 177(2): 465-475, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29703866

RESUMO

Site-directed mutagenesis of chloroplast genes was developed three decades ago and has greatly advanced the field of photosynthesis research. Here, we describe a new approach for generating random chloroplast gene mutants that combines error-prone polymerase chain reaction of a gene of interest with chloroplast complementation of the knockout Chlamydomonas reinhardtii mutant. As a proof of concept, we targeted a 300-bp sequence of the petD gene that encodes subunit IV of the thylakoid membrane-bound cytochrome b6f complex. By sequencing chloroplast transformants, we revealed 149 mutations in the 300-bp target petD sequence that resulted in 92 amino acid substitutions in the 100-residue target subunit IV sequence. Our results show that this method is suited to the study of highly hydrophobic, multisubunit, and chloroplast-encoded proteins containing cofactors such as hemes, iron-sulfur clusters, and chlorophyll pigments. Moreover, we show that mutant screening and sequencing can be used to study photosynthetic mechanisms or to probe the mutational robustness of chloroplast-encoded proteins, and we propose that this method is a valuable tool for the directed evolution of enzymes in the chloroplast.


Assuntos
Chlamydomonas reinhardtii/genética , Proteínas de Cloroplastos/química , Proteínas de Cloroplastos/genética , Mutagênese , Reação em Cadeia da Polimerase/métodos , Biolística/métodos , Proteínas de Cloroplastos/metabolismo , Complexo Citocromos b6f/química , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Técnicas de Inativação de Genes , Biblioteca Gênica , Teste de Complementação Genética , Interações Hidrofóbicas e Hidrofílicas , Relação Estrutura-Atividade
10.
Plant Physiol ; 173(3): 1636-1647, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28153920

RESUMO

The diffusion efficiency of oxygen in the atmosphere, like that of CO2, is approximately 104 times greater than that in aqueous environments. Consequently, terrestrial photosynthetic organisms need mechanisms to protect against potential oxidative damage. The liverwort Marchantia polymorpha, a basal land plant, has habitats where it is exposed to both water and the atmosphere. Furthermore, like cyanobacteria, M. polymorpha has genes encoding flavodiiron proteins (FLV). In cyanobacteria, FLVs mediate oxygen-dependent alternative electron flow (AEF) to suppress the production of reactive oxygen species. Here, we investigated whether FLVs are required for the protection of photosynthesis in M. polymorpha A mutant deficient in the FLV1 isozyme (ΔMpFlv1) sustained photooxidative damage to photosystem I (PSI) following repetitive short-saturation pulses of light. Compared with the wild type (Takaragaike-1), ΔMpFlv1 showed the same photosynthetic oxygen evolution rate but a lower electron transport rate during the induction phase of photosynthesis. Additionally, the reaction center chlorophyll in PSI, P700, was highly reduced in ΔMpFlv1 but not in Takaragaike-1. These results indicate that the gene product of MpFlv1 drives AEF to oxidize PSI, as in cyanobacteria. Furthermore, FLV-mediated AEF supports the production of a proton motive force to possibly induce the nonphotochemical quenching of chlorophyll fluorescence and suppress electron transport in the cytochrome b6/f complex. After submerging the thalli, a decrease in photosystem II operating efficiency was observed, particularly in ΔMpFlv1, which implies that species living in these sorts of habitats require FLV-mediated AEF.


Assuntos
Flavoproteínas/metabolismo , Marchantia/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/metabolismo , Clorofila/metabolismo , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Transporte de Elétrons/genética , Flavoproteínas/genética , Regulação da Expressão Gênica de Plantas , Luz , Marchantia/genética , Mutação , Oxigênio/metabolismo , Fotossíntese/genética , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/genética , Força Próton-Motriz/efeitos da radiação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
11.
J Biol Chem ; 291(41): 21740-21750, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27539852

RESUMO

Trans-membrane signaling involving a serine/threonine kinase (Stt7 in Chlamydomonas reinhardtii) directs light energy distribution between the two photosystems of oxygenic photosynthesis. Oxidation of plastoquinol mediated by the cytochrome b6f complex on the electrochemically positive side of the thylakoid membrane activates the kinase domain of Stt7 on the trans (negative) side, leading to phosphorylation and redistribution ("state transition") of the light-harvesting chlorophyll proteins between the two photosystems. The molecular description of the Stt7 kinase and its interaction with the cytochrome b6f complex are unknown or unclear. In this study, Stt7 kinase has been cloned, expressed, and purified in a heterologous host. Stt7 kinase is shown to be active in vitro in the presence of reductant and purified as a tetramer, as determined by analytical ultracentrifugation, electron microscopy, and electrospray ionization mass spectrometry, with a molecular weight of 332 kDa, consisting of an 83.41-kDa monomer. Far-UV circular dichroism spectra show Stt7 to be mostly α-helical and document a physical interaction with the b6f complex through increased thermal stability of Stt7 secondary structure. The activity of wild-type Stt7 and its Cys-Ser mutant at positions 68 and 73 in the presence of a reductant suggest that the enzyme does not require a disulfide bridge for its activity as suggested elsewhere. Kinase activation in vivo could result from direct interaction between Stt7 and the b6f complex or long-range reduction of Stt7 by superoxide, known to be generated in the b6f complex by quinol oxidation.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Complexo Citocromos b6f/química , Complexos de Proteínas Captadores de Luz/química , Proteínas Serina-Treonina Quinases/química , Chlamydomonas reinhardtii/genética , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Oxirredução , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade
12.
Biochim Biophys Acta ; 1857(6): 705-14, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27033306

RESUMO

PetP is a peripheral subunit of the cytochrome b(6)f complex (b(6)f) present in both, cyanobacteria and red algae. It is bound to the cytoplasmic surface of this membrane protein complex where it greatly affects the efficiency of the linear photosynthetic electron flow although it is not directly involved in the electron transfer reactions. Despite the crystal structures of the b(6)f core complex, structural information for the transient regulatory b(6)f subunits is still missing. Here we present the first structure of PetP at atomic resolution as determined by solution NMR. The protein adopts an SH3 fold, which is a common protein motif in eukaryotes but comparatively rare in prokaryotes. The structure of PetP enabled the identification of the potential interaction site for b(6)f binding by conservation mapping. The interaction surface is mainly formed by two large loop regions and one short 310 helix which also exhibit an increased flexibility as indicated by heteronuclear steady-state {(1)H}-(15)N NOE and random coil index parameters. The properties of this potential b(6)f binding site greatly differ from the canonical peptide binding site which is highly conserved in eukaryotic SH3 domains. Interestingly, three other proteins of the photosynthetic electron transport chain share this SH3 fold with PetP: NdhS of the photosynthetic NADH dehydrogenase-like complex (NDH-1), PsaE of the photosystem 1 and subunit α of the ferredoxin-thioredoxin reductase have, similar to PetP, a great impact on the photosynthetic electron transport. Finally, a model is presented to illustrate how SH3 domains modulate the photosynthetic electron transport processes in cyanobacteria.


Assuntos
Proteínas de Bactérias/química , Complexo Citocromos b6f/química , Soluções/química , Domínios de Homologia de src , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Cianobactérias/genética , Cianobactérias/metabolismo , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Transporte de Elétrons , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Dados de Sequência Molecular , Fotossíntese , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
13.
Plant Physiol ; 171(1): 82-92, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26941194

RESUMO

Photosynthetic organisms have the ability to adapt to changes in light quality by readjusting the cross sections of the light-harvesting systems of photosystem II (PSII) and photosystem I (PSI). This process, called state transitions, maintains the redox poise of the photosynthetic electron transfer chain and ensures a high photosynthetic yield when light is limiting. It is mediated by the Stt7/STN7 protein kinase, which is activated through the cytochrome b6f complex upon reduction of the plastoquinone pool. Its probable major substrate, the light-harvesting complex of PSII, once phosphorylated, dissociates from PSII and docks to PSI, thereby restoring the balance of absorbed light excitation energy between the two photosystems. Although the kinase is known to be inactivated under high-light intensities, the molecular mechanisms governing its regulation remain unknown. In this study we monitored the redox state of a conserved and essential Cys pair of the Stt7/STN7 kinase and show that it forms a disulfide bridge. We could not detect any change in the redox state of these Cys during state transitions and high-light treatment. It is only after prolonged anaerobiosis that this disulfide bridge is reduced. It is likely to be mainly intramolecular, although kinase activation may involve a transient covalently linked kinase dimer with two intermolecular disulfide bonds. Using the yeast two-hybrid system, we have mapped one interaction site of the kinase on the Rieske protein of the cytochrome b6f complex.


Assuntos
Chlamydomonas/metabolismo , Complexo Citocromos b6f/metabolismo , Proteínas Quinases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Chlamydomonas/genética , Chlamydomonas/crescimento & desenvolvimento , Clorofila/análise , Complexo Citocromos b6f/genética , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Mutagênese Sítio-Dirigida , Oxirredução , Fosforilação , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastoquinona/metabolismo , Proteínas Quinases/genética , Coloração e Rotulagem , Técnicas do Sistema de Duplo-Híbrido
14.
Plant Cell ; 26(8): 3435-48, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25139006

RESUMO

The cyanobacterial cytochrome b(6)f complex is central for the coordination of photosynthetic and respiratory electron transport and also for the balance between linear and cyclic electron transport. The development of a purification strategy for a highly active dimeric b(6)f complex from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 enabled characterization of the structural and functional role of the small subunit PetP in this complex. Moreover, the efficient transformability of this strain allowed the generation of a ΔpetP mutant. Analysis on the whole-cell level by growth curves, photosystem II light saturation curves, and P700(+) reduction kinetics indicate a strong decrease in the linear electron transport in the mutant strain versus the wild type, while the cyclic electron transport via photosystem I and cytochrome b(6)f is largely unaffected. This reduction in linear electron transport is accompanied by a strongly decreased stability and activity of the isolated ΔpetP complex in comparison with the dimeric wild-type complex, which binds two PetP subunits. The distinct behavior of linear and cyclic electron transport may suggest the presence of two distinguishable pools of cytochrome b(6)f complexes with different functions that might be correlated with supercomplex formation.


Assuntos
Cianobactérias/metabolismo , Complexo Citocromos b6f/fisiologia , Subunidades Proteicas/fisiologia , Sequência de Aminoácidos , Proliferação de Células/genética , Cianobactérias/citologia , Cianobactérias/genética , Cianobactérias/efeitos da radiação , Complexo Citocromos b6f/química , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Dimerização , Transporte de Elétrons/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Alinhamento de Sequência
15.
Plant Cell ; 26(1): 353-72, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24474630

RESUMO

Starving microalgae for nitrogen sources is commonly used as a biotechnological tool to boost storage of reduced carbon into starch granules or lipid droplets, but the accompanying changes in bioenergetics have been little studied so far. Here, we report that the selective depletion of Rubisco and cytochrome b6f complex that occurs when Chlamydomonas reinhardtii is starved for nitrogen in the presence of acetate and under normoxic conditions is accompanied by a marked increase in chlororespiratory enzymes, which converts the photosynthetic thylakoid membrane into an intracellular matrix for oxidative catabolism of reductants. Cytochrome b6f subunits and most proteins specifically involved in their biogenesis are selectively degraded, mainly by the FtsH and Clp chloroplast proteases. This regulated degradation pathway does not require light, active photosynthesis, or state transitions but is prevented when respiration is impaired or under phototrophic conditions. We provide genetic and pharmacological evidence that NO production from intracellular nitrite governs this degradation pathway: Addition of a NO scavenger and of two distinct NO producers decrease and increase, respectively, the rate of cytochrome b6f degradation; NO-sensitive fluorescence probes, visualized by confocal microscopy, demonstrate that nitrogen-starved cells produce NO only when the cytochrome b6f degradation pathway is activated.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Óxido Nítrico/farmacologia , Nitrogênio/metabolismo , Tilacoides/metabolismo , Chlamydomonas reinhardtii/fisiologia , Chlamydomonas reinhardtii/ultraestrutura , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Metabolismo Energético , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Fotossíntese , Proteólise , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo
16.
Proteomics ; 16(9): 1386-97, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26900021

RESUMO

Changes in leaf soluble proteome were explored in 3-month-old plants of metallicolous (M) and nonmetallicolous (NM) Agrostis capillaris L. populations exposed to increasing Cu concentrations (1-50 µM) to investigate molecular mechanisms underlying plant responses to Cu excess and tolerance of M plants. Plants were cultivated on perlite (CuSO4 spiked-nutrient solution). Soluble proteins, extracted by the trichloroacetic acid/acetone procedure, were separated with 2-DE (linear 4-7 pH gradient). Analysis of CCB-stained gels (PDQuest) reproducibly detected 214 spots, and 64 proteins differentially expressed were identified using LC-MS/MS. In both populations, Cu excess impacted both light-dependent (OEE, cytochrome b6-f complex, and chlorophyll a-b binding protein), and -independent (RuBisCO) photosynthesis reactions, more intensively in NM leaves (ferredoxin-NADP reductase and metalloprotease FTSH2). In both populations, upregulation of isocitrate dehydrogenase and cysteine/methionine synthases respectively suggested increased isocitrate oxidation and enhanced need for S-containing amino-acids, likely for chelation and detoxification. In NM leaves, an increasing need for energetic compounds was indicated by the stimulation of ATPases, glycolysis, pentose phosphate pathway, and Calvin cycle enzymes; impacts on protein metabolism and oxidative stress increase were respectively suggested by the rise of chaperones and redox enzymes. Overexpression of a HSP70 may be pivotal for M Cu tolerance by protecting protein metabolism. All MS data have been deposited in the ProteomeXchange with the dataset identifier PXD001930 (http//proteomecentral.proteomexchange.org/dataset/PXD001930).


Assuntos
Adaptação Fisiológica/genética , Agrostis/efeitos dos fármacos , Sulfato de Cobre/toxicidade , Regulação da Expressão Gênica de Plantas , Folhas de Planta/efeitos dos fármacos , Proteoma/genética , Agrostis/genética , Agrostis/metabolismo , Clorofila/genética , Clorofila/metabolismo , Clorofila A , Proteínas de Ligação à Clorofila/genética , Proteínas de Ligação à Clorofila/metabolismo , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Perfilação da Expressão Gênica , Ontologia Genética , Anotação de Sequência Molecular , Fotossíntese/efeitos dos fármacos , Fotossíntese/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteoma/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Solubilidade , Estresse Fisiológico
17.
Plant J ; 82(5): 861-73, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25898982

RESUMO

In plants and algae, chloroplast gene expression is controlled by nucleus-encoded proteins that bind to mRNAs in a specific manner, stabilizing mRNAs or promoting their splicing, editing, or translation. Here, we present the characterization of two mRNA stabilization factors of the green alga Chlamydomonas reinhardtii, which both belong to the OctotricoPeptide Repeat (OPR) family. MCG1 is necessary to stabilize the petG mRNA, encoding a small subunit of the cytochrome b6 f complex, while MBI1 stabilizes the psbI mRNA, coding for a small subunit of photosystem II. In the mcg1 mutant, the small RNA footprint corresponding to the 5'-end of the petG transcript is reduced in abundance. In both cases, the absence of the small subunit perturbs assembly of the cognate complex. Whereas PetG is essential for formation of a functional cytochrome b6 f dimer, PsbI appears partly dispensable as a low level of PSII activity can still be measured in its absence. Thus, nuclear control of chloroplast gene expression is not only exerted on the major core subunits of the complexes, but also on small subunits with a single transmembrane helix. While OPR proteins have thus far been involved in translation or trans-splicing of plastid mRNAs, our results expand the potential roles of this repeat family to their stabilization.


Assuntos
Chlamydomonas reinhardtii/genética , Complexo Citocromos b6f/genética , Complexo de Proteína do Fotossistema II/genética , Proteínas de Plantas/metabolismo , RNA de Cloroplastos/metabolismo , Chlamydomonas reinhardtii/metabolismo , Complexo Citocromos b6f/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/genética , Estabilidade de RNA
18.
Plant Physiol ; 167(4): 1554-65, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25713340

RESUMO

During desiccation, homoiochlorophyllous resurrection plants retain most of their photosynthetic apparatus, allowing them to resume photosynthetic activity quickly upon water availability. These plants rely on various mechanisms to prevent the formation of reactive oxygen species and/or protect their tissues from the damage they inflict. In this work, we addressed the issue of how homoiochlorophyllous resurrection plants deal with the problem of excessive excitation/electron pressures during dehydration using Craterostigma pumilum as a model plant. To investigate the alterations in the supramolecular organization of photosynthetic protein complexes, we examined cryoimmobilized, freeze-fractured leaf tissues using (cryo)scanning electron microscopy. These examinations revealed rearrangements of photosystem II (PSII) complexes, including a lowered density during moderate dehydration, consistent with a lower level of PSII proteins, as shown by biochemical analyses. The latter also showed a considerable decrease in the level of cytochrome f early during dehydration, suggesting that initial regulation of the inhibition of electron transport is achieved via the cytochrome b6f complex. Upon further dehydration, PSII complexes are observed to arrange into rows and semicrystalline arrays, which correlates with the significant accumulation of sucrose and the appearance of inverted hexagonal lipid phases within the membranes. As opposed to PSII and cytochrome f, the light-harvesting antenna complexes of PSII remain stable throughout the course of dehydration. Altogether, these results, along with photosynthetic activity measurements, suggest that the protection of retained photosynthetic components is achieved, at least in part, via the structural rearrangements of PSII and (likely) light-harvesting antenna complexes into a photochemically quenched state.


Assuntos
Craterostigma/fisiologia , Fotossíntese/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Craterostigma/genética , Craterostigma/efeitos da radiação , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Desidratação , Dessecação , Transporte de Elétrons , Luz , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Água/fisiologia
19.
Plant Cell Environ ; 39(1): 80-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26138548

RESUMO

Although photosynthesis is the most important source for biomass and grain yield, a lack of correlation between photosynthesis and plant yield among different genotypes of various crop species has been frequently observed. Such observations contribute to the ongoing debate whether enhancing leaf photosynthesis can improve yield potential. Here, transgenic rice plants that contain variable amounts of the Rieske FeS protein in the cytochrome (cyt) b6 /f complex between 10 and 100% of wild-type levels have been used to investigate the effect of reductions of these proteins on photosynthesis, plant growth and yield. Reductions of the cyt b6 /f complex did not affect the electron transport rates through photosystem I but decreased electron transport rates through photosystem II, leading to concomitant decreases in CO2 assimilation rates. There was a strong control of plant growth and grain yield by the rate of leaf photosynthesis, leading to the conclusion that enhancing photosynthesis at the single-leaf level would be a useful target for improving crop productivity and yield both via conventional breeding and biotechnology. The data here also suggest that changing photosynthetic electron transport rates via manipulation of the cyt b6 /f complex could be a potential target for enhancing photosynthetic capacity in higher plants.


Assuntos
Complexo Citocromos b6f/metabolismo , Oryza/fisiologia , Fotossíntese/fisiologia , Biomassa , Clorofila/metabolismo , Complexo Citocromos b6f/genética , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/fisiologia , Transporte de Elétrons , Luz , Oryza/genética , Oryza/crescimento & desenvolvimento , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Tilacoides/metabolismo
20.
J Biol Chem ; 288(10): 7024-36, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23303190

RESUMO

Based on previous comparative genomic analyses, a set of nearly 600 polypeptides was identified that is present in green algae and flowering and nonflowering plants but is not present (or is highly diverged) in nonphotosynthetic organisms. The gene encoding one of these "GreenCut" proteins, CPLD38, is in the same operon as ndhL in most cyanobacteria; the NdhL protein is part of a complex essential for cyanobacterial respiration. A cpld38 mutant of Chlamydomonas reinhardtii does not grow on minimal medium, is high light-sensitive under photoheterotrophic conditions, has lower accumulation of photosynthetic complexes, reduced photosynthetic electron flow to P700(+), and reduced photochemical efficiency of photosystem II (ΦPSII); these phenotypes are rescued by a wild-type copy of CPLD38. Single turnover flash experiments and biochemical analyses demonstrated that cytochrome b6f function was severely compromised, and the levels of transcripts and polypeptide subunits of the cytochrome b6f complex were also significantly lower in the cpld38 mutant. Furthermore, subunits of the cytochrome b6f complex in mutant cells turned over much more rapidly than in wild-type cells. Interestingly, PTOX2 and NDA2, two major proteins involved in chlororespiration, were more than 5-fold higher in mutants relative to wild-type cells, suggesting a shift in the cpld38 mutant from photosynthesis toward chlororespiratory metabolism, which is supported by experiments that quantify the reduction state of the plastoquinone pool. Together, these findings support the hypothesis that CPLD38 impacts the stability of the cytochrome b6f complex and possibly plays a role in balancing redox inputs to the quinone pool from photosynthesis and chlororespiration.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Complexo Citocromos b6f/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Proteínas das Membranas dos Tilacoides/metabolismo , Chlamydomonas reinhardtii/genética , Clorofila/metabolismo , ATPases de Cloroplastos Translocadoras de Prótons/genética , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Complexo Citocromos b6f/genética , Citocromos b6/genética , Citocromos b6/metabolismo , Citocromos f/genética , Citocromos f/metabolismo , Transporte de Elétrons , Expressão Gênica , Immunoblotting , Luz , Mutação , Oxirredução , Fotossíntese/genética , Fotossíntese/efeitos da radiação , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Plastoquinona/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas das Membranas dos Tilacoides/genética , Tilacoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA