Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301911

RESUMO

In photosynthetic reaction centers from purple bacteria (PbRCs) from Rhodobacter sphaeroides, the secondary quinone QB accepts two electrons and two protons via electron-coupled proton transfer (PT). Here, we identify PT pathways that proceed toward the QB binding site, using a quantum mechanical/molecular mechanical approach. As the first electron is transferred to QB, the formation of the Grotthuss-like pre-PT H-bond network is observed along Asp-L213, Ser-L223, and the distal QB carbonyl O site. As the second electron is transferred, the formation of a low-barrier H-bond is observed between His-L190 at Fe and the proximal QB carbonyl O site, which facilitates the second PT. As QBH2 leaves PbRC, a chain of water molecules connects protonated Glu-L212 and deprotonated His-L190 forms, which serves as a pathway for the His-L190 reprotonation. The findings of the second pathway, which does not involve Glu-L212, and the third pathway, which proceeds from Glu-L212 to His-L190, provide a mechanism for PT commonly used among PbRCs.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , Prótons , Rhodobacter sphaeroides/metabolismo , Sítios de Ligação , Transporte de Elétrons , Quinonas/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34845027

RESUMO

Quantum coherences, observed as time-dependent beats in ultrafast spectroscopic experiments, arise when light-matter interactions prepare systems in superpositions of states with differing energy and fixed phase across the ensemble. Such coherences have been observed in photosynthetic systems following ultrafast laser excitation, but what these coherences imply about the underlying energy transfer dynamics remains subject to debate. Recent work showed that redox conditions tune vibronic coupling in the Fenna-Matthews-Olson (FMO) pigment-protein complex in green sulfur bacteria, raising the question of whether redox conditions may also affect the long-lived (>100 fs) quantum coherences observed in this complex. In this work, we perform ultrafast two-dimensional electronic spectroscopy measurements on the FMO complex under both oxidizing and reducing conditions. We observe that many excited-state coherences are exclusively present in reducing conditions and are absent or attenuated in oxidizing conditions. Reducing conditions mimic the natural conditions of the complex more closely. Further, the presence of these coherences correlates with the vibronic coupling that produces faster, more efficient energy transfer through the complex under reducing conditions. The growth of coherences across the waiting time and the number of beating frequencies across hundreds of wavenumbers in the power spectra suggest that the beats are excited-state coherences with a mostly vibrational character whose phase relationship is maintained through the energy transfer process. Our results suggest that excitonic energy transfer proceeds through a coherent mechanism in this complex and that the coherences may provide a tool to disentangle coherent relaxation from energy transfer driven by stochastic environmental fluctuations.


Assuntos
Transferência de Energia/fisiologia , Complexos de Proteínas Captadores de Luz/fisiologia , Fotossíntese/fisiologia , Proteínas de Bactérias/química , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Oxirredução , Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , Pigmentação , Teoria Quântica , Análise Espectral/métodos , Vibração
3.
Plant Physiol ; 179(4): 1739-1753, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30538167

RESUMO

Photosystem II (PSII) is a supramolecular complex containing over 30 protein subunits and a large set of cofactors, including various pigments and quinones as well as Mn, Ca, Cl, and Fe ions. Eukaryotic PSII complexes contain many subunits not found in their bacterial counterparts, including the proteins PsbP (PSII), PsbQ, PsbS, and PsbW, as well as the highly homologous, low-molecular-mass subunits PsbTn1 and PsbTn2 whose function is currently unknown. To determine the function of PsbTn1 and PsbTn2, we generated single and double psbTn1 and psbTn2 knockout mutants in Arabidopsis (Arabidopsis thaliana). Cross linking and reciprocal coimmunoprecipitation experiments revealed that PsbTn is a lumenal PSII protein situated next to the cytochrome b 559 subunit PsbE. The removal of the PsbTn proteins decreased the oxygen evolution rate and PSII core phosphorylation level but increased the susceptibility of PSII to photoinhibition and the production of reactive oxygen species. The assembly and stability of PSII were unaffected, indicating that the deficiencies of the psbTn1 psbTn2 double mutants are due to structural changes. Double mutants exhibited a higher rate of nonphotochemical quenching of excited states than the wild type and single mutants, as well as slower state transition kinetics and a lower quantum yield of PSII when grown in the field. Based on these results, we propose that the main function of the PsbTn proteins is to enable PSII to acclimate to light shifts or intense illumination.


Assuntos
Aclimatação , Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , Aclimatação/genética , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Luz , Estresse Oxidativo , Fosforilação , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/fisiologia , Espécies Reativas de Oxigênio/metabolismo
4.
Photosynth Res ; 142(1): 87-103, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31161318

RESUMO

Chloracidobacterium thermophilum is a microaerophilic, anoxygenic member of the green chlorophototrophic bacteria. This bacterium is the first characterized oxygen-requiring chlorophototroph with chlorosomes, the FMO protein, and homodimeric type-1 reaction centers (RCs). The RCs of C. thermophilum are also unique because they contain three types of chlorophylls, bacteriochlorophyll aP esterified with phytol, Chl aPD esterified with Δ2,6-phytadienol, and Zn-BChl aP' esterified with phytol, in the approximate molar ratio 32:24:4. The light-induced difference spectrum of these RCs had a bleaching maximum at 839 nm and also revealed an electrochromic bandshift that is probably derived from a BChl a molecule near P840+. The FX [4Fe-4S] cluster had a midpoint potential of ca. - 581 mV, and the spectroscopic properties of the P+ F X - spin-polarized radical pair were very similar to those of reaction centers of heliobacteria and green sulfur bacteria. The data further indicate that electron transfer occurs directly from A0- to FX, as occurs in other homodimeric type-1 RCs. Washing experiments with isolated membranes suggested that the PscB subunit of these reaction centers is more tightly bound than PshB in heliobacteria. Thus, the reaction centers of C. thermophilum have some properties that resemble other homodimeric reaction centers but also have specific properties that are more similar to those of Photosystem I. These differences probably contribute to protection of the electron transfer chain from oxygen, contributing to the oxygen tolerance of this microaerophile.


Assuntos
Acidobacteria/metabolismo , Fotossíntese/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , Clorofila/química , Clorofila/metabolismo , Cromatografia Líquida de Alta Pressão , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Oxirredução , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo
5.
Planta ; 247(3): 705-714, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29170912

RESUMO

MAIN CONCLUSION: Drought tolerance was greater in the whole lichen than in its isolated photobiont. Cell turgor state has an influence on the functionality of photosynthetic process in lichens. Irreversible thermodynamics is widely used to describe the water relations of vascular plants. However, poikilohydrous organisms like lichens and aeroterrestrial microalgae have seldom been studied using this approach. Water relations of lichens are generally addressed without separate analysis of the mycobiont and photobiont, and only few studies have correlated changes in photosynthetic efficiency of dehydrating lichens to accurate measurements of their water potential components. We measured water potential isotherms and chlorophyll a fluorescence in the lichen Flavoparmelia caperata harvested in different seasons, as well as in its isolated photobiont, the green alga Trebouxia gelatinosa, either exposed to water stress cycles or fully hydrated. No significant seasonal trends were observed in lichen water relations parameters. Turgor loss point and osmotic potential of the whole thallus were significantly lower than those measured in the photobiont, while differences between the water stressed photobiont and controls were not significant. Dehydration-induced drop of F v/F m was correlated with turgor loss, revealing that the photosynthetic activity of lichens partly depends on their turgor level. We provided one of the first quantitative evidences of the influence that turgor status could exert on the functionality of photosynthetic processes in lichens.


Assuntos
Líquens/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Clorofila/metabolismo , Clorofila A , Clorófitas/metabolismo , Clorófitas/fisiologia , Desidratação/metabolismo , Líquens/metabolismo , Luz , Pressão Osmótica , Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , Estações do Ano , Água/metabolismo
6.
Photosynth Res ; 137(2): 227-239, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29524035

RESUMO

We address a challenge in the engineering of proteins to redirect electron transfer pathways, using the bacterial photosynthetic reaction centre (RC) pigment-protein complex. Direct electron transfer is shown to occur from the QA quinone of the Rhodobacter sphaeroides RC containing a truncated H protein and bound on the quinone side to a gold electrode. In previous reports of binding to the quinone side of the RC, electron transfer has relied on the use of a soluble mediator between the RC and an electrode, in part because the probability of QB quinone reduction is much greater than that of direct electron transfer through the large cytoplasmic domain of the H subunit, presenting a ~ 25 Å barrier. A series of C-terminal truncations of the H subunit were created to expose the quinone region of the RC L and M proteins, and all truncated RC H mutants assembled in vivo. The 45M mutant was designed to contain only the N-terminal 45 amino acid residues of the H subunit including the membrane-spanning α-helix; the mutant RC was stable when purified using the detergent N-dodecyl-ß-D-maltoside, contained a near-native ratio of bacteriochlorophylls to bacteriopheophytins, and showed a charge-separated state of [Formula: see text]. The 45M-M229 mutant RC had a Cys residue introduced in the vicinity of the QA quinone on the newly exposed protein surface for electrode attachment, decreasing the distance between the quinone and electrode to ~ 12 Å. Steady-state photocurrents of up to around 200 nA/cm2 were generated in the presence of 20 mM hydroquinone as the electron donor to the RC. This novel configuration yielded photocurrents orders of magnitude greater than previous reports of electron transfer from the quinone region of RCs bound in this orientation to an electrode.


Assuntos
Transporte de Elétrons/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , Rhodobacter sphaeroides/metabolismo , Coenzimas , DNA Bacteriano/genética , Técnicas Eletroquímicas , Escherichia coli , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Pigmentos Biológicos , Conformação Proteica , Subunidades Proteicas
7.
Photosynth Res ; 138(2): 167-175, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30022339

RESUMO

In framework of the continuum electrostatics theory, the reorganization energies of the electron transfers QA--QB (fast phase), Bph--QA, P+-QA-, and P+-QB- in the photosynthetic bacterial reaction center have been calculated. The calculations were based on the static dielectric permittivity spatial distribution derived from the data on the electrogenesis, with the corresponding characteristic times relatively close to the reaction times of QA--QB (fast phase) and Bph--QA but much shorter than those times of the latter two recombination reactions. The calculated reorganization energies were reasonably close to the experimental estimates for QA--QB (fast phase) and Bph--QA but substantially lower than those of P+-QA- and P+-QB-. A higher effective dielectric permittivity contributes to this effect, but the dominant contribution is most probably made by a non-dielectric relaxation, especially for the P+-QB- recombination influenced by the proton transfer. This situation calls for reconsidering of the current electron transfer rate estimates.


Assuntos
Transporte de Elétrons/fisiologia , Complexos de Proteínas Captadores de Luz/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , Quinonas/metabolismo , Rhodobacter sphaeroides/fisiologia , Complexos de Proteínas Captadores de Luz/química , Estrutura Molecular , Complexo de Proteínas do Centro de Reação Fotossintética/química
8.
Biochem J ; 474(5): 827-849, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28219973

RESUMO

The sulfonated carbohydrate sulfoquinovose (SQ) is produced in quantities estimated at some 10 billion tonnes annually and is thus a major participant in the global sulfur biocycle. SQ is produced by most photosynthetic organisms and incorporated into the sulfolipid sulfoquinovosyl diacylglycerol (SQDG), as well as within some archaea for incorporation into glycoprotein N-glycans. SQDG is found mainly within the thylakoid membranes of the chloroplast, where it appears to be important for membrane structure and function and for optimal activity of photosynthetic protein complexes. SQDG metabolism within the sulfur cycle involves complex biosynthetic and catabolic processes. SQDG biosynthesis is largely conserved within plants, algae and bacteria. On the other hand, two major sulfoglycolytic pathways have been discovered for SQDG degradation, the sulfo-Embden-Meyerhof-Parnas (sulfo-EMP) and sulfo-Entner-Doudoroff (sulfo-ED) pathways, which mirror the major steps in the glycolytic EMP and ED pathways. Sulfoglycolysis produces C3-sulfonates, which undergo biomineralization to inorganic sulfur species, completing the sulfur cycle. This review discusses the discovery and structural elucidation of SQDG and archaeal N-glycans, the occurrence, distribution, and speciation of SQDG, and metabolic pathways leading to the biosynthesis of SQDG and its catabolism through sulfoglycolytic and biomineralization pathways to inorganic sulfur.


Assuntos
Glicolipídeos/metabolismo , Metilglucosídeos/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , Enxofre/metabolismo , Tilacoides/metabolismo , Archaea/metabolismo , Cianobactérias/metabolismo , Citocromos/química , Citocromos/metabolismo , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Glicolipídeos/química , Lipídeos/química , Redes e Vias Metabólicas , Metilglucosídeos/química , Modelos Moleculares , Fotossíntese/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/química , Plantas/metabolismo , Tilacoides/química
9.
Proc Natl Acad Sci U S A ; 112(37): 11571-6, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26330610

RESUMO

Complex I functions as a redox-linked proton pump in the respiratory chains of mitochondria and bacteria, driven by the reduction of quinone (Q) by NADH. Remarkably, the distance between the Q reduction site and the most distant proton channels extends nearly 200 Å. To elucidate the molecular origin of this long-range coupling, we apply a combination of large-scale molecular simulations and a site-directed mutagenesis experiment of a key residue. In hybrid quantum mechanics/molecular mechanics simulations, we observe that reduction of Q is coupled to its local protonation by the His-38/Asp-139 ion pair and Tyr-87 of subunit Nqo4. Atomistic classical molecular dynamics simulations further suggest that formation of quinol (QH2) triggers rapid dissociation of the anionic Asp-139 toward the membrane domain that couples to conformational changes in a network of conserved charged residues. Site-directed mutagenesis data confirm the importance of Asp-139; upon mutation to asparagine the Q reductase activity is inhibited by 75%. The current results, together with earlier biochemical data, suggest that the proton pumping in complex I is activated by a unique combination of electrostatic and conformational transitions.


Assuntos
Complexo I de Transporte de Elétrons/fisiologia , Oxirredução , Transporte de Elétrons , Escherichia coli/metabolismo , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , Ligação Proteica , Estrutura Terciária de Proteína , Bombas de Próton/fisiologia , Eletricidade Estática , Temperatura , Thermus thermophilus/enzimologia , Raios X
10.
Photosynth Res ; 131(2): 121-144, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27678250

RESUMO

Time-resolved (TR) infrared (IR) spectroscopy in the nanosecond to second timescale has been extensively used, in the last 30 years, in the study of photosynthetic systems. Interesting results have also been obtained at lower time resolution (minutes or even hours). In this review, we first describe the used techniques-dispersive IR, laser diode IR, rapid-scan Fourier transform (FT)IR, step-scan FTIR-underlying the advantages and disadvantages of each of them. Then, the main TR-IR results obtained so far in the investigation of photosynthetic reactions (in reaction centers, in light-harvesting systems, but also in entire membranes or even in living organisms) are presented. Finally, after the general conclusions, the perspectives in the field of TR-IR applied to photosynthesis are described.


Assuntos
Fotossíntese , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Carotenoides/fisiologia , Clorofila/fisiologia , Clorofila A , Cinética , Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , Rhodobacter sphaeroides/fisiologia , Tilacoides/fisiologia
11.
Biochim Biophys Acta ; 1847(9): 931-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25481109

RESUMO

In addition to ∆pH formed across the thylakoid membrane, membrane potential contributes to proton motive force (pmf) in chloroplasts. However, the regulation of photosynthetic electron transport is mediated solely by ∆pH. To assess the contribution of two cyclic electron transport pathways around photosystem I (one depending on PGR5/PGRL1 and one on NDH) to pmf formation, electrochromic shift (ECS) was analyzed in the Arabidopsis pgr5 mutant, NDH-defective mutants (ndhs and crr4-2), and their double mutants (ndhs pgr5 and crr4-2 pgr5). In pgr5, the size of the pmf, as represented by ECSt, was reduced by 30% to 47% compared with that in the wild type (WT). A gH+ parameter, which is considered to represent the activity of ATP synthase, was enhanced at high light intensities. However, gH+ recovered to its low-light levels after 20 min in the dark, implying that the elevation in gH+ is due to the disturbed regulation of ATP synthase rather than to photodamage. After long dark adaptation more than 2 h, gH+ was higher in pgr5 than in the WT. During induction of photosynthesis, gH+ was more rapidly elevated in pgr5 than that in the WT. Both results suggest that ATP synthase is not fully inactivated in the dark in pgr5. In the NDH-deficient mutants, ECSt was slightly but significantly lower than in the WT, whereas gH+ was not affected. In the double mutants, ECSt was even lower than in pgr5. These results suggest that both PGR5/PGRL1- and NDH-dependent pathways contribute to pmf formation, although to different extents. This article is part of a Special Issue entitled: Chloroplast Biogenesis.


Assuntos
Cloroplastos/fisiologia , Complexo de Proteína do Fotossistema I/fisiologia , Força Próton-Motriz , Proteínas de Arabidopsis/fisiologia , Transporte de Elétrons , Luz , Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , ATPases Translocadoras de Prótons/fisiologia
13.
J Chem Phys ; 142(9): 094111, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25747065

RESUMO

The vibrational spectral density is an important physical parameter needed to describe both linear and non-linear spectra of multi-chromophore systems such as photosynthetic complexes. Low-temperature techniques such as hole burning (HB) and fluorescence line narrowing are commonly used to extract the spectral density for a given electronic transition from experimental data. We report here that the lineshape function formula reported by Hayes et al. [J. Phys. Chem. 98, 7337 (1994)] in the mean-phonon approximation and frequently applied to analyzing HB data contains inconsistencies in notation, leading to essentially incorrect expressions in cases of moderate and strong electron-phonon (el-ph) coupling strengths. A corrected lineshape function L(ω) is given that retains the computational and intuitive advantages of the expression of Hayes et al. [J. Phys. Chem. 98, 7337 (1994)]. Although the corrected lineshape function could be used in modeling studies of various optical spectra, we suggest that it is better to calculate the lineshape function numerically, without introducing the mean-phonon approximation. New theoretical fits of the P870 and P960 absorption bands and frequency-dependent resonant HB spectra of Rb. sphaeroides and Rps. viridis reaction centers are provided as examples to demonstrate the importance of correct lineshape expressions. Comparison with the previously determined el-ph coupling parameters [Johnson et al., J. Phys. Chem. 94, 5849 (1990); Lyle et al., ibid. 97, 6924 (1993); Reddy et al., ibid. 97, 6934 (1993)] is also provided. The new fits lead to modified el-ph coupling strengths and different frequencies of the special pair marker mode, ωsp, for Rb. sphaeroides that could be used in the future for more advanced calculations of absorption and HB spectra obtained for various bacterial reaction centers.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , Rhodobacter sphaeroides/metabolismo , Espectrofotometria/métodos , Proteínas de Bactérias/química , Modelos Químicos
14.
Proc Natl Acad Sci U S A ; 109(27): 11043-8, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22711813

RESUMO

A potassium channel (SynK) of the cyanobacterium Synechocystis sp. PCC 6803, a photoheterotrophic model organism for the study of photosynthesis, has been recently identified and demonstrated to function as a potassium selective channel when expressed in a heterologous system and to be located predominantly to the thylakoid membrane in cyanobacteria. To study its physiological role, a SynK-less knockout mutant was generated and characterized. Fluorimetric experiments indicated that SynK-less cyanobacteria cannot build up a proton gradient as efficiently as WT organisms, suggesting that SynK might be involved in the regulation of the electric component of the proton motive force. Accordingly, measurements of flash-induced cytochrome b(6)f turnover and respiration pointed to a reduced generation of ΔpH and to an altered linear electron transport in mutant cells. The lack of the channel did not cause an altered membrane organization, but decreased growth and modified the photosystem II/photosystem I ratio at high light intensities because of enhanced photosensitivity. These data shed light on the function of a prokaryotic potassium channel and reports evidence, by means of a genetic approach, on the requirement of a thylakoid ion channel for optimal photosynthesis.


Assuntos
Proteínas de Bactérias/fisiologia , Fotossíntese/fisiologia , Canais de Potássio/fisiologia , Synechocystis/fisiologia , Tilacoides/fisiologia , Proteínas de Bactérias/genética , Clorofila/metabolismo , Transporte de Elétrons , Técnicas de Inativação de Genes , Potenciais da Membrana/fisiologia , Oxigênio/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , Complexo de Proteína do Fotossistema I/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Canais de Potássio/genética , Prótons , Synechocystis/genética
15.
Plant J ; 73(2): 250-61, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22978702

RESUMO

The galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the predominant lipids in thylakoid membranes and indispensable for photosynthesis. Among the three isoforms that catalyze MGDG synthesis in Arabidopsis thaliana, MGD1 is responsible for most galactolipid synthesis in chloroplasts, whereas MGD2 and MGD3 are required for DGDG accumulation during phosphate (Pi) starvation. A null mutant of Arabidopsis MGD1 (mgd1-2), which lacks both galactolipids and shows a severe defect in chloroplast biogenesis under nutrient-sufficient conditions, accumulated large amounts of DGDG, with a strong induction of MGD2/3 expression, during Pi starvation. In plastids of Pi-starved mgd1-2 leaves, biogenesis of thylakoid-like internal membranes, occasionally associated with invagination of the inner envelope, was observed, together with chlorophyll accumulation. Moreover, the mutant accumulated photosynthetic membrane proteins upon Pi starvation, indicating a compensation for MGD1 deficiency by Pi stress-induced galactolipid biosynthesis. However, photosynthetic activity in the mutant was still abolished, and light-harvesting/photosystem core complexes were improperly formed, suggesting a requirement for MGDG for proper assembly of these complexes. During Pi starvation, distribution of plastid nucleoids changed concomitantly with internal membrane biogenesis in the mgd1-2 mutant. Moreover, the reduced expression of nuclear- and plastid-encoded photosynthetic genes observed in the mgd1-2 mutant under Pi-sufficient conditions was restored after Pi starvation. In contrast, Pi starvation had no such positive effects in mutants lacking chlorophyll biosynthesis. These observations demonstrate that galactolipid biosynthesis and subsequent membrane biogenesis inside the plastid strongly influence nucleoid distribution and the expression of both plastid- and nuclear-encoded photosynthetic genes, independently of photosynthesis.


Assuntos
Arabidopsis/metabolismo , Cloroplastos/fisiologia , Galactolipídeos/biossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , Tilacoides/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis , Regulação da Expressão Gênica de Plantas/fisiologia , Lipídeos de Membrana/metabolismo , Fotossíntese
16.
Photosynth Res ; 122(3): 261-73, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25022916

RESUMO

The development of photosynthetic membranes of intact cells of Rhodobacter sphaeroides was tracked by light-induced absorption spectroscopy and induction and relaxation of the bacteriochlorophyll fluorescence. Changes in membrane structure were induced by three methods: synchronization of cell growth, adjustment of different growth phases and transfer from aerobic to anaerobic conditions (greening) of the bacteria. While the production of the bacteriochlorophyll and carotenoid pigments and the activation of light harvesting and reaction center complexes showed cell-cycle independent and continuous increase with characteristic lag phases, the accumulation of phospholipids and membrane potential (electrochromism) exhibited stepwise increase controlled by cell division. Cells in the stationary phase of growth demonstrated closer packing and tighter energetic coupling of the photosynthetic units (PSU) than in their early logarithmic stage. The greening resulted in rapid (within 0-4 h) induction of BChl synthesis accompanied with a dominating role for the peripheral light harvesting system (up to LH2/LH1 ~2.5), significantly increased rate (~7·10(4) s(-1)) and yield (F v/F max ~0.7) of photochemistry and modest (~2.5-fold) decrease of the rate of electron transfer (~1.5·10(4) s(-1)). The results are discussed in frame of a model of sequential assembly of the PSU with emphasis on crowding the LH2 complexes resulting in an increase of the connectivity and yield of light capture on the one hand and increase of hindrance to diffusion of mobile redox agents on the other hand.


Assuntos
Modelos Biológicos , Fotossíntese/fisiologia , Rhodobacter sphaeroides/metabolismo , Membranas Intracelulares/metabolismo , Membranas Intracelulares/fisiologia , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , Rhodobacter sphaeroides/citologia , Rhodobacter sphaeroides/fisiologia
17.
Plant J ; 70(1): 157-76, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22449050

RESUMO

The process of oxygenic photosynthesis enabled and still sustains aerobic life on Earth. The most elaborate form of the apparatus that carries out the primary steps of this vital process is the one present in higher plants. Here, we review the overall composition and supramolecular organization of this apparatus, as well as the complex architecture of the lamellar system within which it is harbored. Along the way, we refer to the genetic, biochemical, spectroscopic and, in particular, microscopic studies that have been employed to elucidate the structure and working of this remarkable molecular energy conversion device. As an example of the highly dynamic nature of the apparatus, we discuss the molecular and structural events that enable it to maintain high photosynthetic yields under fluctuating light conditions. We conclude the review with a summary of the hypotheses made over the years about the driving forces that underlie the partition of the lamellar system of higher plants and certain green algae into appressed and non-appressed membrane domains and the segregation of the photosynthetic protein complexes within these domains.


Assuntos
Embriófitas/fisiologia , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , Tilacoides/fisiologia , Luz , Fosforilação
18.
Biochim Biophys Acta ; 1817(11): 2005-15, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22771512

RESUMO

Sco proteins are widespread assembly factors for the Cu(A) centre of aa3-type cytochrome oxidases in eukaryotic and prokaryotic organisms. However, Sco homologues are also found in bacteria like Rhodobacter capsulatus which lack aa3-type cytochrome oxidases and instead use a cbb3-type cytochrome oxidase (cbb3 Cox) without a Cu(A) centre as a terminal oxidase. In the current study, we have analyzed the role of Sco (SenC) during cbb3 Cox assembly in R. capsulatus. In agreement with earlier works, we found a strong cbb3 Cox defect in the absence of SenC that impairs the steady-state stability of the CcoN, CcoO and CcoP core subunits, without the accumulation of detectable assembly intermediates. In vivo cross-linking results demonstrate that SenC is in close proximity to the CcoP and CcoH subunits of cbb3 Cox, suggesting that SenC interacts directly with cbb3 Cox during its assembly. SenC binds copper and the cbb3 Cox assembly defect in the absence of SenC can be rescued by the addition of least 0.5µM Cu. Neither copper nor SenC influenced the transcription of the ccoNOQP operon encoding for cbb3 Cox. Transcription of senC itself was also not influenced by Cu unless the putative Cu-export ATPase CcoI was absent. As CcoI is specifically required for the cbb3 Cox assembly, these data provide a direct link between Cu delivery to cbb3 Cox and SenC function.


Assuntos
Proteínas de Bactérias/fisiologia , Cobre/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , Rhodobacter capsulatus/metabolismo , Transcrição Gênica
19.
Biochim Biophys Acta ; 1817(2): 336-52, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22079525

RESUMO

In well-characterised species of the Rhodobacter (Rba.) genus of purple photosynthetic bacteria it is known that the photochemical reaction centre (RC) is intimately-associated with an encircling LH1 antenna pigment protein, and this LH1 antenna is prevented from completely surrounding the RC by a single copy of the PufX protein. In Rba. veldkampii only monomeric RC-LH1 complexes are assembled in the photosynthetic membrane, whereas in Rba. sphaeroides and Rba. blasticus a dimeric form is also assembled in which two RCs are surrounded by an S-shaped LH1 antenna. The present work established that dimeric RC-LH1 complexes can also be isolated from Rba. azotoformans and Rba. changlensis, but not from Rba. capsulatus or Rba. vinaykumarii. The compositions of the monomers and dimers isolated from these four species of Rhodobacter were similar to those of the well-characterised RC-LH1 complexes present in Rba. sphaeroides. Pigment proteins were also isolated from strains of Rba. sphaeroides expressing chimeric RC-LH1 complexes. Replacement of either the Rba. sphaeroides LH1 antenna or PufX with its counterpart from Rba. capsulatus led to a loss of the dimeric form of the RC-LH1 complex, but the monomeric form had a largely unaltered composition, even in strains in which the expression level of LH1 relative to the RC was reduced. The chimeric RC-LH1 complexes were also functional, supporting bacterial growth under photosynthetic conditions. The findings help to tease apart the different functions of PufX in different species of Rhodobacter, and a specific protein structural arrangement that allows PufX to fulfil these three functions is proposed.


Assuntos
Proteínas de Bactérias/fisiologia , Complexos de Proteínas Captadores de Luz/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , Rhodobacter/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares , Organismos Geneticamente Modificados , Peptídeos/química , Peptídeos/metabolismo , Fotossíntese/genética , Fotossíntese/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/análise , Complexo de Proteínas do Centro de Reação Fotossintética/química , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica/genética , Multimerização Proteica/fisiologia , Estrutura Quaternária de Proteína , Rhodobacter/genética , Rhodobacter/fisiologia , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Rhodobacter capsulatus/fisiologia , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Rhodobacter sphaeroides/fisiologia , Especificidade da Espécie
20.
Plant Cell Environ ; 35(12): 2075-86, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22583050

RESUMO

Despite intense research, the mechanism of Cd(2+) toxicity on photosynthesis is still elusive because of the multiplicity of the inhibitory effects and different barriers in plants. The quick Cd(2+) uptake in Synechocystis PCC 6803 permits the direct interaction of cadmium with the photosynthetic machinery and allows the distinction between primary and secondary effects. We show that the CO(2) -dependent electron transport is rapidly inhibited upon exposing the cells to 40 µm Cd(2+) (50% inhibition in ∼15 min). However, during this time we observe only symptoms of photosystem I acceptor side limitation and a build of an excitation pressure on the reaction centres, as indicated by light-induced P700 redox transients, O(2) polarography and changes in chlorophyll a fluorescence parameters. Inhibitory effects on photosystem II electron transport and the degradation of the reaction centre protein D1 can only be observed after several hours, and only in the light, as revealed by chlorophyll a fluorescence transients, thermoluminescence and immunoblotting. Despite the marked differences in the manifestations of these short- and long-term effects, they exhibit virtually the same Cd(2+) concentration dependence. These data strongly suggest a cascade mechanism of the toxic effect, with a primary effect in the dark reactions.


Assuntos
Cádmio/toxicidade , Fotossíntese/efeitos dos fármacos , Synechocystis/efeitos dos fármacos , Luminescência , Oxirredução , Complexo de Proteínas do Centro de Reação Fotossintética/fisiologia , Synechocystis/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA