Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 434
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(10): 400, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256286

RESUMO

Chlorine dioxide (ClO2) is a strong oxidizing agent and an efficient disinfectant. Due to its broad-spectrum bactericidal properties, good inactivation effect on the vast majority of bacteria and pathogenic microorganisms, low resistance to drugs, and low generation of halogenated by-products, chlorine dioxide is widely used in fields such as water purification, food safety, medical and public health, and living environment. This review introduced the properties and application status of chlorine dioxide, compared the action mode, advantages and disadvantages of various disinfectants. The mechanism of chlorine dioxide inactivating bacteria, fungi and viruses were reviewed. The lethal target of chlorine dioxide to bacteria and fungi is to destroy the structure of cell membrane, change the permeability of cell membrane, and make intracellular substances flow out, leading to their death. The lethal targets for viruses are the destruction of viral protein capsids and the degradation of RNA fragments. The purpose of this review is to provide more scientific guidance for the application of chlorine dioxide disinfectants.


Assuntos
Bactérias , Compostos Clorados , Desinfetantes , Desinfecção , Fungos , Óxidos , Vírus , Compostos Clorados/farmacologia , Óxidos/farmacologia , Desinfetantes/farmacologia , Desinfecção/métodos , Bactérias/efeitos dos fármacos , Vírus/efeitos dos fármacos , Fungos/efeitos dos fármacos , Purificação da Água/métodos , Humanos
2.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39013612

RESUMO

AIMS: This study aimed to assess the effects of chlorine dioxide (ClO2) in water on whiteleg shrimp Penaeus vannamei, evaluating its impact on the stomach microbiota, gill transcriptome, and pathogens. METHODS AND RESULTS: ClO2 was added to the aquarium tanks containing the shrimp. The application of ClO2 to rearing water was lethal to shrimp at concentrations above 1.2 ppm. On the other hand, most of the shrimp survived at 1.0 ppm of ClO2. Microbiome analysis showed that ClO2 administration at 1.0 ppm significantly reduced the α-diversity of bacterial community composition in the shrimp stomach, and this condition persisted for at least 7 days. Transcriptome analysis of shrimp gill revealed that ClO2 treatment caused massive change of the gene expression profile, including stress response genes. However, after 7 days of the treatment, the gene expression profile was similar to that of shrimp in the untreated control group, suggesting a recovery to the normal state. This 1.0-ppm ClO2 significantly reduced shrimp mortality in artificial challenges with an acute hepatopancreatic necrosis disease-causing Vibrio parahaemolyticus and white spot syndrome virus, which were added to rearing water. CONCLUSIONS: The use of ClO2 at appropriate concentrations effectively eliminates a significant portion of the bacteria in the shrimp stomach and pathogens in the water. The results of this study provide fundamental knowledge on the disinfection of pathogens in water using ClO2 and the creation of semi germ-free shrimp, which has significantly decreased microbiome in the stomach.


Assuntos
Compostos Clorados , Brânquias , Óxidos , Penaeidae , Transcriptoma , Compostos Clorados/farmacologia , Animais , Penaeidae/microbiologia , Óxidos/farmacologia , Brânquias/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Desinfetantes/farmacologia , Aquicultura , Vibrio parahaemolyticus/efeitos dos fármacos
3.
J Fish Dis ; 47(8): e13957, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38665053

RESUMO

Global ornamental fish transportation ranging from hours to days can produce multiple stress factors impact fish health and cause mortality. Clownfish, particularly Amphiprion ocellaris, are among the most traded saltwater ornamental fish. Vibrio includes several pathogenic strains that affect aquatic animals. Consequently, prophylactic treatment of the water or fish is recommended. In this study, six Vibrio strains including V. alginolyticus, V. parahaemolyticus and V. harveyi isolated from sick A. ocellaris and one V. harveyi strain from a sick East Asian fourfinger threadfin (Eleutheronema rhadinum) were tested for their sensitivity to a popular disinfectant, chlorine dioxide (ClO2). The results showed that 0.25 ppm ClO2 effectively suppressed five of the seven tested Vibrio strains for 24 h; however, 0.1 ppm ClO2 is safer for A. ocellaris. Meanwhile, ClO2 2.5 ppm reduced the bacterial counts to below 3.3 × 105 CFU/mL for 24 hours. The LC50 of ClO2 for A. ocellaris was 0.87 ppm at 10 min and 0.72 ppm at 24 h post treatment. Mild changes in water quality, including dissolved oxygen (DO), temperature and pH, were recorded during the trial. More research is necessary to understand the sensitivity of various aquatic animal pathogens to ClO2 and its toxicity to different aquatic animals.


Assuntos
Compostos Clorados , Desinfetantes , Doenças dos Peixes , Óxidos , Vibrioses , Vibrio , Compostos Clorados/farmacologia , Animais , Óxidos/farmacologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Vibrio/efeitos dos fármacos , Desinfetantes/farmacologia , Vibrioses/veterinária , Vibrioses/prevenção & controle , Perciformes , Antibacterianos/farmacologia
4.
Parasitol Res ; 123(4): 192, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652173

RESUMO

The pathogenic free-living amoebae, Naegleria fowleri and Acanthamoeba polyphaga, are found in freshwater, soil, and unchlorinated or minimally chlorinated swimming pools. N. fowleri and A. polyphaga are becoming problematic as water leisure activities and drinking water are sources of infection. Chlorine dioxide (ClO2) gas is a potent disinfectant that is relatively harmless to humans at the concentration used for disinfection. In this study, we examined the amoebicidal effects of ClO2 gas on N. fowleri and A. polyphaga. These amoebae were exposed to ClO2 gas from a ready-to-use product (0.36 ppmv/h) for 12, 24, 36, and 48 h. Microscopic examination showed that the viability of N. fowleri and A. polyphaga was effectively inhibited by treatment with ClO2 gas in a time-dependent manner. The growth of N. fowleri and A. polyphaga exposed to ClO2 gas for 36 h was completely inhibited. In both cases, the mRNA levels of their respective actin genes were significantly reduced following treatment with ClO2 gas. ClO2 gas has an amoebicidal effect on N. fowleri and A. polyphaga. Therefore, ClO2 gas has been proposed as an effective agent for the prevention and control of pathogenic free-living amoeba contamination.


Assuntos
Acanthamoeba , Compostos Clorados , Desinfetantes , Naegleria fowleri , Óxidos , Compostos Clorados/farmacologia , Naegleria fowleri/efeitos dos fármacos , Acanthamoeba/efeitos dos fármacos , Óxidos/farmacologia , Desinfetantes/farmacologia , Fatores de Tempo , Análise de Sobrevida , Amebicidas/farmacologia
5.
BMC Oral Health ; 24(1): 491, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664718

RESUMO

BACKGROUND: Recent randomized clinical trials suggest that the effect of using cetylpyridinium chloride (CPC) mouthwashes on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load in COVID-19 patients has been inconsistent. Additionally, no clinical study has investigated the effectiveness of on-demand aqueous chlorine dioxide mouthwash against COVID-19. METHODS: We performed a randomized, placebo-controlled, open-label clinical trial to assess for any effects of using mouthwash on the salivary SARS-CoV-2 viral load among asymptomatic to mildly symptomatic adult COVID-19-positive patients. Patients were randomized to receive either 20 mL of 0.05% CPC, 10 mL of 0.01% on-demand aqueous chlorine dioxide, or 20 mL of placebo mouthwash (purified water) in a 1:1:1 ratio. The primary endpoint was the cycle threshold (Ct) values employed for SARS-CoV-2 salivary viral load estimation. We used linear mixed-effects models to assess for any effect of the mouthwashes on SARS-CoV-2 salivary viral load. RESULTS: Of a total of 96 eligible participants enrolled from November 7, 2022, to January 19, 2023, 90 were accepted for the primary analysis. The use of 0.05% CPC mouthwash was not shown to be superior to placebo in change from baseline salivary Ct value at 30 min (difference vs. placebo, 0.640; 95% confidence interval [CI], -1.425 to 2.706; P = 0.543); 2 h (difference vs. placebo, 1.158; 95% CI, -0.797 to 3.112; P = 0.246); 4 h (difference vs. placebo, 1.283; 95% CI, -0.719 to 3.285; P = 0.209); 10 h (difference vs. placebo, 0.304; 95% CI, -1.777 to 2.385; P = 0.775); or 24 h (difference vs. placebo, 0.782; 95% CI, -1.195 to 2.759; P = 0.438). The use of 0.01% on-demand aqueous chlorine dioxide mouthwash was also not shown to be superior to placebo in change from baseline salivary Ct value at 30 min (difference vs. placebo, 0.905; 95% CI, -1.079 to 2.888; P = 0.371); 2 h (difference vs. placebo, 0.709; 95% CI, -1.275 to 2.693; P = 0.483); 4 h (difference vs. placebo, 0.220; 95% CI, -1.787 to 2.226; P = 0.830); 10 h (difference vs. placebo, 0.198; 95% CI, -1.901 to 2.296; P = 0.854); or 24 h (difference vs. placebo, 0.784; 95% CI, -1.236 to 2.804; P = 0.447). CONCLUSIONS: In asymptomatic to mildly symptomatic adults with COVID-19, compared to placebo, the use of 0.05% CPC and 0.01% on-demand aqueous chlorine dioxide mouthwash did not lead to a significant reduction in SARS-CoV-2 salivary viral load. Future studies of the efficacy of CPC and on-demand aqueous chlorine dioxide mouthwash on the viral viability of SARS-CoV-2 should be conducted using different specimen types and in multiple populations and settings.


Assuntos
COVID-19 , Cetilpiridínio , Antissépticos Bucais , Saliva , Carga Viral , Humanos , Antissépticos Bucais/uso terapêutico , Carga Viral/efeitos dos fármacos , Saliva/virologia , Masculino , Feminino , Adulto , Cetilpiridínio/uso terapêutico , Pessoa de Meia-Idade , SARS-CoV-2 , Compostos Clorados/uso terapêutico , Compostos Clorados/farmacologia , Óxidos/uso terapêutico , Idoso
6.
BMC Oral Health ; 24(1): 648, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824549

RESUMO

BACKGROUND: Ensuring the safety of dental unit waterlines (DUWLs) has become a pivotal issue in dental care practices, focusing on the health implications for both patients and healthcare providers. The inherent structure and usage conditions of DUWLs contribute to the risk of biofilm formation and bacterial growth, highlighting the need for effective disinfection solutions.The quest for a disinfection method that is both safe for clinical use and effective against pathogens such as Staphylococcus aureus and Escherichia coli in DUWLs underscores the urgency of this research. MATERIALS: Chlorine dioxide disinfectants at concentrations of 5, 20, and 80 mg/L were used to treat biofilms of S. aureus and E. coli cultured in DUWLs. The disinfection effectiveness was assessed through bacterial counts and culturing. Simultaneously, human skin fibroblast cells were treated with the disinfectant to observe changes in cell morphology and cytotoxicity. Additionally, the study included corrosion tests on various metals (carbon steel, brass, stainless steel, aluminum, etc.). RESULTS: Experimental results showed that chlorine dioxide disinfectants at concentrations of 20 mg/L and 80 mg/L significantly reduced the bacterial count of S. aureus and E. coli, indicating effective disinfection. In terms of cytotoxicity, higher concentrations were more harmful to cellular safety, but even at 80 mg/L, the cytotoxicity of chlorine dioxide remained within controllable limits. Corrosion tests revealed that chlorine dioxide disinfectants had a certain corrosive effect on carbon steel and brass, and the degree of corrosion increased with the concentration of the disinfectant. CONCLUSION: After thorough research, we recommend using chlorine dioxide disinfectant at a concentration of 20 mg/L for significantly reducing bacterial biofilms in dental unit waterlines (DUWLs). This concentration also ensures satisfactory cell safety and metal corrosion resistance.


Assuntos
Biofilmes , Compostos Clorados , Equipamentos Odontológicos , Desinfecção , Escherichia coli , Óxidos , Staphylococcus aureus , Compostos Clorados/farmacologia , Óxidos/farmacologia , Biofilmes/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Staphylococcus aureus/efeitos dos fármacos , Desinfecção/métodos , Equipamentos Odontológicos/microbiologia , Desinfetantes/farmacologia , Desinfetantes de Equipamento Odontológico/farmacologia , Fibroblastos/efeitos dos fármacos , Carga Bacteriana/efeitos dos fármacos , Técnicas In Vitro
7.
J Appl Microbiol ; 134(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37403321

RESUMO

Chlorine dioxide (ClO2) is a disinfectant gas with strong antifungal, antibacterial, and antiviral activities. Applied on hard, non-porous surfaces as an aqueous solution or gas, the ClO2 exerts antimicrobial activity through its interaction and destabilization of cell membrane proteins, as well as through DNA/RNA oxidation, triggering cell death. As for viruses, the ClO2 promotes protein denaturalization mechanisms, preventing the union between the human cells and the viral envelope. Currently, ClO2 has been pointed out as a potential anti-SARS-CoV-2 clinical treatment for use in humans with the ability to oxidize the cysteine residues in the spike protein of SARS-CoV-2, inhibiting the subsequent binding with the Angiotensin-converting enzyme type 2 receptor, located in the alveolar cells. Orally administered ClO2 reaches the gut tract and exacerbates the symptoms of COVID-19, generating a dysbiosis with gut inflammation and diarrhea as side effects, and once absorbed, produces toxic effects including methemoglobinemia and hemoglobinuria, which can trigger respiratory diseases. These effects are dose-dependent and may not be entirely consistent between individuals since the gut microbiota composition is highly heterogeneous. However, to support the use of ClO2 as an anti-SARS-CoV-2 agent, further studies focused on its effectiveness and safety both in healthy and immunocompromised individuals, are needed.


Assuntos
COVID-19 , Compostos Clorados , Desinfetantes , Microbioma Gastrointestinal , Humanos , SARS-CoV-2 , Óxidos/farmacologia , Óxidos/química , Desinfetantes/farmacologia , Compostos Clorados/farmacologia , Cloro
8.
J Water Health ; 21(5): 537-546, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37254903

RESUMO

Disinfectants, especially air disinfectants, are necessary to prevent the potential spread of pathogens (bacteria and viruses) in the pandemic era and minimize the spread of pathogens. Some of the commercial disinfectant products that are often used generally contain chlorine dioxide (ClO2) gas. This study tested the effectiveness of two different commercial disinfectants, a liquid stick disinfectant and a powder disinfection card, to carry out the disinfection of pathogenic bacteria in the environment. These two disinfectants were used as a medium for releasing chlorine dioxide gas which has a much stronger bactericidal effect. In the form of liquid stick, ClO2 is more effective in the disinfection process rather than in the form of powder. The effectiveness of the liquid disinfectant in inhibiting the growth of pathogenic bacteria is influenced by the temperature and the area of the open space covered. Considering that the release from both disinfectants used is very small (0.002 ppmv/h), it takes a small area to ensure that the disinfection process runs effectively.


Assuntos
Compostos Clorados , Desinfetantes , Desinfetantes/farmacologia , Cloro/farmacologia , Pós , Óxidos/farmacologia , Compostos Clorados/farmacologia , Desinfecção , Bactérias
9.
BMC Oral Health ; 23(1): 930, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012605

RESUMO

OBJECTIVES: The study aimed to compare the antibacterial effect of a novel disinfectant, hyper-pure chlorine dioxide (hClO2) to sodium hypochlorite (NaOCl) in various depths of dentin tubules. MATERIALS AND METHODS: The distal root of the extracted lower molars was infected artificially with Enterococcus faecalis. The control group was rinsed with saline, and the test groups were irrigated with either 5% NaOCl or 0.12% hClO2. The longitudinally split teeth were stained by viability stain. The coronal third of the root was scanned with a confocal laser scanning microscope. The fluorescent intensities were measured, and the percentage of dead bacteria was calculated at depths up to 950 µm along the dentin tubules. The effect of penetration depth, irrigants, and their interaction on antimicrobial efficacy was determined by the linear mixed model. RESULTS: The percentage of dead bacteria was higher both in the NaOCl (45.1 ± 2.3%, p < 0.01) and in the hClO2 (44.6 ± 3.8%, p < 0.01) irrigant groups compared to saline (23 ± 4.5%); however, there was no difference between them. The percentage of killed bacteria was not correlated with the depths in any group (p = 0.633). CONCLUSIONS: Our results suggest that the functional penetration depth of NaOCl is at least 2-3 times more than published to date. There is no difference in disinfection effectiveness along the dentin tubules between NaOCl and hClO2 until at least the measured 950 µm. However, both were only able to eradicate the intratubular bacteria partially. CLINICAL RELEVANCE: Hyper-pure ClO2 could be used as an alternative or final adjuvant irrigant in endodontic treatment.


Assuntos
Anti-Infecciosos , Compostos Clorados , Humanos , Hipoclorito de Sódio/farmacologia , Dentina , Anti-Infecciosos/farmacologia , Compostos Clorados/farmacologia , Bactérias , Enterococcus faecalis , Irrigantes do Canal Radicular/farmacologia , Cavidade Pulpar/microbiologia , Biofilmes
10.
J Appl Microbiol ; 133(6): 3413-3423, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35973686

RESUMO

AIM: To assess removal versus kill efficacies of antimicrobial treatments against thick biofilms with statistical confidence. METHODS AND RESULTS: A photo-activated chlorine dioxide treatment (Photo ClO2 ) was tested in two independent experiments against thick (>100 µm) Pseudomonas aeruginosa biofilms. Kill efficacy was assessed by viable plate counts. Removal efficacy was assessed by 3D confocal scanning laser microscope imaging (CSLM). Biovolumes were calculated using an image analysis approach that models the penetration limitation of the laser into thick biofilms using Beer's Law. Error bars are provided that account for the spatial correlation of the biofilm's surface. The responsiveness of the biovolumes and plate counts to the increasing contact time of Photo ClO2 were quite different, with a massive 7 log reduction in viable cells (95% confidence interval [CI]: 6.2, 7.9) but a more moderate 73% reduction in biovolume (95% CI: [60%, 100%]). Results are leveraged to quantitatively assess candidate CSLM experimental designs of thick biofilms. CONCLUSIONS: Photo ClO2 kills biofilm bacteria but only partially removes the biofilm from the surface. To maximize statistical confidence in assessing removal, imaging experiments should use fewer pixels in each z-slice, and more importantly, at least two independent experiments even if there is only a single field of view in each experiment. SIGNIFICANCE AND IMPACT OF STUDY: There is limited penetration depth when collecting 3D confocal images of thick biofilms. Removal can be assessed by optimally fitting Beer's Law to all of the intensities in a 3D image and by accounting for the spatial correlation of the biofilm's surface. For thick biofilms, other image analysis approaches are biased or do not provide error bars. We generate unbiased estimates of removal and assess candidate CSLM experimental designs of thick biofilms with different pixilations, numbers of fields of view and number of experiments using the included design tool.


Assuntos
Compostos Clorados , Compostos Clorados/farmacologia , Óxidos/farmacologia , Biofilmes , Antibacterianos/farmacologia , Microscopia Confocal
11.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362097

RESUMO

Chlorine dioxide is widely used for pulp bleaching because of its high delignification selectivity. However, efficient and clean chlorine dioxide bleaching is limited by the complexity of the lignin structure. Herein, the oxidation reactions of phenolic (vanillyl alcohol) and non-phenolic (veratryl alcohol) lignin model species were modulated using chlorine dioxide. The effects of chlorine dioxide concentration, reaction temperature, and reaction time on the consumption rate of the model species were also investigated. The optimal consumption rate for the phenolic species was obtained at a chlorine dioxide concentration of 30 mmol·L-1, a reaction temperature of 40 °C, and a reaction time of 10 min, resulting in the consumption of 96.3% of vanillyl alcohol. Its consumption remained essentially unchanged compared with that of traditional chlorine dioxide oxidation. However, the consumption rate of veratryl alcohol was significantly reduced from 78.0% to 17.3%. Additionally, the production of chlorobenzene via the chlorine dioxide oxidation of veratryl alcohol was inhibited. The structural changes in lignin before and after different treatments were analyzed. The overall structure of lignin remained stable during the optimization of the chlorine dioxide oxidation treatment. The signal intensities of several phenolic units were reduced. The effects of the selective oxidation of lignin by chlorine dioxide on the pulp properties were analyzed. Pulp viscosity significantly increased owing to the preferential oxidation of phenolic lignin by chlorine dioxide. The pollution load of bleached effluent was considerably reduced at similar pulp brightness levels. This study provides a new approach to chlorine dioxide bleaching. An efficient and clean bleaching process of the pulp was developed.


Assuntos
Compostos Clorados , Lignina , Lignina/química , Compostos Clorados/farmacologia , Compostos Clorados/química , Fenóis/farmacologia , Ácido Hipocloroso , Cloro/química , Papel
12.
J Appl Microbiol ; 130(5): 1531-1545, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33025608

RESUMO

AIMS: The efficacy of a novel photochemical method for generating chlorine dioxide (photoClO2 ) was evaluated against human noroviruses (HuNoV) surrogate, bacteriophage MS2, and Clostridium difficile endospores. METHODS AND RESULTS: Chlorine dioxide was generated by mixing 1% sodium chlorite with 10 parts-per-million (ppm) Eosin Y and irradiating with a photo-activator-excitable light. PhotoClO2 efficacy was assessed against bacteriophage MS2 and C. difficile endospores in suspension, on hard surfaces and greenhouse conditions under soiled and unsoiled conditions. The estimated effective photoClO2 produced and consumed was 20·39 ± 0·16 ppm at a rate of 8·16 ppm per min in a 1% sodium chlorite solution. In suspension, MS2 phage was reduced by 3·35 and >5·10 log10 PFU per ml in 120 and 90 min, with and without soil, respectively. At the same time, when dried on stainless steel surface, MS2 phage was reduced by >4·53 log10 PFU per carrier in 30 min under both conditions. On the other hand, C. difficile endospores in suspension were reduced by 2·26 and 3·65 log10 CFU per ml in 120 min with and without soiling, respectively. However, on stainless steel surface, maximal reductions of the C. difficile endospores were 0·8 and 1·5 log10 CFU per carrier with and without soiling, respectively, and a maximal reduction of 2·97 log10 CFU per carrier under greenhouse conditions at 24 h. CONCLUSIONS: Overall, photoClO2 showed promise as a technology to control HuNoV contamination on environmental surfaces but requires further optimization and testing against C. difficile endospores. SIGNIFICANCE AND IMPACT OF THE STUDY: Results from this investigation will serve as a model for how to generate and quantify photoClO2 and how to appropriately evaluate this new class of disinfectants against environmentally resilient pathogens: viruses and bacterial endospores.


Assuntos
Compostos Clorados/farmacologia , Clostridioides difficile/efeitos dos fármacos , Desinfetantes/farmacologia , Contaminação de Equipamentos/prevenção & controle , Levivirus/efeitos dos fármacos , Óxidos/farmacologia , Humanos , Norovirus/efeitos dos fármacos , Fotoquímica , Esporos Bacterianos/efeitos dos fármacos , Aço Inoxidável
13.
Food Microbiol ; 99: 103819, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34119104

RESUMO

Nuts, including almonds, are occasionally contaminated with Salmonella spp. In this study, we used chlorine dioxide (ClO2) gas to inactivate S. enterica subsp. Enterica serovar Enteritidis on almonds. Almonds inoculated with a single strain of S. Enteritidis (8.95 log cfu/mL) were exposed to ClO2 gas generated from 1.0 or 1.5 mL ClO2 solution in a sealed container at 50 or 60 °C (43% relative humidity) for up to 10 h. The concentration of ClO2 gas peaked at 354-510 and 750-786 ppm within 0.5 h upon deposition of 1.0 and 1.5 mL of aqueous ClO2, respectively, and gradually decreased thereafter. Population of S. Enteritidis on almonds treated at 50 °C decreased to 1.70-2.32 log cfu/sample within 1 h of exposure to ClO2 gas and decreased to below the detection limit (1.7 log cfu/sample) at all ClO2 concentrations after 8 h. At 60 °C, the microbial population fell below the detection limit within 1 h, regardless of the volume of ClO2 solution supplied. Microbial survival on almonds treated with ClO2 gas and stored at 12 or 25 °C was observed for up to 8 weeks and the organism was not recovered from the almonds treated for 10 h and stored at 12 °C for 2-8 weeks. The lightness (L value) and redness (a value) of almonds treated for 10 h were not changed by ClO2 gas treatment, but yellowness (b value) increased. Results showed that Salmonella on almonds was successfully inactivated by ClO2 gas treatment and the microbial survival did not occur during storage.


Assuntos
Compostos Clorados/farmacologia , Conservação de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Óxidos/farmacologia , Prunus dulcis/microbiologia , Salmonella enteritidis/efeitos dos fármacos , Compostos Clorados/química , Conservação de Alimentos/instrumentação , Armazenamento de Alimentos , Gases/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Nozes/microbiologia , Óxidos/química , Salmonella enteritidis/crescimento & desenvolvimento
14.
Food Microbiol ; 95: 103707, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33397625

RESUMO

The aim of this study was to investigate the effect of water activity (aw) on inactivation of Listeria monocytogenes using gaseous chlorine dioxide (ClO2 (g)) under room temperature. Surface-inoculated tryptic soy agar (TSA) plates adjusted to 9 different water activity levels ranging from 0.994 to 0.429 were used as samples exposed to ClO2 (g) at 150, 250, and 350 ppm for different durations of treatment time. Results showed that the antimicrobial effect of ClO2 (g) significantly decreases as the aw level and ClO2 (g) concentration decrease. Nonlinear models, such as the modified Chick model and the Weibull model, were used to describe the inactivation kinetics of L. monocytogenes. The results showed that the modified Chick model, which is based on chemical reaction kinetics, was more suitable to describe the inactivation of L. monocytogenes (RMSE < 0.5 log CFU/g) than the Weibull model (RMSE < 1.0 log CFU/g). A multiple regression model was developed for the describing the effect of aw and ClO2 (g) concentration on bacterial inactivation. The results of this study may be used to design ClO2 (g) treatment processes to inactivate L. monocytogenes in low-moisture foods.


Assuntos
Compostos Clorados/farmacologia , Desinfetantes/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento , Óxidos/farmacologia , Água/análise , Compostos Clorados/química , Contagem de Colônia Microbiana , Desinfetantes/química , Gases/farmacologia , Cinética , Listeria monocytogenes/química , Óxidos/química , Água/metabolismo
15.
Food Microbiol ; 100: 103866, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34416966

RESUMO

The elaboration of guidelines for the industry to establish minimum concentration to prevent cross-contamination during washing practices based on operational limits is the core of the recommended criteria for the use of sanitizers. Several studies have evidenced that sanitizers reduced the levels of foodborne pathogens. However, they might lead to the progress into a viable but non-culturable (VBNC) state of the cells. This evidence has raised concerns regarding the effectiveness of the recommended washing practices for the inactivation of microbial cells present in the process wash water (PWW). The present study evaluated if the most commonly used sanitizers, including sodium hypochlorite (chlorine), peroxyacetic acid (PAA) and chlorine dioxide (ClO2) at established operational limits induced the VBNC stage of Listeria monocytogenes and Escherichia coli O157:H7. Prevention of cross-contamination was examined in four different types of PWW from washing shredded lettuce and cabbage, diced onions, and baby spinach under simulated commercial conditions of high organic matter and 1 min contact time. The results obtained for chlorine showed that recommended operational limits (20-25 mg/L free chlorine) were effective in inactivating L. monocytogenes and E. coli O157:H7 in the different PWWs. However, the operational limits established for PAA (80 mg/L) and ClO2 (3 mg/L) reduced the levels of culturable pathogenic bacteria but induced the VBNC state of the remaining cells. Consequently, the operational limits for chlorine are satisfactory to inactivate foodborne pathogens present in PWW and prevent cross-contamination but higher concentrations or longer contact times should be needed for PAA and ClO2 to reduce the likelihood of the induction of VBNC bacteria cells, as it represents a hazard.


Assuntos
Compostos Clorados/farmacologia , Cloro/farmacologia , Desinfetantes/farmacologia , Escherichia coli O157/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Óxidos/farmacologia , Ácido Peracético/farmacologia , Contagem de Colônia Microbiana , Escherichia coli O157/crescimento & desenvolvimento , Manipulação de Alimentos/instrumentação , Listeria monocytogenes/crescimento & desenvolvimento , Viabilidade Microbiana/efeitos dos fármacos
16.
Food Microbiol ; 99: 103805, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34119098

RESUMO

This study was done to develop a method to inactivate Escherichia coli O157:H7 on radish and cabbage seeds using simultaneous treatments with gaseous chlorine dioxide (ClO2) and heat at high relative humidity (RH) without decreasing seeds' viability. Gaseous ClO2 was spontaneously vaporized from a solution containing hydrochloric acid (HCl, 1 N) and sodium chlorite (NaClO2, 100,000 ppm). Using a sealed container (1.8 L), an equation (y = 5687×, R2 = 0.9948) based on the amount of gaseous ClO2 generated from HCl-NaClO2 solution at 60 °C and 85% RH was developed. When radish or cabbage seeds were exposed to gaseous ClO2 at concentrations up to 3,000 ppm for 120 min, germination rates did not significantly decrease (P > 0.05). When seeds inoculated with E. coli O157:H7 were treated with 2,000 or 3,000 ppm of gaseous ClO2 in an atmosphere with 85% RH at 60 °C, populations (6.8-6.9 log CFU/g) on both types of seeds were decreased to below the detection limit for enrichment (-0.5 log CFU/g) within 90 min. This study provides useful information for developing a decontamination method to control E. coli O157:H7 and perhaps other foodborne pathogens on plant seeds by simultaneous treatment with gaseous ClO2 and heat at high RH.


Assuntos
Brassica/crescimento & desenvolvimento , Compostos Clorados/farmacologia , Descontaminação/métodos , Desinfetantes/farmacologia , Escherichia coli O157/efeitos dos fármacos , Óxidos/farmacologia , Raphanus/crescimento & desenvolvimento , Sementes/microbiologia , Brassica/microbiologia , Cloro/farmacologia , Escherichia coli O157/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Temperatura Alta , Umidade , Viabilidade Microbiana/efeitos dos fármacos , Raphanus/microbiologia , Sementes/química , Sementes/crescimento & desenvolvimento
17.
Plant Dis ; 105(11): 3426-3432, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33934635

RESUMO

The focus of this study was to develop technologies using chlorine dioxide (ClO2) gas to control postharvest stem-end rot of citrus caused by Lasiodiplodia theobromae. Mycelial growth of L. theobromae on potato dextrose agar (PDA) plugs was completely inhibited by a 24-h ClO2 exposure provided by 0.5 g of solid ClO2 generating granular mixture in a 7.7-liter sealed container. In vivo experiments were conducted on artificially inoculated Tango and naturally infected U.S. Early Pride mandarins. When ClO2 treatments were initiated 0 to 6 h after inoculation, decay development was significantly reduced as compared with the control, and higher ClO2 doses were more effective. A ClO2 treatment (using 3 g of generating mixture per 7.7-liter sealed container) administered 0 h after inoculation resulted in 17.6% Diplodia stem-end rot incidence compared with 95.6% in the control, whereas the same treatment administered 24 h after inoculation was much less effective, resulting in 63.0% incidence compared with 85.4% in the control. Diplodia stem-end rot incidence of naturally infected fruit after using 6 or 9 g of generating mixture per 24-liter sealed box was 23.8 or 25.7%, respectively, compared with 47.9% for control fruit. The ClO2 treatments had no negative effects on fruit quality characteristics including weight loss, firmness, puncture resistance, titratable acids (TAs), total soluble solids (TSSs), and rind color. Albedo pH at wounds was significantly reduced from 6.0 to 4.8 by the ClO2 treatments, whereas undamaged albedo remained at 5.8. In addition, no visible physiologic defects, such as peel browning and bleaching, were observed on ClO2-treated fruit. These results indicate that ClO2 gas has the potential to be developed as a component of an integrated citrus postharvest decay control system to minimize fruit losses.


Assuntos
Compostos Clorados , Citrus , Ascomicetos , Compostos Clorados/farmacologia , Gases , Óxidos
18.
Int J Environ Health Res ; 31(5): 518-529, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31569961

RESUMO

Mango is highly consumed worldwide; nonetheless, its consumption has been related to foodborne outbreaks. This study was performed to evaluate bacterial transference during mango postharvest management and the feasibility of adopting chlorine dioxide as first choice disinfectant in mango packinghouse. Chlorine dioxide (3 and 5 ppm) and sodium hypochlorite (100 and 200 ppm) were evaluated at different turbidity and times against Salmonella Choleraesuis and Listeria monocytogenes. Bacterial transference was higher from water to fruit than vice-versa (49.17%). Chlorine dioxide (5 ppm) achieved the highest Salmonella reductions at low turbidity reaching 2.13 Log10 at 10 min; meanwhile, Listeria was totally reduced in all conditions. Bacterial decay kinetic showed that chlorine dioxide 5 ppm was 34-fold faster than sodium hypochlorite at 200 ppm in reducing 1 Log10 of Salmonella. Chlorine dioxide reached faster bacterial inactivation decay over sodium hypochlorite; its usage is safe and meets the regulatory standards set for mango processing.


Assuntos
Compostos Clorados/farmacologia , Desinfetantes/farmacologia , Manipulação de Alimentos/métodos , Frutas/microbiologia , Listeria monocytogenes/efeitos dos fármacos , Mangifera/microbiologia , Óxidos/farmacologia , Salmonella/efeitos dos fármacos , Microbiologia de Alimentos , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/isolamento & purificação , Salmonella/crescimento & desenvolvimento , Salmonella/isolamento & purificação , Hipoclorito de Sódio/farmacologia
19.
J Med Virol ; 92(8): 1298-1302, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31919857

RESUMO

Sexual transmission is the most common pathway for the spread of Human papillomavirus (HPV). However, the potential for iatrogenic HPV infections is also real. Even though cleared by the Food and Drug Administration and recommended by the World Federation for Ultrasound in Medicine and Biology, several disinfectants including glutaraldehyde and o-phthalaldehyde have shown a lack of efficacy for inactivating HPV. Other methods such as ultraviolet C and concentrated hydrogen peroxide have been shown highly effective at inactivating infectious HPV. In this study, two chlorine dioxide systems are also shown to be highly efficacious at inactivating HPV. An important difference in these present studies is that as opposed to testing in suspension or using a carrier, we dried the infectious virus directly onto endocavitary ultrasound probes and nasendoscopes, therefore, validating a more realistic system to demonstrate disinfectant efficacy.


Assuntos
Alphapapillomavirus/efeitos dos fármacos , Compostos Clorados/farmacologia , Desinfetantes/farmacologia , Desinfecção/métodos , Contaminação de Equipamentos , Equipamentos e Provisões/virologia , Óxidos/farmacologia , Compostos Clorados/química , Endoscopia/instrumentação , Células HaCaT , Humanos , Óxidos/química , Infecções por Papillomavirus/prevenção & controle , Infecções por Papillomavirus/transmissão , Ultrassonografia/instrumentação
20.
Appl Microbiol Biotechnol ; 104(9): 4071-4080, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32179950

RESUMO

This study aimed to model the inactivation of Lactobacillus brevis DSM 6235 while retaining the viability of yeasts during washing brewer's yeast with phosphoric acid and chlorine dioxide. The independent variables in the acid washing were pH (1-3) and temperature (1-9 °C), whereas in the washing with chlorine dioxide, concentration (10-90 mg/L) and temperature (5-25 °C) were assessed. The predictive models obtained for the four response variables γLA, γCl (decimal reduction of L. brevis DSM 6235), Vf/V0LA, and Vf/V0Cl (brewer's yeast viability ratio) were found to have R2 > 0.80 and values of Fcalc > Freference. Then, the models were considered predictive and statistically significant (p < 0.10). Our results indicated that phosphoric acid and chlorine dioxide washing resulted in up to 7 and 6.4 (log CFU/mL) decimal reductions of L. brevis DSM 6235, respectively. On the other hand, the viability of the brewer's yeast ranged from 22.3 to 99.4%. L. brevis DSM 6235 inactivation was significantly influenced by parameters pH(Q) and T°C(Q) when phosphoric acid was applied, and by parameters mg/L(L), mg/L(Q), T°C(Q), and mg/L × T°C when ClO2 was applied. The validation of the models resulted in bias (γLA, 0.93/Vf/V0LA, 0.99 - γCl, 1.0/Vf/V0Cl, 0.99) and accuracy values (γLA, 1.12/Vf/V0LA, 1.01 - γCl, 1.08/Vf/V0Cl, 1.03). The results of this study indicate that it might be possible to decontaminate brewer's yeast through acid and chlorine dioxide washing while keeping its viability. This procedure will result in the reduction of costs and the lower generation of brewer's waste.


Assuntos
Compostos Clorados/farmacologia , Fermentação , Levilactobacillus brevis/fisiologia , Viabilidade Microbiana , Óxidos/farmacologia , Ácidos Fosfóricos/farmacologia , Saccharomyces cerevisiae/fisiologia , Cerveja/microbiologia , Concentração de Íons de Hidrogênio , Levilactobacillus brevis/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA